HTML5 规范鼓励 Web 开发人员使用 UTF-8 字符集!情况并非总是如此。 早期网络的字符编码是 ASCII。
后来,从 HTML 2.0 到 HTML 4.01,ISO-8859-1 被认为是标准字符集。
随着 XML 和 HTML5,UTF-8 终于到来,解决了很多字符编码问题。
下表中的所有实体都将在所有浏览器中正确显示,包括 HTML4 和 HTML5 页面。
| Char | Entity | Dec | Hex | Description |
|---|---|---|---|---|
| & | & | & | & | ampersand |
| < | < | < | < | less than |
| > | > | > | > | greater than |
| |   |   | no-break space = non-breaking space | |
| ¡ | ¡ | ¡ | ¡ | inverted exclamation mark |
| ¢ | ¢ | ¢ | ¢ | cent sign |
| £ | £ | £ | £ | pound sign |
| ¤ | ¤ | ¤ | ¤ | currency sign |
| ¥ | ¥ | ¥ | ¥ | yen sign = yuan sign |
| ¦ | ¦ | ¦ | ¦ | broken bar = broken vertical bar |
| § | § | § | § | section sign |
| ¨ | ¨ | ¨ | ¨ | diaeresis = spacing diaeresis |
| © | © | © | © | copyright sign |
| ª | ª | ª | ª | feminine ordinal indicator |
| « | « | « | « | left-pointing double angle quotation mark = left pointing guillemet |
| ¬ | ¬ | ¬ | ¬ | not sign |
| | ­ | ­ | ­ | soft hyphen = discretionary hyphen |
| ® | ® | ® | ® | registered sign = registered trade mark sign |
| ¯ | ¯ | ¯ | ¯ | macron = spacing macron = overline = APL overbar |
| ° | ° | ° | ° | degree sign |
| ± | ± | ± | ± | plus-minus sign = plus-or-minus sign |
| ² | ² | ² | ² | superscript two = superscript digit two = squared |
| ³ | ³ | ³ | ³ | superscript three = superscript digit three = cubed |
| ´ | ´ | ´ | ´ | acute accent = spacing acute |
| µ | µ | µ | µ | micro sign |
| ¶ | ¶ | ¶ | ¶ | pilcrow sign = paragraph sign |
| · | · | · | · | middle dot = Georgian comma = Greek middle dot |
| ¸ | ¸ | ¸ | ¸ | cedilla = spacing cedilla |
| ¹ | ¹ | ¹ | ¹ | superscript one = superscript digit one |
| º | º | º | º | masculine ordinal indicator |
| » | » | » | » | right-pointing double angle quotation mark = right pointing guillemet |
| ¼ | ¼ | ¼ | ¼ | vulgar fraction one quarter = fraction one quarter |
| ½ | ½ | ½ | ½ | vulgar fraction one half = fraction one half |
| ¾ | ¾ | ¾ | ¾ | vulgar fraction three quarters = fraction three quarters |
| ¿ | ¿ | ¿ | ¿ | inverted question mark = turned question mark |
| À | À | À | À | latin capital letter A with grave = latin capital letter A grave |
| Á | Á | Á | Á | latin capital letter A with acute |
| Â | Â | Â | Â | latin capital letter A with circumflex |
| Ã | Ã | Ã | Ã | latin capital letter A with tilde |
| Ä | Ä | Ä | Ä | latin capital letter A with diaeresis |
| Å | Å | Å | Å | latin capital letter A with ring above = latin capital letter A ring |
| Æ | Æ | Æ | Æ | latin capital letter AE = latin capital ligature AE |
| Ç | Ç | Ç | Ç | latin capital letter C with cedilla |
| È | È | È | È | latin capital letter E with grave |
| É | É | É | É | latin capital letter E with acute |
| Ê | Ê | Ê | Ê | latin capital letter E with circumflex |
| Ë | Ë | Ë | Ë | latin capital letter E with diaeresis |
| Ì | Ì | Ì | Ì | latin capital letter I with grave |
| Í | Í | Í | Í | latin capital letter I with acute |
| Î | Î | Î | Î | latin capital letter I with circumflex |
| Ï | Ï | Ï | Ï | latin capital letter I with diaeresis |
| Ð | Ð | Ð | Ð | latin capital letter ETH |
| Ñ | Ñ | Ñ | Ñ | latin capital letter N with tilde |
| Ò | Ò | Ò | Ò | latin capital letter O with grave |
| Ó | Ó | Ó | Ó | latin capital letter O with acute |
| Ô | Ô | Ô | Ô | latin capital letter O with circumflex |
| Õ | Õ | Õ | Õ | latin capital letter O with tilde |
| Ö | Ö | Ö | Ö | latin capital letter O with diaeresis |
| × | × | × | × | multiplication sign |
| Ø | Ø | Ø | Ø | latin capital letter O with stroke = latin capital letter O slash |
| Ù | Ù | Ù | Ù | latin capital letter U with grave |
| Ú | Ú | Ú | Ú | latin capital letter U with acute |
| Û | Û | Û | Û | latin capital letter U with circumflex |
| Ü | Ü | Ü | Ü | latin capital letter U with diaeresis |
| Ý | Ý | Ý | Ý | latin capital letter Y with acute |
| Þ | Þ | Þ | Þ | latin capital letter THORN |
| ß | ß | ß | ß | latin small letter sharp s = ess-zed |
| à | à | à | à | latin small letter a with grave = latin small letter a grave |
| á | á | á | á | latin small letter a with acute |
| â | â | â | â | latin small letter a with circumflex |
| ã | ã | ã | ã | latin small letter a with tilde |
| ä | ä | ä | ä | latin small letter a with diaeresis |
| å | å | å | å | latin small letter a with ring above = latin small letter a ring |
| æ | æ | æ | æ | latin small letter ae = latin small ligature ae |
| ç | ç | ç | ç | latin small letter c with cedilla |
| è | è | è | è | latin small letter e with grave |
| é | é | é | é | latin small letter e with acute |
| ê | ê | ê | ê | latin small letter e with circumflex |
| ë | ë | ë | ë | latin small letter e with diaeresis |
| ì | ì | ì | ì | latin small letter i with grave |
| í | í | í | í | latin small letter i with acute |
| î | î | î | î | latin small letter i with circumflex |
| ï | ï | ï | ï | latin small letter i with diaeresis |
| ð | ð | ð | ð | latin small letter eth |
| ñ | ñ | ñ | ñ | latin small letter n with tilde |
| ò | ò | ò | ò | latin small letter o with grave |
| ó | ó | ó | ó | latin small letter o with acute |
| ô | ô | ô | ô | latin small letter o with circumflex |
| õ | õ | õ | õ | latin small letter o with tilde |
| ö | ö | ö | ö | latin small letter o with diaeresis |
| ÷ | ÷ | ÷ | ÷ | division sign |
| ø | ø | ø | ø | latin small letter o with stroke = latin small letter o slash |
| ù | ù | ù | ù | latin small letter u with grave |
| ú | ú | ú | ú | latin small letter u with acute |
| û | û | û | û | latin small letter u with circumflex |
| ü | ü | ü | ü | latin small letter u with diaeresis |
| ý | ý | ý | ý | latin small letter y with acute |
| þ | þ | þ | þ | latin small letter thorn |
| ÿ | ÿ | ÿ | ÿ | latin small letter y with diaeresis |
| ƒ | ƒ | ƒ | ƒ | latin small f with hook = function = florin |
| Α | Α | Α | Α | greek capital letter alpha |
| Β | Β | Β | Β | greek capital letter beta |
| Γ | Γ | Γ | Γ | greek capital letter gamma |
| Δ | Δ | Δ | Δ | greek capital letter delta |
| Ε | Ε | Ε | Ε | greek capital letter epsilon |
| Ζ | Ζ | Ζ | Ζ | greek capital letter zeta |
| Η | Η | Η | Η | greek capital letter eta |
| Θ | Θ | Θ | Θ | greek capital letter theta |
| Ι | Ι | Ι | Ι | greek capital letter iota |
| Κ | Κ | Κ | Κ | greek capital letter kappa |
| Λ | Λ | Λ | Λ | greek capital letter lambda |
| Μ | Μ | Μ | Μ | greek capital letter mu |
| Ν | Ν | Ν | Ν | greek capital letter nu |
| Ξ | Ξ | Ξ | Ξ | greek capital letter xi |
| Ο | Ο | Ο | Ο | greek capital letter omicron |
| Π | Π | Π | Π | greek capital letter pi |
| Ρ | Ρ | Ρ | Ρ | greek capital letter rho |
| (not used) | ||||
| Σ | Σ | Σ | Σ | greek capital letter sigma |
| Τ | Τ | Τ | Τ | greek capital letter tau |
| Υ | Υ | Υ | Υ | greek capital letter upsilon |
| Φ | Φ | Φ | Φ | greek capital letter phi |
| Χ | Χ | Χ | Χ | greek capital letter chi |
| Ψ | Ψ | Ψ | Ψ | greek capital letter psi |
| Ω | Ω | Ω | Ω | greek capital letter omega |
| (not used) | ||||
| α | α | α | α | greek smal letter alpha |
| β | β | β | β | greek smal letter beta |
| γ | γ | γ | γ | greek smal letter gamma |
| δ | δ | δ | δ | greek smal letter delta |
| ε | ε | ε | ε | greek smal letter epsilon |
| ζ | ζ | ζ | ζ | greek smal letter zeta |
| η | η | η | η | greek smal letter eta |
| θ | θ | θ | θ | greek smal letter theta |
| ι | ι | ι | ι | greek smal letter iota |
| κ | κ | κ | κ | greek smal letter kappa |
| λ | λ | λ | λ | greek smal letter lambda |
| μ | μ | μ | μ | greek smal letter mu |
| ν | ν | ν | ν | greek smal letter nu |
| ξ | ξ | ξ | ξ | greek smal letter xi |
| ο | ο | ο | ο | greek smal letter omicron |
| π | π | π | π | greek smal letter pi |
| ρ | ρ | ρ | ρ | greek smal letter rho |
| ς | ς | ς | ς | greek smal letter final sigma |
| σ | σ | σ | σ | greek smal letter sigma |
| τ | τ | τ | τ | greek smal letter tau |
| υ | υ | υ | υ | greek smal letter upsilon |
| φ | φ | φ | φ | greek smal letter phi |
| χ | χ | χ | χ | greek smal letter chi |
| ψ | ψ | ψ | ψ | greek smal letter psi |
| ω | ω | ω | ω | greek smal letter omega |
| (not used) | ||||
| ϑ | ϑ | ϑ | ϑ | greek smal letter theta symbol |
| ϒ | ϒ | ϒ | ϒ | Greek upsilon with hook symbol |
| (not used) | ||||
