

 Home
Classes
	GState
	jsPDF	addFont
	addGState
	addPage
	addPattern
	beginFormObject
	circle
	clip
	clipEvenOdd
	close
	comment
	curveTo
	deletePage
	discardPath
	doFormObject
	ellipse
	endFormObject
	fill
	fillEvenOdd
	fillStroke
	fillStrokeEvenOdd
	getCharSpace
	getCreationDate
	getDrawColor
	getFileId
	getFillColor
	getFont
	getFontList
	getFontSize
	getFormObject
	getLineHeightFactor
	getLineWidth
	getR2L
	getTextColor
	insertPage
	line
	lines
	lineTo
	movePage
	moveTo
	output
	path
	rect
	restoreGraphicsState
	roundedRect
	save
	saveGraphicsState
	setCharSpace
	setCreationDate
	setCurrentTransformationMatrix
	setDisplayMode
	setDocumentProperties
	setDrawColor
	setFileId
	setFillColor
	setFont
	setFontSize
	setGState
	setLineCap
	setLineDashPattern
	setLineHeightFactor
	setLineJoin
	setLineMiterLimit
	setLineWidth
	setPage
	setPrecision
	setR2L
	setTextColor
	stroke
	text
	triangle
	addGState
	addPattern
	hasHotfix
	Point
	Rectangle
	RenderTarget

	GState
	ShadingPattern
	TilingPattern
	Matrix	applyToPoint
	applyToRectangle
	clone
	decompose
	inversed
	join
	multiply
	toString

	AcroFormButton
	AcroFormCheckBox
	AcroFormChoiceField
	AcroFormComboBox	addOption
	getOptions
	removeOption
	setOptions

	AcroFormEditBox	addOption
	getOptions
	removeOption
	setOptions

	AcroFormField
	AcroFormListBox	addOption
	getOptions
	removeOption
	setOptions

	AcroFormPasswordField
	AcroFormPDFObject
	AcroFormPushButton
	AcroFormRadioButton
	AcroFormTextField
	Canvas

Modules
	AcroForm	addField
	AcroFormDictionaryCallback
	calculateFontSpace
	createAnnotationReference
	createFieldCallback

	addImage	addImage
	arrayBufferToBinaryString
	binaryStringToUint8Array
	convertBase64ToBinaryString
	extractImageFromDataUrl
	getImageFileTypeByImageData
	getImageProperties
	isArrayBuffer
	isArrayBufferView
	sHashCode
	supportsArrayBuffer
	validateStringAsBase64

	annotations	createAnnotation
	getTextWidth
	link
	textWithLink

	arabic	processArabic

	autoprint	autoPrint

	bmp_support
	canvas	getContext
	toDataURL

	cell	cell
	cellAddPage
	getTextDimensions
	printHeaderRow
	setHeaderFunction
	setTableHeaderRow
	table

	context2d	arc
	arcTo
	beginPath
	bezierCurveTo
	clearRect
	clip
	closePath
	createArc
	fillRect
	fillText
	getLineDash
	lineTo
	measureText
	moveTo
	quadraticCurveTo
	rect
	restore
	rotate
	save
	scale
	setLineDash
	setTransform
	stroke
	strokeRect
	strokeText
	toDataURL
	transform
	translate

	fileloading	loadFile
	loadImageFile

	gif_support
	html	html

	javascript	addJS

	jpeg_support
	outline
	png_support
	rgba_support
	setLanguage	setLanguage

	split_text_to_size	getCharWidthsArray
	getStringUnitWidth
	splitTextToSize

	standard_fonts_metrics
	svg	addSvgAsImage

	total_pages	putTotalPages

	ttfsupport
	utf8
	vFS	addFileToVFS
	existsFileInVFS
	getFileFromVFS

	viewerpreferences	viewerPreferences

	webp_support
	xmp_metadata	addMetadata

Global
	constructor
	encryptor
	hexToBytes
	lsbFirstWord
	mapArrayBufferViews
	md5cycle
	processOwnerPassword
	rc4
	repeat
	RGBColor
	Sets options for Bidi conversion
	toHexString
	toPDFName

		

A library to generate PDFs in JavaScript.

You can catch me on twitter: @MrRio or head over to my company's website for consultancy.

jsPDF is now co-maintained by yWorks - the diagramming experts.

Live Demo | Documentation

Install

Recommended: get jsPDF from npm:

npm install jspdf --save
or
yarn add jspdf

Alternatively, load it from a CDN:

<script src="https://cdnjs.cloudflare.com/ajax/libs/jspdf/2.5.1/jspdf.umd.min.js"></script>

Or always get latest version via unpkg

<script src="https://unpkg.com/jspdf@latest/dist/jspdf.umd.min.js"></script>

The dist folder of this package contains different kinds of files:

	jspdf.es.*.js: Modern ES2015 module format.
	jspdf.node.*.js: For running in Node. Uses file operations for loading/saving files instead of browser APIs.
	jspdf.umd.*.js: UMD module format. For AMD or script-tag loading.
	polyfills*.js: Required polyfills for older browsers like Internet Explorer. The es variant simply imports all
required polyfills from core-js, the umd variant is self-contained.

Usually it is not necessary to specify the exact file in the import statement. Build tools or Node automatically figure
out the right file, so importing "jspdf" is enough.