| ϖ | ϖ | ϖ | ϖ | Greek pi symbol |
| Char | Entity | Dec | Hex | Description |
|---|---|---|---|---|
| • | • | • | • | bullet = black small circle |
| … | … | … | … | horizontal ellipsis = three dot leader |
| ′ | ′ | ′ | ′ | prime = minutes = feet |
| ″ | ″ | ″ | ″ | double prime = seconds = inches |
| ‾ | ‾ | ‾ | ‾ | overline = spacing overscore |
| ⁄ | ⁄ | ⁄ | ⁄ | fraction slash |
| ℘ | ℘ | ℘ | ℘ | script capital P = power set = Weierstrass p |
| ℑ | ℑ | ℑ | ℑ | blackletter capital I = imaginary part |
| ℜ | ℜ | ℜ | ℜ | blackletter capital R = real part symbol |
| ™ | ™ | ™ | ™ | trade mark sign |
| ℵ | ℵ | ℵ | ℵ | alef symbol = first transfinite cardinal |
| ← | ← | ← | ← | leftwards arrow |
| ↑ | ↑ | ↑ | ↑ | upwards arrow |
| → | → | → | → | rightwards arrow |
| ↓ | ↓ | ↓ | ↓ | downwards arrow |
| ↔ | ↔ | ↔ | ↔ | left right arrow |
| ↵ | ↵ | ↵ | ↵ | downwards arrow with corner leftwards = carriage return |
| ⇐ | ⇐ | ⇐ | ⇐ | leftwards double arrow |
| ⇑ | ⇑ | ⇑ | ⇑ | upwards double arrow |
| ⇒ | ⇒ | ⇒ | ⇒ | rightwards double arrow |
| ⇓ | ⇓ | ⇓ | ⇓ | downwards double arrow |
| ⇔ | ⇔ | ⇔ | ⇔ | left right double arrow |
| ∀ | ∀ | ∀ | ∀ | for all |
| ∂ | ∂ | ∂ | ∂ | partial differential |
| ∃ | ∃ | ∃ | ∃ | there exists |
| ∅ | ∅ | ∅ | ∅ | empty set = null set = diameter |
| ∇ | ∇ | ∇ | ∇ | nabla = backward difference |
| ∈ | ∈ | ∈ | ∈ | element of |
| ∉ | ∉ | ∉ | ∉ | not an element of |
| ∋ | ∋ | ∋ | ∋ | contains as member |
| ∏ | ∏ | ∏ | ∏ | n-ary product = product sign |
| ∑ | ∑ | ∑ | ∑ | n-ary sumation |
| − | − | − | − | minus sign |
| ∗ | ∗ | ∗ | ∗ | asterisk operator |
| √ | √ | √ | √ | square root = radical sign |
| ∝ | ∝ | ∝ | ∝ | proportional to |
| ∞ | ∞ | ∞ | ∞ | infinity |
| ∠ | ∠ | ∠ | ∠ | angle |
| ∧ | ∧ | ∧ | ∧ | logical and = wedge |
| ∨ | ∨ | ∨ | ∨ | logical or = vee |
| ∩ | ∩ | ∩ | ∩ | intersection = cap |
| ∪ | ∪ | ∪ | ∪ | union = cup |
| ∫ | ∫ | ∫ | ∫ | integral |
| ∴ | ∴ | ∴ | ∴ | therefore |
| ∼ | ∼ | ∼ | ∼ | tilde operator = varies with = similar to |
| ≅ | ≅ | ≅ | ≅ | approximately equal to |
| ≈ | ≈ | ≈ | ≈ | almost equal to = asymptotic to |
| ≠ | ≠ | ≠ | ≠ | not equal to |
| ≡ | ≡ | ≡ | ≡ | identical to |
| ≤ | ≤ | ≤ | ≤ | less-than or equal to |
| ≥ | ≥ | ≥ | ≥ | greater-than or equal to |
| ⊂ | ⊂ | ⊂ | ⊂ | subset of |
| ⊃ | ⊃ | ⊃ | ⊃ | superset of |
| ⊄ | ⊄ | ⊄ | ⊄ | not a subset of |
| ⊆ | ⊆ | ⊆ | ⊆ | subset of or equal to |
| ⊇ | ⊇ | ⊇ | ⊇ | superset of or equal to |
| ⊕ | ⊕ | ⊕ | ⊕ | circled plus = direct sum |
| ⊗ | ⊗ | ⊗ | ⊗ | circled times = vector product |
| ⊥ | ⊥ | ⊥ | ⊥ | up tack = orthogonal to = perpendicular |
| ⋅ | ⋅ | ⋅ | ⋅ | dot operator |
| ⌈ | ⌈ | ⌈ | ⌈ | left ceiling = APL upstile |
| ⌉ | ⌉ | ⌉ | ⌉ | right ceiling |
| ⌊ | ⌊ | ⌊ | ⌊ | left floor = APL downstile |
| ⌋ | ⌋ | ⌋ | ⌋ | right floor |
| 〈 | ⟨ | 〈 | 〈 | left-pointing angle bracket = bra |
| 〉 | ⟩ | 〉 | 〉 | right-pointing angle bracket = ket |
| ◊ | ◊ | ◊ | ◊ | lozenge |
| ♠ | ♠ | ♠ | ♠ | black spade suit |
| ♣ | ♣ | ♣ | ♣ | black club suit = shamrock |
| ♥ | ♥ | ♥ | ♥ | black heart suit = valentine |
| ♦ | ♦ | ♦ | ♦ | black diamond suit |
旧版浏览器可能不支持下表中的所有 HTML5 实体。Chrome 和 Opera 支持良好,IE 11+ 和 Firefox 35+ 支持所有实体。
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Á | Aacute | 000C1 | 193 |
| á | aacute | 000E1 | 225 |
| Ă | Abreve | 00102 | 258 |
| ă | abreve | 00103 | 259 |
| ∾ | ac | 0223E | 8766 |
| ∿ | acd | 0223F | 8767 |
| ∾̳ | acE | 0223E + 00333 | |
| Â | Acirc | 000C2 | 194 |
| â | acirc | 000E2 | 226 |
| ´ | acute | 000B4 | 180 |
| А | Acy | 00410 | 1040 |
| а | acy | 00430 | 1072 |
| Æ | AElig | 000C6 | 198 |
| æ | aelig | 000E6 | 230 |
| | af | 02061 | 8289 |
| 𝔄 | Afr | 1D504 | 120068 |
| 𝔞 | afr | 1D51E | 120094 |
| À | Agrave | 000C0 | 192 |
| à | agrave | 000E0 | 224 |
| ℵ | alefsym | 02135 | 8501 |
| ℵ | aleph | 02135 | 8501 |
| Α | Alpha | 00391 | 913 |
| α | alpha | 003B1 | 945 |
| Ā | Amacr | 00100 | 256 |
| ā | amacr | 00101 | 257 |
| ⨿ | amalg | 02A3F | 10815 |
| & | amp | 00026 | 38 |
| ⩓ | And | 02A53 | 10835 |
| ∧ | and | 02227 | 8743 |
| ⩕ | andand | 02A55 | 10837 |
| ⩜ | andd | 02A5C | 10844 |
| ⩘ | andslope | 02A58 | 10840 |
| ⩚ | andv | 02A5A | 10842 |
| ∠ | ang | 02220 | 8736 |
| ⦤ | ange | 029A4 | 10660 |
| ∠ | angle | 02220 | 8736 |
| ∡ | angmsd | 02221 | 8737 |
| ⦨ | angmsdaa | 029A8 | 10664 |
| ⦩ | angmsdab | 029A9 | 10665 |
| ⦪ | angmsdac | 029AA | 10666 |
| ⦫ | angmsdad | 029AB | 10667 |
| ⦬ | angmsdae | 029AC | 10668 |
| ⦭ | angmsdaf | 029AD | 10669 |
| ⦮ | angmsdag | 029AE | 10670 |
| ⦯ | angmsdah | 029AF | 10671 |
| ∟ | angrt | 0221F | 8735 |
| ⊾ | angrtvb | 022BE | 8894 |
| ⦝ | angrtvbd | 0299D | 10653 |
| ∢ | angsph | 02222 | 8738 |
| Å | angst | 000C5 | 197 |
| ⍼ | angzarr | 0237C | 9084 |
| Ą | Aogon | 00104 | 260 |
| ą | aogon | 00105 | 261 |
| 𝔸 | Aopf | 1D538 | 120120 |
| 𝕒 | aopf | 1D552 | 120146 |
| ≈ | ap | 02248 | 8776 |
| ⩯ | apacir | 02A6F | 10863 |
| ⩰ | apE | 02A70 | 10864 |
| ≊ | ape | 0224A | 8778 |
| ≋ | apid | 0224B | 8779 |
| ' | apos | 00027 | 39 |
| | ApplyFunction | 02061 | 8289 |
| ≈ | approx | 02248 | 8776 |
| ≊ | approxeq | 0224A | 8778 |
| Å | Aring | 000C5 | 197 |
| å | aring | 000E5 | 229 |
| 𝒜 | Ascr | 1D49C | 119964 |
| 𝒶 | ascr | 1D4B6 | 119990 |
| ≔ | Assign | 02254 | 8788 |
| * | ast | 0002A | 42 |
| ≈ | asymp | 02248 | 8776 |
| ≍ | asympeq | 0224D | 8781 |
| Ã | Atilde | 000C3 | 195 |
| ã | atilde | 000E3 | 227 |
| Ä | Auml | 000C4 | 196 |
| ä | auml | 000E4 | 228 |
| ∳ | awconint | 02233 | 8755 |
| ⨑ | awint | 02A11 | 10769 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ≌ | backcong | 0224C | 8780 |
| ϶ | backepsilon | 003F6 | 1014 |
| ‵ | backprime | 02035 | 8245 |
| ∽ | backsim | 0223D | 8765 |
| ⋍ | backsimeq | 022CD | 8909 |
| ∖ | Backslash | 02216 | 8726 |
| ⫧ | Barv | 02AE7 | 10983 |
| ⊽ | barvee | 022BD | 8893 |
| ⌅ | barwedge | 02305 | 8965 |
| ⎵ | bbrk | 023B5 | 9141 |
| ⎶ | bbrktbrk | 023B6 | 9142 |
| ≌ | bcong | 0224C | 8780 |
| Б | Bcy | 00411 | 1041 |
| б | bcy | 00431 | 1073 |
| „ | bdquo | 0201E | 8222 |
| ∵ | because | 02235 | 8757 |
| ⦰ | bemptyv | 029B0 | 10672 |
| ϶ | bepsi | 003F6 | 1014 |
| ℬ | bernou | 0212C | 8492 |
| ℬ | Bernoullis | 0212C | 8492 |
| Β | Beta | 00392 | 914 |
| β | beta | 003B2 | 946 |
| ℶ | beth | 02136 | 8502 |
| ≬ | between | 0226C | 8812 |
| 𝔅 | Bfr | 1D505 | 120069 |
| 𝔟 | bfr | 1D51F | 120095 |
| ⋂ | bigcap | 022C2 | 8898 |
| ◯ | bigcirc | 025EF | 9711 |
| ⋃ | bigcup | 022C3 | 8899 |
| ⨀ | bigodot | 02A00 | 10752 |
| ⨁ | bigoplus | 02A01 | 10753 |
| ⨂ | bigotimes | 02A02 | 10754 |
| ⨆ | bigsqcup | 02A06 | 10758 |
| ★ | bigstar | 02605 | 9733 |
| ▽ | bigtriangledown | 025BD | 9661 |
| △ | bigtriangleup | 025B3 | 9651 |
| ⨄ | biguplus | 02A04 | 10756 |
| ⋁ | bigvee | 022C1 | 8897 |
| ⋀ | bigwedge | 022C0 | 8896 |
| ⤍ | bkarow | 0290D | 10509 |
| ⧫ | blacklozenge | 029EB | 10731 |
| ▪ | blacksquare | 025AA | 9642 |
| ▴ | blacktriangle | 025B4 | 9652 |
| ▾ | blacktriangledown | 025BE | 9662 |
| ◂ | blacktriangleleft | 025C2 | 9666 |
| ▸ | blacktriangleright | 025B8 | 9656 |
| ␣ | blank | 02423 | 9251 |
| ▒ | blk12 | 02592 | 9618 |
| ░ | blk14 | 02591 | 9617 |
| ▓ | blk34 | 02593 | 9619 |
| █ | block | 02588 | 9608 |
| =⃥ | bne | 0003D 020E5 | |
| ≡⃥ | bnequiv | 02261 020E5 | |
| ⫭ | bNot | 02AED | 10989 |
| ⌐ | bnot | 02310 | 8976 |
| 𝔹 | Bopf | 1D539 | 120121 |
| 𝕓 | bopf | 1D553 | 120147 |
| ⊥ | bot | 022A5 | 8869 |
| ⊥ | bottom | 022A5 | 8869 |
| ⋈ | bowtie | 022C8 | 8904 |
| ⧉ | boxbox | 029C9 | 10697 |
| ╗ | boxDL | 02557 | 9559 |
| ╖ | boxDl | 02556 | 9558 |
| ╕ | boxdL | 02555 | 9557 |
| ┐ | boxdl | 02510 | 9488 |
| ╔ | boxDR | 02554 | 9556 |
| ╓ | boxDr | 02553 | 9555 |
| ╒ | boxdR | 02552 | 9554 |
| ┌ | boxdr | 0250C | 9484 |
| ═ | boxH | 02550 | 9552 |
| ─ | boxh | 02500 | 9472 |
| ╦ | boxHD | 02566 | 9574 |
| ╤ | boxHd | 02564 | 9572 |
| ╥ | boxhD | 02565 | 9573 |
| ┬ | boxhd | 0252C | 9516 |
| ╩ | boxHU | 02569 | 9577 |
| ╧ | boxHu | 02567 | 9575 |
| ╨ | boxhU | 02568 | 9576 |
| ┴ | boxhu | 02534 | 9524 |
| ⊟ | boxminus | 0229F | 8863 |
| ⊞ | boxplus | 0229E | 8862 |
| ⊠ | boxtimes | 022A0 | 8864 |
| ╝ | boxUL | 0255D | 9565 |
| ╜ | boxUl | 0255C | 9564 |
| ╛ | boxuL | 0255B | 9563 |
| ┘ | boxul | 02518 | 9496 |
| ╚ | boxUR | 0255A | 9562 |
| ╙ | boxUr | 02559 | 9561 |
| ╘ | boxuR | 02558 | 9560 |
| └ | boxur | 02514 | 9492 |
| ║ | boxV | 02551 | 9553 |
| │ | boxv | 02502 | 9474 |
| ╬ | boxVH | 0256C | 9580 |
| ╫ | boxVh | 0256B | 9579 |
| ╪ | boxvH | 0256A | 9578 |
| ┼ | boxvh | 0253C | 9532 |
| ╣ | boxVL | 02563 | 9571 |
| ╢ | boxVl | 02562 | 9570 |
| ╡ | boxvL | 02561 | 9569 |
| ┤ | boxvl | 02524 | 9508 |
| ╠ | boxVR | 02560 | 9568 |
| ╟ | boxVr | 0255F | 9567 |
| ╞ | boxvR | 0255E | 9566 |
| ├ | boxvr | 0251C | 9500 |
| ‵ | bprime | 02035 | 8245 |
| ˘ | Breve | 002D8 | 728 |
| ˘ | breve | 002D8 | 728 |
| ¦ | brvbar | 000A6 | 166 |
| ℬ | Bscr | 0212C | 8492 |
| 𝒷 | bscr | 1D4B7 | 119991 |
| ⁏ | bsemi | 0204F | 8271 |
| ∽ | bsim | 0223D | 8765 |
| ⋍ | bsime | 022CD | 8909 |
| \ | bsol | 0005C | 92 |
| ⧅ | bsolb | 029C5 | 10693 |
| ⟈ | bsolhsub | 027C8 | 10184 |
| • | bull | 02022 | 8226 |
| • | bullet | 02022 | 8226 |
| ≎ | bump | 0224E | 8782 |
| ⪮ | bumpE | 02AAE | 10926 |
| ≏ | bumpe | 0224F | 8783 |
| ≎ | Bumpeq | 0224E | 8782 |
| ≏ | bumpeq | 0224F | 8783 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ć | Cacute | 00106 | 262 |
| ć | cacute | 00107 | 263 |
| ⋒ | Cap | 022D2 | 8914 |
| ∩ | cap | 02229 | 8745 |
| ⩄ | capand | 02A44 | 10820 |
| ⩉ | capbrcup | 02A49 | 10825 |
| ⩋ | capcap | 02A4B | 10827 |
| ⩇ | capcup | 02A47 | 10823 |
| ⩀ | capdot | 02A40 | 10816 |
| ⅅ | CapitalDifferentialD | 02145 | 8517 |
| ∩︀ | caps | 02229 0FE00 | 8745 |
| ⁁ | caret | 02041 | 8257 |
| ˇ | caron | 002C7 | 711 |
| ℭ | Cayleys | 0212D | 8493 |
| ⩍ | ccaps | 02A4D | 10829 |
| Č | Ccaron | 0010C | 268 |
| č | ccaron | 0010D | 269 |
| Ç | Ccedil | 000C7 | 199 |
| ç | ccedil | 000E7 | 231 |
| Ĉ | Ccirc | 00108 | 264 |
| ĉ | ccirc | 00109 | 265 |
| ∰ | Cconint | 02230 | 8752 |
| ⩌ | ccups | 02A4C | 10828 |
| ⩐ | ccupssm | 02A50 | 10832 |
| Ċ | Cdot | 0010A | 266 |
| ċ | cdot | 0010B | 267 |
| ¸ | cedil | 000B8 | 184 |
| ¸ | Cedilla | 000B8 | 184 |
| ⦲ | cemptyv | 029B2 | 10674 |
| ¢ | cent | 000A2 | 162 |
| · | CenterDot | 000B7 | 183 |
| · | centerdot | 000B7 | 183 |
| ℭ | Cfr | 0212D | 8493 |
| 𝔠 | cfr | 1D520 | 120096 |
| Ч | CHcy | 00427 | 1063 |
| ч | chcy | 00447 | 1095 |
| ✓ | check | 02713 | 10003 |
| ✓ | checkmark | 02713 | 10003 |
| Χ | Chi | 003A7 | 935 |
| χ | chi | 003C7 | 967 |
| ○ | cir | 025CB | 9675 |
| ˆ | circ | 002C6 | 710 |
| ≗ | circeq | 02257 | 8791 |
| ↺ | circlearrowleft | 021BA | 8634 |
| ↻ | circlearrowright | 021BB | 8635 |
| ⊛ | circledast | 0229B | 8859 |
| ⊚ | circledcirc | 0229A | 8858 |
| ⊝ | circleddash | 0229D | 8861 |
| ⊙ | CircleDot | 02299 | 8857 |
| ® | circledR | 000AE | 174 |
| Ⓢ | circledS | 024C8 | 9416 |
| ⊖ | CircleMinus | 02296 | 8854 |
| ⊕ | CirclePlus | 02295 | 8853 |
| ⊗ | CircleTimes | 02297 | 8855 |
| ⧃ | cirE | 029C3 | 10691 |
| ≗ | cire | 02257 | 8791 |
| ⨐ | cirfnint | 02A10 | 10768 |
| ⫯ | cirmid | 02AEF | 10991 |
| ⧂ | cirscir | 029C2 | 10690 |
| ∲ | cwconint | 02232 | 8754 |
| ∲ | ClockwiseContourIntegral | 02232 | 8754 |
| ” | CloseCurlyDoubleQuote | 0201D | 8221 |
| ’ | CloseCurlyQuote | 02019 | 8217 |
| ♣ | clubs | 02663 | 9827 |
| ♣ | clubsuit | 02663 | 9827 |
| ∷ | Colon | 02237 | 8759 |
| : | colon | 0003A | 58 |
| ⩴ | Colone | 02A74 | 10868 |
| ≔ | colone | 02254 | 8788 |
| ≔ | coloneq | 02254 | 8788 |
| , | comma | 0002C | 44 |
| @ | commat | 00040 | 64 |
| ∁ | comp | 02201 | 8705 |
| ∘ | compfn | 02218 | 8728 |
| ∁ | complement | 02201 | 8705 |
| ℂ | complexes | 02102 | 8450 |
| ≅ | cong | 02245 | 8773 |
| ⩭ | congdot | 02A6D | 10861 |
| ≡ | Congruent | 02261 | 8801 |
| ∯ | Conint | 0222F | 8751 |
| ∮ | conint | 0222E | 8750 |
| ∮ | ContourIntegral | 0222E | 8750 |
| ℂ | Copf | 02102 | 8450 |
| 𝕔 | copf | 1D554 | 120148 |
| ∐ | coprod | 02210 | 8720 |
| ∐ | Coproduct | 02210 | 8720 |
| © | copy | 000A9 | 169 |
| ℗ | copysr | 02117 | 8471 |
| ↵ | crarr | 021B5 | 8629 |
| ⨯ | Cross | 02A2F | 10799 |
| ✗ | cross | 02717 | 10007 |
| 𝒞 | Cscr | 1D49E | 119966 |
| 𝒸 | cscr | 1D4B8 | 119992 |
| ⫏ | csub | 02ACF | 10959 |
| ⫑ | csube | 02AD1 | 10961 |
| ⫐ | csup | 02AD0 | 10960 |
| ⫒ | csupe | 02AD2 | 10962 |
| ⋯ | ctdot | 022EF | 8943 |
| ⤸ | cudarrl | 02938 | 10552 |
| ⤵ | cudarrr | 02935 | 10549 |
| ⋞ | cuepr | 022DE | 8926 |
| ⋟ | cuesc | 022DF | 8927 |
| ↶ | cularr | 021B6 | 8630 |
| ⤽ | cularrp | 0293D | 10557 |
| ⋓ | Cup | 022D3 | 8915 |
| ∪ | cup | 0222A | 8746 |
| ⩈ | cupbrcap | 02A48 | 10824 |
| ≍ | CupCap | 0224D | 8781 |
| ⩆ | cupcap | 02A46 | 10822 |
| ⩊ | cupcup | 02A4A | 10826 |
| ⊍ | cupdot | 0228D | 8845 |
| ⩅ | cupor | 02A45 | 10821 |
| ∪︀ | cups | 0222A + 0FE00 | 8746 |
| ↷ | curarr | 021B7 | 8631 |
| ⤼ | curarrm | 0293C | 10556 |
| ⋞ | curlyeqprec | 022DE | 8926 |
| ⋟ | curlyeqsucc | 022DF | 8927 |
| ⋎ | curlyvee | 022CE | 8910 |
| ⋏ | curlywedge | 022CF | 8911 |
| ¤ | curren | 000A4 | 164 |
| ↶ | curvearrowleft | 021B6 | 8630 |
| ↷ | curvearrowright | 021B7 | 8631 |
| ⋎ | cuvee | 022CE | 8910 |
| ⋏ | cuwed | 022CF | 8911 |
| ∲ | cwconint | 02232 | 8754 |
| ∱ | cwint | 02231 | 8753 |
| ⌭ | cylcty | 0232D | 9005 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| † | dagger | 02020 | 8224 |
| ℸ | daleth | 02138 | 8504 |
| ↡ | Darr | 021A1 | 8609 |
| ⇓ | dArr | 021D3 | 8659 |
| ↓ | darr | 02193 | 8595 |
| ‐ | dash | 02010 | 8208 |
| ⫤ | Dashv | 02AE4 | 10980 |
| ⊣ | dashv | 022A3 | 8867 |
| ⤏ | dbkarow | 0290F | 10511 |
| ˝ | dblac | 002DD | 733 |
| Ď | Dcaron | 0010E | 270 |
| ď | dcaron | 0010F | 271 |
| Д | Dcy | 00414 | 1044 |
| д | dcy | 00434 | 1076 |
| ⅅ | DD | 02145 | 8517 |
| ⅆ | dd | 02146 | 8518 |
| ‡ | ddagger | 02021 | 8225 |
| ⇊ | ddarr | 021CA | 8650 |
| ⤑ | DDotrahd | 02911 | 10513 |
| ⩷ | ddotseq | 02A77 | 10871 |
| ° | deg | 000B0 | 176 |
| ∇ | Del | 02207 | 8711 |
| Δ | Delta | 00394 | 916 |
| δ | delta | 003B4 | 948 |
| ⦱ | demptyv | 029B1 | 10673 |
| ⥿ | dfisht | 0297F | 10623 |
| 𝔇 | Dfr | 1D507 | 120071 |
| 𝔡 | dfr | 1D521 | 120097 |
| ⥥ | dHar | 02965 | 10597 |
| ⇃ | dharl | 021C3 | 8643 |
| ⇂ | dharr | 021C2 | 8642 |
| ´ | DiacriticalAcute | 000B4 | 180 |
| ˙ | DiacriticalDot | 002D9 | 729 |
| ˝ | DiacriticalDoubleAcute | 002DD | 733 |
| ` | DiacriticalGrave | 00060 | 96 |
| ˜ | DiacriticalTilde | 002DC | 732 |
| ⋄ | diam | 022C4 | 8900 |
| ⋄ | Diamond | 022C4 | 8900 |
| ⋄ | diamond | 022C4 | 8900 |
| ♦ | diamondsuit | 02666 | 9830 |
| ♦ | diams | 02666 | 9830 |
| ¨ | die | 000A8 | 168 |
| ⅆ | DifferentialD | 02146 | 8518 |
| ϝ | digamma | 003DD | 989 |
| ⋲ | disin | 022F2 | 8946 |
| ÷ | div | 000F7 | 247 |
| ÷ | divide | 000F7 | 247 |
| ⋇ | divideontimes | 022C7 | 8903 |
| ⋇ | divonx | 022C7 | 8903 |
| Ђ | DJcy | 00402 | 1026 |
| ђ | djcy | 00452 | 1106 |
| ⌞ | dlcorn | 0231E | 8990 |
| ⌍ | dlcrop | 0230D | 8973 |
| $ | dollar | 00024 | 36 |
| 𝔻 | Dopf | 1D53B | 120123 |
| 𝕕 | dopf | 1D555 | 120149 |
| ¨ | Dot | 000A8 | 168 |
| ˙ | dot | 002D9 | 729 |
| ⃜ | DotDot | 020DC | 8412 |
| ≐ | doteq | 02250 | 8784 |
| ≑ | doteqdot | 02251 | 8785 |
| ≐ | DotEqual | 02250 | 8784 |
| ∸ | dotminus | 02238 | 8760 |
| ∔ | dotplus | 02214 | 8724 |
| ⊡ | dotsquare | 022A1 | 8865 |
| ⌆ | doublebarwedge | 02306 | 8966 |
| ∯ | DoubleContourIntegral | 0222F | 8751 |
| ¨ | DoubleDot | 000A8 | 168 |
| ⇓ | DoubleDownArrow | 021D3 | 8659 |
| ⇐ | DoubleLeftArrow | 021D0 | 8656 |
| ⇔ | DoubleLeftRightArrow | 021D4 | 8660 |
| ⫤ | DoubleLeftTee | 02AE4 | 10980 |
| ⟸ | DoubleLongLeftArrow | 027F8 | 10232 |
| ⟺ | DoubleLongLeftRightArrow | 027FA | 10234 |
| ⟹ | DoubleLongRightArrow | 027F9 | 10233 |
| ⇒ | DoubleRightArrow | 021D2 | 8658 |
| ⊨ | DoubleRightTee | 022A8 | 8872 |
| ⇑ | DoubleUpArrow | 021D1 | 8657 |
| ⇕ | DoubleUpDownArrow | 021D5 | 8661 |
| ∥ | DoubleVerticalBar | 02225 | 8741 |
| ↓ | DownArrow | 02193 | 8595 |
| ⇓ | Downarrow | 021D3 | 8659 |
| ↓ | downarrow | 02193 | 8595 |
| ⤓ | DownArrowBar | 02913 | 10515 |
| ⇵ | DownArrowUpArrow | 021F5 | 8693 |
| ̑ | DownBreve | 00311 | 785 |
| ⇊ | downdownarrows | 021CA | 8650 |
| ⇃ | downharpoonleft | 021C3 | 8643 |
| ⇂ | downharpoonright | 021C2 | 8642 |
| ⥐ | DownLeftRightVector | 02950 | 10576 |
| ⥞ | DownLeftTeeVector | 0295E | 10590 |