Usage

Then you're ready to start making your document:

import { jsPDF } from "jspdf";

// Default export is a4 paper, portrait, using millimeters for units
const doc = new jsPDF();

doc.text("Hello world!", 10, 10);
doc.save("a4.pdf");

If you want to change the paper size, orientation, or units, you can do:

// Landscape export, 2×4 inches
const doc = new jsPDF({
 orientation: "landscape",
 unit: "in",
 format: [4, 2]
});

doc.text("Hello world!", 1, 1);
doc.save("two-by-four.pdf");

Running in Node.js

const { jsPDF } = require("jspdf"); // will automatically load the node version

const doc = new jsPDF();
doc.text("Hello world!", 10, 10);
doc.save("a4.pdf"); // will save the file in the current working directory

Other Module Formats

 AMD

require(["jspdf"], ({ jsPDF }) => {
 const doc = new jsPDF();
 doc.text("Hello world!", 10, 10);
 doc.save("a4.pdf");
});

 Globals

const { jsPDF } = window.jspdf;

const doc = new jsPDF();
doc.text("Hello world!", 10, 10);
doc.save("a4.pdf");

Optional dependencies

Some functions of jsPDF require optional dependencies. E.g. the html method, which depends on html2canvas and,
when supplied with a string HTML document, dompurify. JsPDF loads them dynamically when required
(using the respective module format, e.g. dynamic imports). Build tools like Webpack will automatically create separate
chunks for each of the optional dependencies. If your application does not use any of the optional dependencies, you
can prevent Webpack from generating the chunks by defining them as external dependencies:

// webpack.config.js
module.exports = {
 // ...
 externals: {
 // only define the dependencies you are NOT using as externals!
 canvg: "canvg",
 html2canvas: "html2canvas",
 dompurify: "dompurify"
 }
};

In Vue CLI projects, externals can be defined via the configureWebpack
or chainWebpack properties of the vue.config.js file
(needs to be created, first, in fresh projects).

In Angular projects, externals can be defined using
custom webpack builders.

In React (create-react-app) projects, externals can be defined by either using
react-app-rewired or ejecting.

TypeScript/Angular/Webpack/React/etc. Configuration:

jsPDF can be imported just like any other 3rd party library. This works with all major toolkits and frameworks. jsPDF
also offers a typings file for TypeScript projects.

import { jsPDF } from "jspdf";

You can add jsPDF to your meteor-project as follows:

meteor add jspdf:core

Polyfills

jsPDF requires modern browser APIs in order to function. To use jsPDF in older browsers like Internet Explorer,
polyfills are required. You can load all required polyfills as follows:

import "jspdf/dist/polyfills.es.js";

Alternatively, you can load the prebundled polyfill file. This is not recommended, since you might end up
loading polyfills multiple times. Might still be nifty for small applications or quick POCs.

<script src="https://cdnjs.cloudflare.com/ajax/libs/jspdf/2.5.1/polyfills.umd.js"></script>

Use of Unicode Characters / UTF-8:

The 14 standard fonts in PDF are limited to the ASCII-codepage. If you want to use UTF-8 you have to integrate a
custom font, which provides the needed glyphs. jsPDF supports .ttf-files. So if you want to have for example
Chinese text in your pdf, your font has to have the necessary Chinese glyphs. So, check if your font supports
the wanted glyphs or else it will show garbled characters instead of the right text.

To add the font to jsPDF use our fontconverter in
/fontconverter/fontconverter.html.
The fontconverter will create a js-file with the content of the provided ttf-file as base64 encoded string
and additional code for jsPDF. You just have to add this generated js-File to your project.
You are then ready to go to use setFont-method in your code and write your UTF-8 encoded text.

Alternatively you can just load the content of the *.ttf file as a binary string using fetch or XMLHttpRequest and
add the font to the PDF file:

const doc = new jsPDF();

const myFont = ... // load the *.ttf font file as binary string

// add the font to jsPDF
doc.addFileToVFS("MyFont.ttf", myFont);
doc.addFont("MyFont.ttf", "MyFont", "normal");
doc.setFont("MyFont");

Advanced Functionality

Since the merge with the yWorks fork there are a lot of new features. However, some
of them are API breaking, which is why there is an API-switch between two API modes:

	In "compat" API mode, jsPDF has the same API as MrRio's original version, which means full compatibility with plugins.
However, some advanced features like transformation matrices and patterns won't work. This is the default mode.
	In "advanced" API mode, jsPDF has the API you're used from the yWorks-fork version. This means the availability of
all advanced features like patterns, FormObjects, and transformation matrices.

You can switch between the two modes by calling

doc.advancedAPI(doc => {
 // your code
});
// or
doc.compatAPI(doc => {
 // your code
});

JsPDF will automatically switch back to the original API mode after the callback has run.

Support

Please check if your question is already handled at Stackoverflow https://stackoverflow.com/questions/tagged/jspdf.
Feel free to ask a question there with the tag jspdf.

Feature requests, bug reports, etc. are very welcome as issues. Note that bug reports should follow these guidelines:

	A bug should be reported as an mcve
	Make sure code is properly indented and formatted (Use ``` around code blocks)
	Provide a runnable example.
	Try to make sure and show in your issue that the issue is actually related to jspdf and not your framework of choice.

Contributing

jsPDF cannot live without help from the community! If you think a feature is missing or you found a bug, please consider
if you can spare one or two hours and prepare a pull request. If you're simply interested in this project and want to
help, have a look at the open issues, especially those labeled with "bug".

You can find information about building and testing jsPDF in the
contribution guide

Credits

	Big thanks to Daniel Dotsenko from Willow Systems Corporation for making huge contributions to the codebase.
	Thanks to Ajaxian.com for featuring us back in 2009.
	Our special thanks to GH Lee (sphilee) for programming the ttf-file-support and providing a large and long sought after feature
	Everyone else that's contributed patches or bug reports. You rock.

License (MIT)

Copyright
(c) 2010-2021 James Hall, https://github.com/MrRio/jsPDF
(c) 2015-2021 yWorks GmbH, https://www.yworks.com/

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Documentation generated by JSDoc 3.6.4 on Fri Jan 28 2022 16:38:20 GMT+0100 (Central European Standard Time) using the docdash theme.