| ↽ | DownLeftVector | 021BD | 8637 |
| ⥖ | DownLeftVectorBar | 02956 | 10582 |
| ⥟ | DownRightTeeVector | 0295F | 10591 |
| ⇁ | DownRightVector | 021C1 | 8641 |
| ⥗ | DownRightVectorBar | 02957 | 10583 |
| ⊤ | DownTee | 022A4 | 8868 |
| ↧ | DownTeeArrow | 021A7 | 8615 |
| ⤐ | drbkarow | 02910 | 10512 |
| ⌟ | drcorn | 0231F | 8991 |
| ⌌ | drcrop | 0230C | 8972 |
| 𝒟 | Dscr | 1D49F | 119967 |
| 𝒹 | dscr | 1D4B9 | 119993 |
| Ѕ | DScy | 00405 | 1029 |
| ѕ | dscy | 00455 | 1109 |
| ⧶ | dsol | 029F6 | 10742 |
| Đ | Dstrok | 00110 | 272 |
| đ | dstrok | 00111 | 273 |
| ⋱ | dtdot | 022F1 | 8945 |
| ▿ | dtri | 025BF | 9663 |
| ▾ | dtrif | 025BE | 9662 |
| ⇵ | duarr | 021F5 | 8693 |
| ⥯ | duhar | 0296F | 10607 |
| ⦦ | dwangle | 029A6 | 10662 |
| Џ | DZcy | 0040F | 1039 |
| џ | dzcy | 0045F | 1119 |
| ⟿ | dzigrarr | 027FF | 10239 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| É | Eacute | 000C9 | 201 |
| é | eacute | 000E9 | 233 |
| ⩮ | easter | 02A6E | 10862 |
| Ě | Ecaron | 0011A | 282 |
| ě | ecaron | 0011B | 283 |
| ≖ | ecir | 02256 | 8790 |
| Ê | Ecirc | 000CA | 202 |
| ê | ecirc | 000EA | 234 |
| ≕ | ecolon | 02255 | 8789 |
| Э | Ecy | 0042D | 1069 |
| э | ecy | 0044D | 1101 |
| ⩷ | eDDot | 02A77 | 10871 |
| Ė | Edot | 00116 | 278 |
| ≑ | eDot | 02251 | 8785 |
| ė | edot | 00117 | 279 |
| ⅇ | ee | 02147 | 8519 |
| ≒ | efDot | 02252 | 8786 |
| 𝔈 | Efr | 1D508 | 120072 |
| 𝔢 | efr | 1D522 | 120098 |
| ⪚ | eg | 02A9A | 10906 |
| È | Egrave | 000C8 | 200 |
| è | egrave | 000E8 | 232 |
| ⪖ | egs | 02A96 | 10902 |
| ⪘ | egsdot | 02A98 | 10904 |
| ⪙ | el | 02A99 | 10905 |
| ∈ | Element | 02208 | 8712 |
| ⏧ | elinters | 023E7 | 9191 |
| ℓ | ell | 02113 | 8467 |
| ⪕ | els | 02A95 | 10901 |
| ⪗ | elsdot | 02A97 | 10903 |
| Ē | Emacr | 00112 | 274 |
| ē | emacr | 00113 | 275 |
| ∅ | empty | 02205 | 8709 |
| ∅ | emptyset | 02205 | 8709 |
| ◻ | EmptySmallSquare | 025FB | 9723 |
| ∅ | emptyv | 02205 | 8709 |
| ▫ | EmptyVerySmallSquare | 025AB | 9643 |
| emsp | 02003 | 8195 | |
| emsp13 | 02004 | 8196 | |
| emsp14 | 02005 | 8197 | |
| Ŋ | ENG | 0014A | 330 |
| ŋ | eng | 0014B | 331 |
| ensp | 02002 | 8194 | |
| Ę | Eogon | 00118 | 280 |
| ę | eogon | 00119 | 281 |
| 𝔼 | Eopf | 1D53C | 120124 |
| 𝕖 | eopf | 1D556 | 120150 |
| ⋕ | epar | 022D5 | 8917 |
| ⧣ | eparsl | 029E3 | 10723 |
| ⩱ | eplus | 02A71 | 10865 |
| ε | epsi | 003B5 | 949 |
| Ε | Epsilon | 00395 | 917 |
| ε | epsilon | 003B5 | 949 |
| ϵ | epsiv | 003F5 | 1013 |
| ≖ | eqcirc | 02256 | 8790 |
| ≕ | eqcolon | 02255 | 8789 |
| ≂ | eqsim | 02242 | 8770 |
| ⪖ | eqslantgtr | 02A96 | 10902 |
| ⪕ | eqslantless | 02A95 | 10901 |
| ⩵ | Equal | 02A75 | 10869 |
| = | equals | 0003D | 61 |
| ≂ | EqualTilde | 02242 | 8770 |
| ≟ | equest | 0225F | 8799 |
| ⇌ | Equilibrium | 021CC | 8652 |
| ≡ | equiv | 02261 | 8801 |
| ⩸ | equivDD | 02A78 | 10872 |
| ⧥ | eqvparsl | 029E5 | 10725 |
| ⥱ | erarr | 02971 | 10609 |
| ≓ | erDot | 02253 | 8787 |
| ℰ | Escr | 02130 | 8496 |
| ℯ | escr | 0212F | 8495 |
| ≐ | esdot | 02250 | 8784 |
| ⩳ | Esim | 02A73 | 10867 |
| ≂ | esim | 02242 | 8770 |
| Η | Eta | 00397 | 919 |
| η | eta | 003B7 | 951 |
| Ð | ETH | 000D0 | 208 |
| ð | eth | 000F0 | 240 |
| Ë | Euml | 000CB | 203 |
| ë | euml | 000EB | 235 |
| € | euro | 020AC | 8364 |
| ! | excl | 00021 | 33 |
| ∃ | Exists | 02203 | 8707 |
| ∃ | exist | 02203 | 8707 |
| ℰ | expectation | 02130 | 8496 |
| ⅇ | ExponentialE | 02147 | 8519 |
| ⅇ | exponentiale | 02147 | 8519 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ≒ | fallingdotseq | 02252 | 8786 |
| Ф | Fcy | 00424 | 1060 |
| ф | fcy | 00444 | 1092 |
| ♀ | female | 02640 | 9792 |
| ffi | ffilig | 0FB03 | 64259 |
| ff | fflig | 0FB00 | 64256 |
| ffl | ffllig | 0FB04 | 64260 |
| 𝔉 | Ffr | 1D509 | 120073 |
| 𝔣 | ffr | 1D523 | 120099 |
| fi | filig | 0FB01 | 64257 |
| ◼ | FilledSmallSquare | 025FC | 9724 |
| ▪ | FilledVerySmallSquare | 025AA | 9642 |
| fj | fjlig | 00066 + 0006A | |
| ♭ | flat | 0266D | 9837 |
| fl | fllig | 0FB02 | 64258 |
| ▱ | fltns | 025B1 | 9649 |
| ƒ | fnof | 00192 | 402 |
| 𝔽 | Fopf | 1D53D | 120125 |
| 𝕗 | fopf | 1D557 | 120151 |
| ∀ | ForAll | 02200 | 8704 |
| ∀ | forall | 02200 | 8704 |
| ⋔ | fork | 022D4 | 8916 |
| ⫙ | forkv | 02AD9 | 10969 |
| ℱ | Fouriertrf | 02131 | 8497 |
| ⨍ | fpartint | 02A0D | 10765 |
| ½ | frac12 | 000BD | 189 |
| ⅓ | frac13 | 02153 | 8531 |
| ¼ | frac14 | 000BC | 188 |
| ⅕ | frac15 | 02155 | 8533 |
| ⅙ | frac16 | 02159 | 8537 |
| ⅛ | frac18 | 0215B | 8539 |
| ⅔ | frac23 | 02154 | 8532 |
| ⅖ | frac25 | 02156 | 8534 |
| ¾ | frac34 | 000BE | 190 |
| ⅗ | frac35 | 02157 | 8535 |
| ⅜ | frac38 | 0215C | 8540 |
| ⅘ | frac45 | 02158 | 8536 |
| ⅚ | frac56 | 0215A | 8538 |
| ⅝ | frac58 | 0215D | 8541 |
| ⅞ | frac78 | 0215E | 8542 |
| ⁄ | frasl | 02044 | 8260 |
| ⌢ | frown | 02322 | 8994 |
| ℱ | Fscr | 02131 | 8497 |
| 𝒻 | fscr | 1D4BB | 119995 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ǵ | gacute | 001F5 | 501 |
| Γ | Gamma | 00393 | 915 |
| γ | gamma | 003B3 | 947 |
| Ϝ | Gammad | 003DC | 988 |
| ϝ | gammad | 003DD | 989 |
| ⪆ | gap | 02A86 | 10886 |
| Ğ | Gbreve | 0011E | 286 |
| ğ | gbreve | 0011F | 287 |
| Ģ | Gcedil | 00122 | 290 |
| Ĝ | Gcirc | 0011C | 284 |
| ĝ | gcirc | 0011D | 285 |
| Г | Gcy | 00413 | 1043 |
| г | gcy | 00433 | 1075 |
| Ġ | Gdot | 00120 | 288 |
| ġ | gdot | 00121 | 289 |
| ≧ | gE | 02267 | 8807 |
| ≥ | ge | 02265 | 8805 |
| ⪌ | gEl | 02A8C | 10892 |
| ⋛ | gel | 022DB | 8923 |
| ≥ | geq | 02265 | 8805 |
| ≧ | geqq | 02267 | 8807 |
| ⩾ | geqslant | 02A7E | 10878 |
| ⩾ | ges | 02A7E | 10878 |
| ⪩ | gescc | 02AA9 | 10921 |
| ⪀ | gesdot | 02A80 | 10880 |
| ⪂ | gesdoto | 02A82 | 10882 |
| ⪄ | gesdotol | 02A84 | 10884 |
| ⋛︀ | gesl | 022DB + 0FE00 | 8923 |
| ⪔ | gesles | 02A94 | 10900 |
| 𝔊 | Gfr | 1D50A | 120074 |
| 𝔤 | gfr | 1D524 | 120100 |
| ⋙ | Gg | 022D9 | 8921 |
| ≫ | gg | 0226B | 8811 |
| ⋙ | ggg | 022D9 | 8921 |
| ℷ | gimel | 02137 | 8503 |
| Ѓ | GJcy | 00403 | 1027 |
| ѓ | gjcy | 00453 | 1107 |
| ≷ | gl | 02277 | 8823 |
| ⪥ | gla | 02AA5 | 10917 |
| ⪒ | glE | 02A92 | 10898 |
| ⪤ | glj | 02AA4 | 10916 |
| ⪊ | gnap | 02A8A | 10890 |
| ⪊ | gnapprox | 02A8A | 10890 |
| ≩ | gnE | 02269 | 8809 |
| ⪈ | gne | 02A88 | 10888 |
| ⪈ | gneq | 02A88 | 10888 |
| ≩ | gneqq | 02269 | 8809 |
| ⋧ | gnsim | 022E7 | 8935 |
| 𝔾 | Gopf | 1D53E | 120126 |
| 𝕘 | gopf | 1D558 | 120152 |
| ` | grave | 00060 | 96 |
| ≥ | GreaterEqual | 02265 | 8805 |
| ⋛ | GreaterEqualLess | 022DB | 8923 |
| ≧ | GreaterFullEqual | 02267 | 8807 |
| ⪢ | GreaterGreater | 02AA2 | 10914 |
| ≷ | GreaterLess | 02277 | 8823 |
| ⩾ | GreaterSlantEqual | 02A7E | 10878 |
| ≳ | GreaterTilde | 02273 | 8819 |
| 𝒢 | Gscr | 1D4A2 | 119970 |
| ℊ | gscr | 0210A | 8458 |
| ≳ | gsim | 02273 | 8819 |
| ⪎ | gsime | 02A8E | 10894 |
| ⪐ | gsiml | 02A90 | 10896 |
| > | GT | 0003E | 62 |
| ≫ | Gt | 0226B | 8811 |
| ⪧ | gtcc | 02AA7 | 10919 |
| ⩺ | gtcir | 02A7A | 10874 |
| ⋗ | gtdot | 022D7 | 8919 |
| ⦕ | gtlPar | 02995 | 10645 |
| ⩼ | gtquest | 02A7C | 10876 |
| ⪆ | gtrapprox | 02A86 | 10886 |
| ⥸ | gtrarr | 02978 | 10616 |
| ⋗ | gtrdot | 022D7 | 8919 |
| ⋛ | gtreqless | 022DB | 8923 |
| ⪌ | gtreqqless | 02A8C | 10892 |
| ≷ | gtrless | 02277 | 8823 |
| ≳ | gtrsim | 02273 | 8819 |
| ≩︀ | gvertneqq | 02269 + 0FE00 | 8809 |
| ≩︀ | gvnE | 02269 + 0FE00 | 8809 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ˇ | Hacek | 002C7 | 711 |
| hairsp | 0200A | 8202 | |
| ½ | half | 000BD | 189 |
| ℋ | hamilt | 0210B | 8459 |
| Ъ | HARDcy | 0042A | 1066 |
| ъ | hardcy | 0044A | 1098 |
| ⇔ | hArr | 021D4 | 8660 |
| ↔ | harr | 02194 | 8596 |
| ⥈ | harrcir | 02948 | 10568 |
| ↭ | harrw | 021AD | 8621 |
| ^ | Hat | 0005E | 94 |
| ℏ | hbar | 0210F | 8463 |
| Ĥ | Hcirc | 00124 | 292 |
| ĥ | hcirc | 00125 | 293 |
| ♥ | hearts | 02665 | 9829 |
| ♥ | heartsuit | 02665 | 9829 |
| … | hellip | 02026 | 8230 |
| ⊹ | hercon | 022B9 | 8889 |
| ℌ | Hfr | 0210C | 8460 |
| 𝔥 | hfr | 1D525 | 120101 |
| ℋ | HilbertSpace | 0210B | 8459 |
| ⤥ | hksearow | 02925 | 10533 |
| ⤦ | hkswarow | 02926 | 10534 |
| ⇿ | hoarr | 021FF | 8703 |
| ∻ | homtht | 0223B | 8763 |
| ↩ | hookleftarrow | 021A9 | 8617 |
| ↪ | hookrightarrow | 021AA | 8618 |
| ℍ | Hopf | 0210D | 8461 |
| 𝕙 | hopf | 1D559 | 120153 |
| ― | horbar | 02015 | 8213 |
| ─ | HorizontalLine | 02500 | 9472 |
| ℋ | Hscr | 0210B | 8459 |
| 𝒽 | hscr | 1D4BD | 119997 |
| ℏ | hslash | 0210F | 8463 |
| Ħ | Hstrok | 00126 | 294 |
| ħ | hstrok | 00127 | 295 |
| ≎ | HumpDownHump | 0224E | 8782 |
| ≏ | HumpEqual | 0224F | 8783 |
| ⁃ | hybull | 02043 | 8259 |
| ‐ | hyphen | 02010 | 8208 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Í | Iacute | 000CD | 205 |
| í | iacute | 000ED | 237 |
| | ic | 02063 | 8291 |
| Î | Icirc | 000CE | 206 |
| î | icirc | 000EE | 238 |
| И | Icy | 00418 | 1048 |
| и | icy | 00438 | 1080 |
| İ | Idot | 00130 | 304 |
| Е | IEcy | 00415 | 1045 |
| е | iecy | 00435 | 1077 |
| ¡ | iexcl | 000A1 | 161 |
| ⇔ | iff | 021D4 | 8660 |
| ℑ | Ifr | 02111 | 8465 |
| 𝔦 | ifr | 1D526 | 120102 |
| Ì | Igrave | 000CC | 204 |
| ì | igrave | 000EC | 236 |
| ⅈ | ii | 02148 | 8520 |
| ⨌ | iiiint | 02A0C | 10764 |
| ∭ | iiint | 0222D | 8749 |
| ⧜ | iinfin | 029DC | 10716 |
| ℩ | iiota | 02129 | 8489 |
| IJ | IJlig | 00132 | 306 |
| ij | ijlig | 00133 | 307 |
| ℑ | Im | 02111 | 8465 |
| Ī | Imacr | 0012A | 298 |
| ī | imacr | 0012B | 299 |
| ℑ | image | 02111 | 8465 |
| ⅈ | ImaginaryI | 02148 | 8520 |
| ℐ | imagline | 02110 | 8464 |
| ℑ | imagpart | 02111 | 8465 |
| ı | imath | 00131 | 305 |
| ⊷ | imof | 022B7 | 8887 |
| Ƶ | imped | 001B5 | 437 |
| ⇒ | Implies | 021D2 | 8658 |
| ∈ | in | 02208 | 8712 |
| ℅ | incare | 02105 | 8453 |
| ∞ | infin | 0221E | 8734 |
| ⧝ | infintie | 029DD | 10717 |
| ı | inodot | 00131 | 305 |
| ∬ | Int | 0222C | 8748 |
| ∫ | int | 0222B | 8747 |
| ⊺ | intcal | 022BA | 8890 |
| ℤ | integers | 02124 | 8484 |
| ∫ | Integral | 0222B | 8747 |
| ⊺ | intercal | 022BA | 8890 |
| ⋂ | Intersection | 022C2 | 8898 |
| ⨗ | intlarhk | 02A17 | 10775 |
| ⨼ | intprod | 02A3C | 10812 |
| | InvisibleComma | 02063 | 8291 |
| | InvisibleTimes | 02062 | 8290 |
| Ё | IOcy | 00401 | 1025 |
| ё | iocy | 00451 | 1105 |
| Į | Iogon | 0012E | 302 |
| į | iogon | 0012F | 303 |
| 𝕀 | Iopf | 1D540 | 120128 |
| 𝕚 | iopf | 1D55A | 120154 |
| Ι | Iota | 00399 | 921 |
| ι | iota | 003B9 | 953 |
| ⨼ | iprod | 02A3C | 10812 |
| ¿ | iquest | 000BF | 191 |
| ℐ | Iscr | 02110 | 8464 |
| 𝒾 | iscr | 1D4BE | 119998 |
| ∈ | isin | 02208 | 8712 |
| ⋵ | isindot | 022F5 | 8949 |
| ⋹ | isinE | 022F9 | 8953 |
| ⋴ | isins | 022F4 | 8948 |
| ⋳ | isinsv | 022F3 | 8947 |
| ∈ | isinv | 02208 | 8712 |
| | it | 02062 | 8290 |
| Ĩ | Itilde | 00128 | 296 |
| ĩ | itilde | 00129 | 297 |
| І | Iukcy | 00406 | 1030 |
| і | iukcy | 00456 | 1110 |
| Ï | Iuml | 000CF | 207 |
| ï | iuml | 000EF | 239 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ĵ | Jcirc | 00134 | 308 |
| ĵ | jcirc | 00135 | 309 |
| Й | Jcy | 00419 | 1049 |
| й | jcy | 00439 | 1081 |
| 𝔍 | Jfr | 1D50D | 120077 |
| 𝔧 | jfr | 1D527 | 120103 |
| ȷ | jmath | 00237 | 567 |
| 𝕁 | Jopf | 1D541 | 120129 |
| 𝕛 | jopf | 1D55B | 120155 |
| 𝒥 | Jscr | 1D4A5 | 119973 |
| 𝒿 | jscr | 1D4BF | 119999 |
| Ј | Jsercy | 00408 | 1032 |
| ј | jsercy | 00458 | 1112 |
| Є | Jukcy | 00404 | 1028 |
| є | jukcy | 00454 | 1108 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Κ | Kappa | 0039A | 922 |
| κ | kappa | 003BA | 954 |
| ϰ | kappav | 003F0 | 1008 |
| Ķ | Kcedil | 00136 | 310 |
| ķ | kcedil | 00137 | 311 |
| К | Kcy | 0041A | 1050 |
| к | kcy | 0043A | 1082 |
| 𝔎 | Kfr | 1D50E | 120078 |
| 𝔨 | kfr | 1D528 | 120104 |
| ĸ | kgreen | 00138 | 312 |
| Х | KHcy | 00425 | 1061 |
| х | khcy | 00445 | 1093 |
| Ќ | KJcy | 0040C | 1036 |
| ќ | kjcy | 0045C | 1116 |
| 𝕂 | Kopf | 1D542 | 120130 |
| 𝕜 | kopf | 1D55C | 120156 |
| 𝒦 | Kscr | 1D4A6 | 119974 |
| 𝓀 | kscr | 1D4C0 | 120000 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ⇚ | lAarr | 021DA | 8666 |
| Ĺ | Lacute | 00139 | 313 |
| ĺ | lacute | 0013A | 314 |
| ⦴ | laemptyv | 029B4 | 10676 |
| ℒ | lagran | 02112 | 8466 |
| Λ | Lambda | 0039B | 923 |
| λ | lambda | 003BB | 955 |
| ⟪ | Lang | 027EA | 10218 |
| ⟨ | lang | 027E8 | 10216 |
| ⦑ | langd | 02991 | 10641 |
| ⟨ | langle | 027E8 | 10216 |
| ⪅ | lap | 02A85 | 10885 |
| ℒ | Laplacetrf | 02112 | 8466 |
| « | laquo | 000AB | 171 |
| ↞ | Larr | 0219E | 8606 |
| ⇐ | lArr | 021D0 | 8656 |
| ← | larr | 02190 | 8592 |
| ⇤ | larrb | 021E4 | 8676 |
| ⤟ | larrbfs | 0291F | 10527 |
| ⤝ | larrfs | 0291D | 10525 |
| ↩ | larrhk | 021A9 | 8617 |
| ↫ | larrlp | 021AB | 8619 |
| ⤹ | larrpl | 02939 | 10553 |
| ⥳ | larrsim | 02973 | 10611 |
| ↢ | larrtl | 021A2 | 8610 |
| ⪫ | lat | 02AAB | 10923 |
| ⤛ | lAtail | 0291B | 10523 |
| ⤙ | latail | 02919 | 10521 |
| ⪭ | late | 02AAD | 10925 |
| ⪭︀ | lates | 02AAD + 0FE00 | 10925 |
| ⤎ | lBarr | 0290E | 10510 |
| ⤌ | lbarr | 0290C | 10508 |
| ❲ | lbbrk | 02772 | 10098 |
| { | lbrace | 0007B | 123 |
| [ | lbrack | 0005B | 91 |
| ⦋ | lbrke | 0298B | 10635 |
| ⦏ | lbrksld | 0298F | 10639 |
| ⦍ | lbrkslu | 0298D | 10637 |
| Ľ | Lcaron | 0013D | 317 |
| ľ | lcaron | 0013E | 318 |
| Ļ | Lcedil | 0013B | 315 |
| ļ | lcedil | 0013C | 316 |
| ⌈ | lceil | 02308 | 8968 |
| { | lcub | 0007B | 123 |
| Л | Lcy | 0041B | 1051 |
| л | lcy | 0043B | 1083 |
| ⤶ | ldca | 02936 | 10550 |
| “ | ldquo | 0201C | 8220 |
| „ | ldquor | 0201E | 8222 |
| ⥧ | ldrdhar | 02967 | 10599 |
| ⥋ | ldrushar | 0294B | 10571 |
| ↲ | ldsh | 021B2 | 8626 |
| ≦ | lE | 02266 | 8806 |
| ≤ | le | 02264 | 8804 |
| ⟨ | LeftAngleBracket | 027E8 | 10216 |
| ← | LeftArrow | 02190 | 8592 |
| ⇐ | Leftarrow | 021D0 | 8656 |
| ← | leftarrow | 02190 | 8592 |
| ⇤ | LeftArrowBar | 021E4 | 8676 |
| ⇆ | LeftArrowRightArrow | 021C6 | 8646 |
| ↢ | leftarrowtail | 021A2 | 8610 |
| ⌈ | LeftCeiling | 02308 | 8968 |
| ⟦ | LeftDoubleBracket | 027E6 | 10214 |
| ⥡ | LeftDownTeeVector | 02961 | 10593 |
| ⇃ | LeftDownVector | 021C3 | 8643 |
| ⥙ | LeftDownVectorBar | 02959 | 10585 |
| ⌊ | LeftFloor | 0230A | 8970 |
| ↽ | leftharpoondown | 021BD | 8637 |
| ↼ | leftharpoonup | 021BC | 8636 |
| ⇇ | leftleftarrows | 021C7 | 8647 |
| ↔ | LeftRightArrow | 02194 | 8596 |
| ⇔ | Leftrightarrow | 021D4 | 8660 |
| ↔ | leftrightarrow | 02194 | 8596 |
| ⇆ | leftrightarrows | 021C6 | 8646 |
| ⇋ | leftrightharpoons | 021CB | 8651 |
| ↭ | leftrightsquigarrow | 021AD | 8621 |
| ⥎ | LeftRightVector | 0294E | 10574 |
| ⊣ | LeftTee | 022A3 | 8867 |
| ↤ | LeftTeeArrow | 021A4 | 8612 |
| ⥚ | LeftTeeVector | 0295A | 10586 |
| ⋋ | leftthreetimes | 022CB | 8907 |
| ⊲ | LeftTriangle | 022B2 | 8882 |
| ⧏ | LeftTriangleBar | 029CF | 10703 |
| ⊴ | LeftTriangleEqual | 022B4 | 8884 |
| ⥑ | LeftUpDownVector | 02951 | 10577 |
| ⥠ | LeftUpTeeVector | 02960 | 10592 |
| ↿ | LeftUpVector | 021BF | 8639 |
| ⥘ | LeftUpVectorBar | 02958 | 10584 |
| ↼ | LeftVector | 021BC | 8636 |
| ⥒ | LeftVectorBar | 02952 | 10578 |
| ⪋ | lEg | 02A8B | 10891 |
| ⋚ | leg | 022DA | 8922 |
| ≤ | leq | 02264 | 8804 |
| ≦ | leqq | 02266 | 8806 |
| ⩽ | leqslant | 02A7D | 10877 |
| ⩽ | les | 02A7D | 10877 |
| ⪨ | lescc | 02AA8 | 10920 |
| ⩿ | lesdot | 02A7F | 10879 |
| ⪁ | lesdoto | 02A81 | 10881 |
| ⪃ | lesdotor | 02A83 | 10883 |
| ⋚︀ | lesg | 022DA + 0FE00 | 8922 |
| ⪓ | lesges | 02A93 | 10899 |
| ⪅ | lessapprox | 02A85 | 10885 |
| ⋖ | lessdot | 022D6 | 8918 |
| ⋚ | lesseqgtr | 022DA | 8922 |
| ⪋ | lesseqqgtr | 02A8B | 10891 |
| ⋚ | LessEqualGreater | 022DA | 8922 |
| ≦ | LessFullEqual | 02266 | 8806 |
| ≶ | LessGreater | 02276 | 8822 |
| ≶ | lessgtr | 02276 | 8822 |
| ⪡ | LessLess | 02AA1 | 10913 |
| ≲ | lesssim | 02272 | 8818 |
| ⩽ | LessSlantEqual | 02A7D | 10877 |
| ≲ | LessTilde | 02272 | 8818 |
| ⥼ | lfisht | 0297C | 10620 |
| ⌊ | lfloor | 0230A | 8970 |
| 𝔏 | Lfr | 1D50F | 120079 |
| 𝔩 | lfr | 1D529 | 120105 |
| ≶ | lg | 02276 | 8822 |
| ⪑ | lgE | 02A91 | 10897 |
| ⥢ | lHar | 02962 | 10594 |
| ↽ | lhard | 021BD | 8637 |
| ↼ | lharu | 021BC | 8636 |
| ⥪ | lharul | 0296A | 10602 |
| ▄ | lhblk | 02584 | 9604 |
| Љ | LJcy | 00409 | 1033 |
| љ | ljcy | 00459 | 1113 |
| ⋘ | Ll | 022D8 | 8920 |
| ≪ | ll | 0226A | 8810 |
| ⇇ | llarr | 021C7 | 8647 |
| ⌞ | llcorner | 0231E | 8990 |
| ⇚ | Lleftarrow | 021DA | 8666 |
| ⥫ | llhard | 0296B | 10603 |
| ◺ | lltri | 025FA | 9722 |
| Ŀ | Lmidot | 0013F | 319 |
| ŀ | lmidot | 00140 | 320 |
| ⎰ | lmoust | 023B0 | 9136 |
| ⎰ | lmoustache | 023B0 | 9136 |
| ⪉ | lnap | 02A89 | 10889 |
| ⪉ | lnapprox | 02A89 | 10889 |
| ≨ | lnE | 02268 | 8808 |
| ⪇ | lne | 02A87 | 10887 |
| ⪇ | lneq | 02A87 | 10887 |
| ≨ | lneqq | 02268 | 8808 |
| ⋦ | lnsim | 022E6 | 8934 |
| ⟬ | loang | 027EC | 10220 |
| ⇽ | loarr | 021FD | 8701 |
| ⟦ | lobrk | 027E6 | 10214 |
| ⟵ | LongLeftArrow | 027F5 | 10229 |
| ⟸ | Longleftarrow | 027F8 | 10232 |
| ⟵ | longleftarrow | 027F5 | 10229 |
| ⟷ | LongLeftRightArrow | 027F7 | 10231 |
| ⟺ | Longleftrightarrow | 027FA | 10234 |
| ⟷ | longleftrightarrow | 027F7 | 10231 |
| ⟼ | longmapsto | 027FC | 10236 |
| ⟶ | LongRightArrow | 027F6 | 10230 |
| ⟹ | Longrightarrow | 027F9 | 10233 |
| ⟶ | longrightarrow | 027F6 | 10230 |
| ↫ | looparrowleft | 021AB | 8619 |
| ↬ | looparrowright | 021AC | 8620 |
| ⦅ | lopar | 02985 | 10629 |
| 𝕃 | Lopf | 1D543 | 120131 |
| 𝕝 | lopf | 1D55D | 120157 |
| ⨭ | loplus | 02A2D | 10797 |
| ⨴ | lotimes | 02A34 | 10804 |
| ∗ | lowast | 02217 | 8727 |
| _ | lowbar | 0005F | 95 |
| ↙ | LowerLeftArrow | 02199 | 8601 |
| ↘ | LowerRightArrow | 02198 | 8600 |
| ◊ | loz | 025CA | 9674 |
| ◊ | lozenge | 025CA | 9674 |
| ⧫ | lozf | 029EB | 10731 |
| ( | lpar | 00028 | 40 |
| ⦓ | lparlt | 02993 | 10643 |
| ⇆ | lrarr | 021C6 | 8646 |
| ⌟ | lrcorner | 0231F | 8991 |
| ⇋ | lrhar | 021CB | 8651 |
| ⥭ | lrhard | 0296D | 10605 |
| | lrm | 0200E | 8206 |
| ⊿ | lrtri | 022BF | 8895 |
| ‹ | lsaquo | 02039 | 8249 |
| ℒ | Lscr | 02112 | 8466 |
| 𝓁 | lscr | 1D4C1 | 120001 |
| ↰ | Lsh | 021B0 | 8624 |
| ↰ | lsh | 021B0 | 8624 |
| ≲ | lsim | 02272 | 8818 |
| ⪍ | lsime | 02A8D | 10893 |
| ⪏ | lsimg | 02A8F | 10895 |
| [ | lsqb | 0005B | 91 |
| ‘ | lsquo | 02018 | 8216 |
| ‚ | lsquor | 0201A | 8218 |
| Ł | Lstrok | 00141 | 321 |
| ł | lstrok | 00142 | 322 |
| ≪ | Lt | 0226A | 8810 |
| < | lt | 0003C | 60 |
| ⪦ | ltcc | 02AA6 | 10918 |
| ⩹ | ltcir | 02A79 | 10873 |
| ⋖ | ltdot | 022D6 | 8918 |
| ⋋ | lthree | 022CB | 8907 |
| ⋉ | ltimes | 022C9 | 8905 |
| ⥶ | ltlarr | 02976 | 10614 |
| ⩻ | ltquest | 02A7B | 10875 |
| ◃ | ltri | 025C3 | 9667 |
| ⊴ | ltrie | 022B4 | 8884 |
| ◂ | ltrif | 025C2 | 9666 |
| ⦖ | ltrPar | 02996 | 10646 |
| ⥊ | lurdshar | 0294A | 10570 |
| ⥦ | luruhar | 02966 | 10598 |
| ≨︀ | lvertneqq | 02268 + 0FE00 | 8808 |
| ≨︀ | lvnE | 02268 + 0FE00 | 8808 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ¯ | macr | 000AF | 175 |
| ♂ | male | 02642 | 9794 |
| ✠ | malt | 02720 | 10016 |
| ✠ | maltese | 02720 | 10016 |
| ⤅ | Map | 02905 | 10501 |
| ↦ | map | 021A6 | 8614 |
| ↦ | mapsto | 021A6 | 8614 |
| ↧ | mapstodown | 021A7 | 8615 |
| ↤ | mapstoleft | 021A4 | 8612 |
| ↥ | mapstoup | 021A5 | 8613 |
| ▮ | marker | 025AE | 9646 |
| ⨩ | mcomma | 02A29 | 10793 |
| М | Mcy | 0041C | 1052 |
| м | mcy | 0043C | 1084 |
| — | mdash | 02014 | 8212 |
| ∺ | mDDot | 0223A | 8762 |
| ∡ | measuredangle | 02221 | 8737 |
| MediumSpace | 0205F | 8287 | |
| ℳ | Mellintrf | 02133 | 8499 |
| 𝔐 | Mfr | 1D510 | 120080 |
| 𝔪 | mfr | 1D52A | 120106 |
| ℧ | mho | 02127 | 8487 |
| µ | micro | 000B5 | 181 |
| ∣ | mid | 02223 | 8739 |
| * | midast | 0002A | 42 |
| ⫰ | midcir | 02AF0 | 10992 |
| · | middot | 000B7 | 183 |
| − | minus | 02212 | 8722 |
| ⊟ | minusb | 0229F | 8863 |
| ∸ | minusd | 02238 | 8760 |
| ⨪ | minusdu | 02A2A | 10794 |
| ∓ | MinusPlus | 02213 | 8723 |
| ⫛ | mlcp | 02ADB | 10971 |
| … | mldr | 02026 | 8230 |
| ∓ | mnplus | 02213 | 8723 |
| ⊧ | models | 022A7 | 8871 |
| 𝕄 | Mopf | 1D544 | 120132 |
| 𝕞 | mopf | 1D55E | 120158 |
| ∓ | mp | 02213 | 8723 |
| ℳ | Mscr | 02133 | 8499 |
| 𝓂 | mscr | 1D4C2 | 120002 |
| ∾ | mstpos | 0223E | 8766 |
| Μ | Mu | 0039C | 924 |
| μ | mu | 003BC | 956 |
| ⊸ | multimap | 022B8 | 8888 |
| ⊸ | mumap | 022B8 | 8888 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ∇ | nabla | 02207 | 8711 |
| Ń | Nacute | 00143 | 323 |
| ń | nacute | 00144 | 324 |
| ∠⃒ | nang | 02220 + 020D2 | |
| ≉ | nap | 02249 | 8777 |
| ⩰̸ | napE | 02A70 + 00338 | |
| ≋̸ | napid | 0224B + 00338 | |
| ʼn | napos | 00149 | 329 |
| ≉ | napprox | 02249 | 8777 |
| ♮ | natur | 0266E | 9838 |
| ♮ | natural | 0266E | 9838 |
| ℕ | naturals | 02115 | 8469 |
| nbsp | 000A0 | 160 | |
| ≎̸ | nbump | 0224E + 00338 | |
| ≏̸ | nbumpe | 0224F + 00338 | |
| ⩃ | ncap | 02A43 | 10819 |
| Ň | Ncaron | 00147 | 327 |
| ň | ncaron | 00148 | 328 |
| Ņ | Ncedil | 00145 | 325 |
| ņ | ncedil | 00146 | 326 |
| ≇ | ncong | 02247 | 8775 |
| ⩭̸ | ncongdot | 02A6D + 00338 | |
| ⩂ | ncup | 02A42 | 10818 |
| Н | Ncy | 0041D | 1053 |
| н | ncy | 0043D | 1085 |
| – | ndash | 02013 | 8211 |
| ≠ | ne | 02260 | 8800 |
| ⤤ | nearhk | 02924 | 10532 |
| ⇗ | neArr | 021D7 | 8663 |
| ↗ | nearr | 02197 | 8599 |
| ↗ | nearrow | 02197 | 8599 |
| ≐̸ | nedot | 02250 + 00338 | |
| ≢ | nequiv | 02262 | 8802 |
| ⤨ | nesear | 02928 | 10536 |
| ≂̸ | nesim | 02242 + 00338 | |
| ≫ | NestedGreaterGreater | 0226B | 8811 |
| ≪ | NestedLessLess | 0226A | 8810 |
| NewLine | 0000A | 10 | |
| ∄ | nexist | 02204 | 8708 |
| ∄ | nexists | 02204 | 8708 |
| 𝔑 | Nfr | 1D511 | 120081 |
| 𝔫 | nfr | 1D52B | 120107 |
| ≧̸ | ngE | 02267 + 00338 | |
| ≱ | nge | 02271 | 8817 |
| ≱ | ngeq | 02271 | 8817 |
| ≧̸ | ngeqq | 02267 + 00338 | |
| ⩾̸ | ngeqslant | 02A7E + 00338 | |
| ⩾̸ | nges | 02A7E + 00338 | |
| ⋙̸ | nGg | 022D9 + 00338 | |
| ≵ | ngsim | 02275 | 8821 |
| ≫⃒ | nGt | 0226B + 020D2 | |
| ≯ | ngt | 0226F | 8815 |
| ≯ | ngtr | 0226F | 8815 |
| ≫̸ | nGtv | 0226B + 00338 | |
| ⇎ | nhArr | 021CE | 8654 |
| ↮ | nharr | 021AE | 8622 |
| ⫲ | nhpar | 02AF2 | 10994 |
| ∋ | ni | 0220B | 8715 |
| ⋼ | nis | 022FC | 8956 |
| ⋺ | nisd | 022FA | 8954 |
| ∋ | niv | 0220B | 8715 |
| Њ | NJcy | 0040A | 1034 |
| њ | njcy | 0045A | 1114 |
| ⇍ | nlArr | 021CD | 8653 |
| ↚ | nlarr | 0219A | 8602 |
| ‥ | nldr | 02025 | 8229 |
| ≦̸ | nlE | 02266 + 00338 | |
| ≰ | nle | 02270 | 8816 |
| ⇍ | nLeftarrow | 021CD | 8653 |
| ↚ | nleftarrow | 0219A | 8602 |
| ⇎ | nLeftrightarrow | 021CE | 8654 |
| ↮ | nleftrightarrow | 021AE | 8622 |
| ≰ | nleq | 02270 | 8816 |
| ≦̸ | nleqq | 02266 + 00338 | |
| ⩽̸ | nleqslant | 02A7D + 00338 | |
| ⩽̸ | nles | 02A7D + 00338 | |
| ≮ | nless | 0226E | 8814 |
| ⋘̸ | nLl | 022D8 + 00338 | |
| ≴ | nlsim | 02274 | 8820 |
| ≪⃒ | nLt | 0226A + 020D2 | |
| ≮ | nlt | 0226E | 8814 |
| ⋪ | nltri | 022EA | 8938 |
| ⋬ | nltrie | 022EC | 8940 |
| ≪̸ | nLtv | 0226A + 00338 | |
| ∤ | nmid | 02224 | 8740 |
| | NoBreak | 02060 | 8288 |
| NonBreakingSpace | 000A0 | 160 | |
| ℕ | Nopf | 02115 | 8469 |
| 𝕟 | nopf | 1D55F | 120159 |
| ⫬ | Not | 02AEC | 10988 |
| ¬ | not | 000AC | 172 |
| ≢ | NotCongruent | 02262 | 8802 |
| ≭ | NotCupCap | 0226D | 8813 |
| ∦ | NotDoubleVerticalBar | 02226 | 8742 |
| ∉ | NotElement | 02209 | 8713 |
| ≠ | NotEqual | 02260 | 8800 |
| ≂̸ | NotEqualTilde | 02242 + 00338 | |
| ∄ | NotExists | 02204 | 8708 |
| ≯ | NotGreater | 0226F | 8815 |
| ≱ | NotGreaterEqual | 02271 | 8817 |
| ≧̸ | NotGreaterFullEqual | 02267 + 00338 | |
| ≫̸ | NotGreaterGreater | 0226B + 00338 | |
| ≹ | NotGreaterLess | 02279 | 8825 |
| ⩾̸ | NotGreaterSlantEqual | 02A7E + 00338 | |
| ≵ | NotGreaterTilde | 02275 | 8821 |
| ≎̸ | NotHumpDownHump | 0224E + 00338 | |
| ≏̸ | NotHumpEqual | 0224F + 00338 | |
| ∉ | notin | 02209 | 8713 |
| ⋵̸ | notindot | 022F5 + 00338 | |
| ⋹̸ | notinE | 022F9 + 00338 | |
| ∉ | notinva | 02209 | 8713 |
| ⋷ | notinvb | 022F7 | 8951 |
| ⋶ | notinvc | 022F6 | 8950 |
| ⋪ | NotLeftTriangle | 022EA | 8938 |
| ⧏̸ | NotLeftTriangleBar | 029CF + 00338 | |
| ⋬ | NotLeftTriangleEqual | 022EC | 8940 |
| ≮ | NotLess | 0226E | 8814 |
| ≰ | NotLessEqual | 02270 | 8816 |
| ≸ | NotLessGreater | 02278 | 8824 |
| ≪̸ | NotLessLess | 0226A + 00338 | |
| ⩽̸ | NotLessSlantEqual | 02A7D + 00338 | |
| ≴ | NotLessTilde | 02274 | 8820 |
| ⪢̸ | NotNestedGreaterGreater | 02AA2 + 00338 | |
| ⪡̸ | NotNestedLessLess | 02AA1 + 00338 | |
| ∌ | notni | 0220C | 8716 |
| ∌ | notniva | 0220C | 8716 |
| ⋾ | notnivb | 022FE | 8958 |
| ⋽ | notnivc | 022FD | 8957 |
| ⊀ | NotPrecedes | 02280 | 8832 |
| ⪯̸ | NotPrecedesEqual | 02AAF + 00338 | |
| ⋠ | NotPrecedesSlantEqual | 022E0 | 8928 |
| ∌ | NotReverseElement | 0220C | 8716 |
| ⋫ | NotRightTriangle | 022EB | 8939 |
| ⧐̸ | NotRightTriangleBar | 029D0 + 00338 | |
| ⋭ | NotRightTriangleEqual | 022ED | 8941 |
| ⊏̸ | NotSquareSubset | 0228F + 00338 | |
| ⋢ | NotSquareSubsetEqual | 022E2 | 8930 |
| ⊐̸ | NotSquareSuperset | 02290 + 00338 | |
| ⋣ | NotSquareSupersetEqual | 022E3 | 8931 |
| ⊂⃒ | NotSubset | 02282 + 020D2 | |
| ⊈ | NotSubsetEqual | 02288 | 8840 |
| ⊁ | NotSucceeds | 02281 | 8833 |
| ⪰̸ | NotSucceedsEqual | 02AB0 + 00338 | |
| ⋡ | NotSucceedsSlantEqual | 022E1 | 8929 |
| ≿̸ | NotSucceedsTilde | 0227F + 00338 | |
| ⊃⃒ | NotSuperset | 02283 + 020D2 | |
| ⊉ | NotSupersetEqual | 02289 | 8841 |
| ≁ | NotTilde | 02241 | 8769 |
| ≄ | NotTildeEqual | 02244 | 8772 |
| ≇ | NotTildeFullEqual | 02247 | 8775 |
| ≉ | NotTildeTilde | 02249 | 8777 |
| ∤ | NotVerticalBar | 02224 | 8740 |
| ∦ | npar | 02226 | 8742 |
| ∦ | nparallel | 02226 | 8742 |
| ⫽⃥ | nparsl | 02AFD + 020E5 | |
| ∂̸ | npart | 02202 + 00338 | |
| ⨔ | npolint | 02A14 | 10772 |
| ⊀ | npr | 02280 | 8832 |
| ⋠ | nprcue | 022E0 | 8928 |
| ⪯̸ | npre | 02AAF + 00338 | |
| ⊀ | nprec | 02280 | 8832 |
| ⪯̸ | npreceq | 02AAF + 00338 | |
| ⇏ | nrArr | 021CF | 8655 |
| ↛ | nrarr | 0219B | 8603 |
| ⤳̸ | nrarrc | 02933 + 00338 | |
| ↝̸ | nrarrw | 0219D + 00338 | |
| ⇏ | nRightarrow | 021CF | 8655 |
| ↛ | nrightarrow | 0219B | 8603 |
| ⋫ | nrtri | 022EB | 8939 |
| ⋭ | nrtrie | 022ED | 8941 |
| ⊁ | nsc | 02281 | 8833 |
| ⋡ | nsccue | 022E1 | 8929 |
| ⪰̸ | nsce | 02AB0 + 00338 | |
| 𝒩 | Nscr | 1D4A9 | 119977 |
| 𝓃 | nscr | 1D4C3 | 120003 |
| ∤ | nshortmid | 02224 | 8740 |
| ∦ | nshortparallel | 02226 | 8742 |
| ≁ | nsim | 02241 | 8769 |
| ≄ | nsime | 02244 | 8772 |
| ≄ | nsimeq | 02244 | 8772 |
| ∤ | nsmid | 02224 | 8740 |
| ∦ | nspar | 02226 | 8742 |
| ⋢ | nsqsube | 022E2 | 8930 |
| ⋣ | nsqsupe | 022E3 | 8931 |
| ⊄ | nsub | 02284 | 8836 |
| ⫅̸ | nsubE | 02AC5 + 00338 | |
| ⊈ | nsube | 02288 | 8840 |
| ⊂⃒ | nsubset | 02282 + 020D2 | |
| ⊈ | nsubseteq | 02288 | 8840 |
| ⫅̸ | nsubseteqq | 02AC5 + 00338 | |
| ⊁ | nsucc | 02281 | 8833 |
| ⪰̸ | nsucceq | 02AB0 + 00338 | |
| ⊅ | nsup | 02285 | 8837 |
| ⫆̸ | nsupE | 02AC6 + 00338 | |
| ⊉ | nsupe | 02289 | 8841 |
| ⊃⃒ | nsupset | 02283 + 020D2 | |
| ⊉ | nsupseteq | 02289 | 8841 |
| ⫆̸ | nsupseteqq | 02AC6 + 00338 | |
| ≹ | ntgl | 02279 | 8825 |
| Ñ | Ntilde | 000D1 | 209 |
| ñ | ntilde | 000F1 | 241 |
| ≸ | ntlg | 02278 | 8824 |
| ⋪ | ntriangleleft | 022EA | 8938 |
| ⋬ | ntrianglelefteq | 022EC | 8940 |
| ⋫ | ntriangleright | 022EB | 8939 |
| ⋭ | ntrianglerighteq | 022ED | 8941 |
| Ν | Nu | 0039D | 925 |
| ν | nu | 003BD | 957 |
| # | num | 00023 | 35 |
| № | numero | 02116 | 8470 |
| numsp | 02007 | 8199 | |
| ≍⃒ | nvap | 0224D + 020D2 | |
| ⊯ | nVDash | 022AF | 8879 |
| ⊮ | nVdash | 022AE | 8878 |
| ⊭ | nvDash | 022AD | 8877 |
| ⊬ | nvdash | 022AC | 8876 |
| ≥⃒ | nvge | 02265 + 020D2 | |
| >⃒ | nvgt | 0003E + 020D2 | |
| ⤄ | nvHarr | 02904 | 10500 |
| ⧞ | nvinfin | 029DE | 10718 |
| ⤂ | nvlArr | 02902 | 10498 |
| ≤⃒ | nvle | 02264 + 020D2 | |
| <⃒ | nvlt | 0003C + 020D2 | |
| ⊴⃒ | nvltrie | 022B4 + 020D2 | |
| ⤃ | nvrArr | 02903 | 10499 |
| ⊵⃒ | nvrtrie | 022B5 + 020D2 | |
| ∼⃒ | nvsim | 0223C + 020D2 | |
| ⤣ | nwarhk | 02923 | 10531 |
| ⇖ | nwArr | 021D6 | 8662 |
| ↖ | nwarr | 02196 | 8598 |
| ↖ | nwarrow | 02196 | 8598 |
| ⤧ | nwnear | 02927 | 10535 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ó | Oacute | 000D3 | 211 |
| ó | oacute | 000F3 | 243 |
| ⊛ | oast | 0229B | 8859 |
| ⊚ | ocir | 0229A | 8858 |
| Ô | Ocirc | 000D4 | 212 |
| ô | ocirc | 000F4 | 244 |
| О | Ocy | 0041E | 1054 |
| о | ocy | 0043E | 1086 |
| ⊝ | odash | 0229D | 8861 |
| Ő | Odblac | 00150 | 336 |
| ő | odblac | 00151 | 337 |
| ⨸ | odiv | 02A38 | 10808 |
| ⊙ | odot | 02299 | 8857 |
| ⦼ | odsold | 029BC | 10684 |
| Œ | OElig | 00152 | 338 |
| œ | oelig | 00153 | 339 |
| ⦿ | ofcir | 029BF | 10687 |
| 𝔒 | Ofr | 1D512 | 120082 |
| 𝔬 | ofr | 1D52C | 120108 |
| ˛ | ogon | 002DB | 731 |
| Ò | Ograve | 000D2 | 210 |
| ò | ograve | 000F2 | 242 |
| ⧁ | ogt | 029C1 | 10689 |
| ⦵ | ohbar | 029B5 | 10677 |
| Ω | ohm | 003A9 | 937 |
| ∮ | oint | 0222E | 8750 |
| ↺ | olarr | 021BA | 8634 |
| ⦾ | olcir | 029BE | 10686 |
| ⦻ | olcross | 029BB | 10683 |
| ‾ | oline | 0203E | 8254 |
| ⧀ | olt | 029C0 | 10688 |
| Ō | Omacr | 0014C | 332 |
| ō | omacr | 0014D | 333 |
| Ω | Omega | 003A9 | 937 |
| ω | omega | 003C9 | 969 |
| Ο | Omicron | 0039F | 927 |
| ο | omicron | 003BF | 959 |
| ⦶ | omid | 029B6 | 10678 |
| ⊖ | ominus | 02296 | 8854 |
| 𝕆 | Oopf | 1D546 | 120134 |
| 𝕠 | oopf | 1D560 | 120160 |
| ⦷ | opar | 029B7 | 10679 |
| “ | OpenCurlyDoubleQuote | 0201C | 8220 |
| ‘ | OpenCurlyQuote | 02018 | 8216 |
| ⦹ | operp | 029B9 | 10681 |
| ⊕ | oplus | 02295 | 8853 |
| ⩔ | Or | 02A54 | 10836 |
| ∨ | or | 02228 | 8744 |
| ↻ | orarr | 021BB | 8635 |
| ⩝ | ord | 02A5D | 10845 |
| ℴ | order | 02134 | 8500 |
| ℴ | orderof | 02134 | 8500 |
| ª | ordf | 000AA | 170 |
| º | ordm | 000BA | 186 |
| ⊶ | origof | 022B6 | 8886 |
| ⩖ | oror | 02A56 | 10838 |
| ⩗ | orslope | 02A57 | 10839 |
| ⩛ | orv | 02A5B | 10843 |
| Ⓢ | oS | 024C8 | 9416 |
| 𝒪 | Oscr | 1D4AA | 119978 |
| ℴ | oscr | 02134 | 8500 |
| Ø | Oslash | 000D8 | 216 |
| ø | oslash | 000F8 | 248 |
| ⊘ | osol | 02298 | 8856 |
| Õ | Otilde | 000D5 | 213 |
| õ | otilde | 000F5 | 245 |
| ⨷ | Otimes | 02A37 | 10807 |
| ⊗ | otimes | 02297 | 8855 |
| ⨶ | otimesas | 02A36 | 10806 |
| Ö | Ouml | 000D6 | 214 |
| ö | ouml | 000F6 | 246 |
| ⌽ | ovbar | 0233D | 9021 |
| ‾ | OverBar | 0203E | 8254 |
| ⏞ | OverBrace | 023DE | 9182 |
| ⎴ | OverBracket | 023B4 | 9140 |
| ⏜ | OverParenthesis | 023DC | 9180 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ∥ | par | 02225 | 8741 |
| ¶ | para | 000B6 | 182 |
| ∥ | parallel | 02225 | 8741 |
| ⫳ | parsim | 02AF3 | 10995 |
| ⫽ | parsl | 02AFD | 11005 |
| ∂ | part | 02202 | 8706 |
| ∂ | PartialD | 02202 | 8706 |
| П | Pcy | 0041F | 1055 |
| п | pcy | 0043F | 1087 |
| % | percnt | 00025 | 37 |
| . | period | 0002E | 46 |
| ‰ | permil | 02030 | 8240 |
| ⊥ | perp | 022A5 | 8869 |
| ‱ | pertenk | 02031 | 8241 |
| 𝔓 | Pfr | 1D513 | 120083 |
| 𝔭 | pfr | 1D52D | 120109 |
| Φ | Phi | 003A6 | 934 |
| φ | phi | 003C6 | 966 |
| ϕ | phiv | 003D5 | 981 |
| ℳ | phmmat | 02133 | 8499 |
| ☎ | phone | 0260E | 9742 |
| Π | Pi | 003A0 | 928 |
| π | pi | 003C0 | 960 |
| ⋔ | pitchfork | 022D4 | 8916 |
| ϖ | piv | 003D6 | 982 |
| ℏ | planck | 0210F | 8463 |
| ℎ | planckh | 0210E | 8462 |
| ℏ | plankv | 0210F | 8463 |
| + | plus | 0002B | 43 |
| ⨣ | plusacir | 02A23 | 10787 |
| ⊞ | plusb | 0229E | 8862 |
| ⨢ | pluscir | 02A22 | 10786 |
| ∔ | plusdo | 02214 | 8724 |
| ⨥ | plusdu | 02A25 | 10789 |
| ⩲ | pluse | 02A72 | 10866 |
| ± | plusmn | 000B1 | 177 |
| ⨦ | plussim | 02A26 | 10790 |
| ⨧ | plustwo | 02A27 | 10791 |
| ± | pm | 000B1 | 177 |
| ℌ | Poincareplane | 0210C | 8460 |
| ⨕ | pointint | 02A15 | 10773 |
| ℙ | Popf | 02119 | 8473 |
| 𝕡 | popf | 1D561 | 120161 |
| £ | pound | 000A3 | 163 |
| ⪻ | Pr | 02ABB | 10939 |
| ≺ | pr | 0227A | 8826 |
| ⪷ | prap | 02AB7 | 10935 |
| ≼ | prcue | 0227C | 8828 |
| ⪳ | prE | 02AB3 | 10931 |
| ⪯ | pre | 02AAF | 10927 |
| ≺ | prec | 0227A | 8826 |
| ⪷ | precapprox | 02AB7 | 10935 |
| ≼ | preccurlyeq | 0227C | 8828 |
| ≺ | Precedes | 0227A | 8826 |
| ⪯ | PrecedesEqual | 02AAF | 10927 |
| ≼ | PrecedesSlantEqual | 0227C | 8828 |
| ≾ | PrecedesTilde | 0227E | 8830 |
| ⪯ | preceq | 02AAF | 10927 |
| ⪹ | precnapprox | 02AB9 | 10937 |
| ⪵ | precneqq | 02AB5 | 10933 |
| ⋨ | precnsim | 022E8 | 8936 |
| ≾ | precsim | 0227E | 8830 |
| ″ | Prime | 02033 | 8243 |
| ′ | prime | 02032 | 8242 |
| ℙ | primes | 02119 | 8473 |
| ⪹ | prnap | 02AB9 | 10937 |
| ⪵ | prnE | 02AB5 | 10933 |
| ⋨ | prnsim | 022E8 | 8936 |
| ∏ | prod | 0220F | 8719 |
| ∏ | Product | 0220F | 8719 |
| ⌮ | profalar | 0232E | 9006 |
| ⌒ | profline | 02312 | 8978 |
| ⌓ | profsurf | 02313 | 8979 |
| ∝ | prop | 0221D | 8733 |
| ∷ | Proportion | 02237 | 8759 |
| ∝ | Proportional | 0221D | 8733 |
| ∝ | propto | 0221D | 8733 |
| ≾ | prsim | 0227E | 8830 |
| ⊰ | prurel | 022B0 | 8880 |
| 𝒫 | Pscr | 1D4AB | 119979 |
| 𝓅 | pscr | 1D4C5 | 120005 |
| Ψ | Psi | 003A8 | 936 |
| ψ | psi | 003C8 | 968 |
| puncsp | 02008 | 8200 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| 𝔔 | Qfr | 1D514 | 120084 |
| 𝔮 | qfr | 1D52E | 120110 |
| ⨌ | qint | 02A0C | 10764 |
| ℚ | Qopf | 0211A | 8474 |
| 𝕢 | qopf | 1D562 | 120162 |
| ⁗ | qprime | 02057 | 8279 |
| 𝒬 | Qscr | 1D4AC | 119980 |
| 𝓆 | qscr | 1D4C6 | 120006 |
| ℍ | quaternions | 0210D | 8461 |
| ⨖ | quatint | 02A16 | 10774 |
| ? | quest | 0003F | 63 |
| ≟ | questeq | 0225F | 8799 |
| " | quot | 00022 | 34 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ⇛ | rAarr | 021DB | 8667 |
| ∽̱ | race | 0223D + 00331 | |
| Ŕ | Racute | 00154 | 340 |
| ŕ | racute | 00155 | 341 |
| √ | radic | 0221A | 8730 |
| ⦳ | raemptyv | 029B3 | 10675 |
| ⟫ | Rang | 027EB | 10219 |
| ⟩ | rang | 027E9 | 10217 |
| ⦒ | rangd | 02992 | 10642 |
| ⦥ | range | 029A5 | 10661 |
| ⟩ | rangle | 027E9 | 10217 |
| » | raquo | 000BB | 187 |
| ↠ | Rarr | 021A0 | 8608 |
| ⇒ | rArr | 021D2 | 8658 |
| → | rarr | 02192 | 8594 |
| ⥵ | rarrap | 02975 | 10613 |
| ⇥ | rarrb | 021E5 | 8677 |
| ⤠ | rarrbfs | 02920 | 10528 |
| ⤳ | rarrc | 02933 | 10547 |
| ⤞ | rarrfs | 0291E | 10526 |
| ↪ | rarrhk | 021AA | 8618 |
| ↬ | rarrlp | 021AC | 8620 |
| ⥅ | rarrpl | 02945 | 10565 |
| ⥴ | rarrsim | 02974 | 10612 |
| ⤖ | Rarrtl | 02916 | 10518 |
| ↣ | rarrtl | 021A3 | 8611 |
| ↝ | rarrw | 0219D | 8605 |
| ⤜ | rAtail | 0291C | 10524 |
| ⤚ | ratail | 0291A | 10522 |
| ∶ | ratio | 02236 | 8758 |
| ℚ | rationals | 0211A | 8474 |
| ⤐ | RBarr | 02910 | 10512 |
| ⤏ | rBarr | 0290F | 10511 |
| ⤍ | rbarr | 0290D | 10509 |
| ❳ | rbbrk | 02773 | 10099 |
| } | rbrace | 0007D | 125 |
| ] | rbrack | 0005D | 93 |
| ⦌ | rbrke | 0298C | 10636 |
| ⦎ | rbrksld | 0298E | 10638 |
| ⦐ | rbrkslu | 02990 | 10640 |
| Ř | Rcaron | 00158 | 344 |
| ř | rcaron | 00159 | 345 |
| Ŗ | Rcedil | 00156 | 342 |
| ŗ | rcedil | 00157 | 343 |
| ⌉ | rceil | 02309 | 8969 |
| } | rcub | 0007D | 125 |
| Р | Rcy | 00420 | 1056 |
| р | rcy | 00440 | 1088 |
| ⤷ | rdca | 02937 | 10551 |
| ⥩ | rdldhar | 02969 | 10601 |
| ” | rdquo | 0201D | 8221 |
| ” | rdquor | 0201D | 8221 |
| ↳ | rdsh | 021B3 | 8627 |
| ℜ | Re | 0211C | 8476 |
| ℜ | real | 0211C | 8476 |
| ℛ | realine | 0211B | 8475 |
| ℜ | realpart | 0211C | 8476 |
| ℝ | reals | 0211D | 8477 |
| ▭ | rect | 025AD | 9645 |
| ® | reg | 000AE | 174 |
| ∋ | ReverseElement | 0220B | 8715 |
| ⇋ | ReverseEquilibrium | 021CB | 8651 |
| ⥯ | ReverseUpEquilibrium | 0296F | 10607 |
| ⥽ | rfisht | 0297D | 10621 |
| ⌋ | rfloor | 0230B | 8971 |
| ℜ | Rfr | 0211C | 8476 |
| 𝔯 | rfr | 1D52F | 120111 |
| ⥤ | rHar | 02964 | 10596 |
| ⇁ | rhard | 021C1 | 8641 |
| ⇀ | rharu | 021C0 | 8640 |
| ⥬ | rharul | 0296C | 10604 |
| Ρ | Rho | 003A1 | 929 |
| ρ | rho | 003C1 | 961 |
| ϱ | rhov | 003F1 | 1009 |
| ⟩ | RightAngleBracket | 027E9 | 10217 |
| → | RightArrow | 02192 | 8594 |
| ⇒ | Rightarrow | 021D2 | 8658 |
| → | rightarrow | 02192 | 8594 |
| ⇥ | RightArrowBar | 021E5 | 8677 |
| ⇄ | RightArrowLeftArrow | 021C4 | 8644 |
| ↣ | rightarrowtail | 021A3 | 8611 |
| ⌉ | RightCeiling | 02309 | 8969 |
| ⟧ | RightDoubleBracket | 027E7 | 10215 |
| ⥝ | RightDownTeeVector | 0295D | 10589 |
| ⇂ | RightDownVector | 021C2 | 8642 |
| ⥕ | RightDownVectorBar | 02955 | 10581 |
| ⌋ | RightFloor | 0230B | 8971 |
| ⇁ | rightharpoondown | 021C1 | 8641 |
| ⇀ | rightharpoonup | 021C0 | 8640 |
| ⇄ | rightleftarrows | 021C4 | 8644 |
| ⇌ | rightleftharpoons | 021CC | 8652 |
| ⇉ | rightrightarrows | 021C9 | 8649 |
| ↝ | rightsquigarrow | 0219D | 8605 |
| ⊢ | RightTee; | 022A2 | 8866 |
| ↦ | RightTeeArrow | 021A6 | 8614 |
| ⥛ | RightTeeVector | 0295B | 10587 |
| ⋌ | rightthreetimes | 022CC | 8908 |
| ⊳ | RightTriangle | 022B3 | 8883 |
| ⧐ | RightTriangleBar | 029D0 | 10704 |
| ⊵ | RightTriangleEqual | 022B5 | 8885 |
| ⥏ | RightUpDownVector | 0294F | 10575 |
| ⥜ | RightUpTeeVector | 0295C | 10588 |
| ↾ | RightUpVector | 021BE | 8638 |
| ⥔ | RightUpVectorBar | 02954 | 10580 |
| ⇀ | RightVector | 021C0 | 8640 |
| ⥓ | RightVectorBar | 02953 | 10579 |
| ˚ | ring | 002DA | 730 |
| ≓ | risingdotseq | 02253 | 8787 |
| ⇄ | rlarr | 021C4 | 8644 |
| ⇌ | rlhar | 021CC | 8652 |
| | rlm | 0200F | 8207 |
| ⎱ | rmoust | 023B1 | 9137 |
| ⎱ | rmoustache | 023B1 | 9137 |
| ⫮ | rnmid | 02AEE | 10990 |
| ⟭ | roang | 027ED | 10221 |
| ⇾ | roarr | 021FE | 8702 |
| ⟧ | robrk | 027E7 | 10215 |
| ⦆ | ropar | 02986 | 10630 |
| ℝ | Ropf | 0211D | 8477 |
| 𝕣 | ropf | 1D563 | 120163 |
| ⨮ | roplus | 02A2E | 10798 |
| ⨵ | rotimes | 02A35 | 10805 |
| ⥰ | RoundImplies | 02970 | 10608 |
| ) | rpar | 00029 | 41 |
| ⦔ | rpargt | 02994 | 10644 |
| ⨒ | rppolint | 02A12 | 10770 |
| ⇉ | rrarr | 021C9 | 8649 |
| ⇛ | Rrightarrow | 021DB | 8667 |
| › | rsaquo | 0203A | 8250 |
| ℛ | Rscr | 0211B | 8475 |
| 𝓇 | rscr | 1D4C7 | 120007 |
| ↱ | Rsh | 021B1 | 8625 |
| ↱ | rsh | 021B1 | 8625 |
| ] | rsqb | 0005D | 93 |
| ’ | rsquo | 02019 | 8217 |
| ’ | rsquor | 02019 | 8217 |
| ⋌ | rthree | 022CC | 8908 |
| ⋊ | rtimes | 022CA | 8906 |
| ▹ | rtri | 025B9 | 9657 |
| ⊵ | rtrie | 022B5 | 8885 |
| ▸ | rtrif | 025B8 | 9656 |
| ⧎ | rtriltri | 029CE | 10702 |
| ⧴ | RuleDelayed | 029F4 | 10740 |
| ⥨ | ruluhar | 02968 | 10600 |
| ℞ | rx | 0211E | 8478 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ś | Sacute | 0015A | 346 |
| ś | sacute | 0015B | 347 |
| ‚ | sbquo | 0201A | 8218 |
| ⪼ | Sc | 02ABC | 10940 |
| ≻ | sc | 0227B | 8827 |
| ⪸ | scap | 02AB8 | 10936 |
| Š | Scaron | 00160 | 352 |
| š | scaron | 00161 | 353 |
| ≽ | sccue | 0227D | 8829 |
| ⪴ | scE | 02AB4 | 10932 |
| ⪰ | sce | 02AB0 | 10928 |
| Ş | Scedil | 0015E | 350 |
| ş | scedil | 0015F | 351 |
| Ŝ | Scirc | 0015C | 348 |
| ŝ | scirc | 0015D | 349 |
| ⪺ | scnap | 02ABA | 10938 |
| ⪶ | scnE | 02AB6 | 10934 |
| ⋩ | scnsim | 022E9 | 8937 |
| ⨓ | scpolint | 02A13 | 10771 |
| ≿ | scsim | 0227F | 8831 |
| С | Scy | 00421 | 1057 |
| с | scy | 00441 | 1089 |
| ⋅ | sdot | 022C5 | 8901 |
| ⊡ | sdotb | 022A1 | 8865 |
| ⩦ | sdote | 02A66 | 10854 |
| ⤥ | searhk | 02925 | 10533 |
| ⇘ | seArr | 021D8 | 8664 |
| ↘ | searr | 02198 | 8600 |
| ↘ | searrow | 02198 | 8600 |
| § | sect | 000A7 | 167 |
| ; | semi | 0003B | 59 |
| ⤩ | seswar | 02929 | 10537 |
| ∖ | setminus | 02216 | 8726 |
| ∖ | setmn | 02216 | 8726 |
| ✶ | sext | 02736 | 10038 |
| 𝔖 | Sfr | 1D516 | 120086 |
| 𝔰 | sfr | 1D530 | 120112 |
| ⌢ | sfrown | 02322 | 8994 |
| ♯ | sharp | 0266F | 9839 |
| Щ | SHCHcy | 00429 | 1065 |
| щ | shchcy | 00449 | 1097 |
| Ш | SHcy | 00428 | 1064 |
| ш | shcy | 00448 | 1096 |
| ↓ | ShortDownArrow | 02193 | 8595 |
| ← | ShortLeftArrow | 02190 | 8592 |
| ∣ | shortmid | 02223 | 8739 |
| ∥ | shortparallel | 02225 | 8741 |
| → | ShortRightArrow | 02192 | 8594 |
| ↑ | ShortUpArrow | 02191 | 8593 |
| | shy | 000AD | 173 |
| Σ | Sigma | 003A3 | 931 |
| σ | sigma | 003C3 | 963 |
| ς | sigmaf | 003C2 | 962 |
| ς | sigmav | 003C2 | 962 |
| ∼ | sim | 0223C | 8764 |
| ⩪ | simdot | 02A6A | 10858 |
| ≃ | sime | 02243 | 8771 |
| ≃ | simeq | 02243 | 8771 |
| ⪞ | simg | 02A9E | 10910 |
| ⪠ | simgE | 02AA0 | 10912 |
| ⪝ | siml | 02A9D | 10909 |
| ⪟ | simlE | 02A9F | 10911 |
| ≆ | simne | 02246 | 8774 |
| ⨤ | simplus | 02A24 | 10788 |
| ⥲ | simrarr | 02972 | 10610 |
| ← | slarr | 02190 | 8592 |
| ∘ | SmallCircle | 02218 | 8728 |
| ∖ | smallsetminus | 02216 | 8726 |
| ⨳ | smashp | 02A33 | 10803 |
| ⧤ | smeparsl | 029E4 | 10724 |
| ∣ | smid | 02223 | 8739 |
| ⌣ | smile | 02323 | 8995 |
| ⪪ | smt | 02AAA | 10922 |
| ⪬ | smte | 02AAC | 10924 |
| ⪬︀ | smtes | 02AAC + 0FE00 | 10924 |
| Ь | SOFTcy | 0042C | 1068 |
| ь | softcy | 0044C | 1100 |
| / | sol | 0002F | 47 |
| ⧄ | solb | 029C4 | 10692 |
| ⌿ | solbar | 0233F | 9023 |
| 𝕊 | Sopf | 1D54A | 120138 |
| 𝕤 | sopf | 1D564 | 120164 |
| ♠ | spades | 02660 | 9824 |
| ♠ | spadesuit | 02660 | 9824 |
| ∥ | spar | 02225 | 8741 |
| ⊓ | sqcap | 02293 | 8851 |
| ⊓︀ | sqcaps | 02293 + 0FE00 | 8851 |
| ⊔ | sqcup | 02294 | 8852 |
| ⊔︀ | sqcups | 02294 + 0FE00 | 8852 |
| √ | Sqrt | 0221A | 8730 |
| ⊏ | sqsub | 0228F | 8847 |
| ⊑ | sqsube | 02291 | 8849 |
| ⊏ | sqsubset | 0228F | 8847 |
| ⊑ | sqsubseteq | 02291 | 8849 |
| ⊐ | sqsup | 02290 | 8848 |
| ⊒ | sqsupe | 02292 | 8850 |
| ⊐ | sqsupset | 02290 | 8848 |
| ⊒ | sqsupseteq | 02292 | 8850 |
| □ | squ | 025A1 | 9633 |
| □ | Square | 025A1 | 9633 |
| □ | square | 025A1 | 9633 |
| ⊓ | SquareIntersection | 02293 | 8851 |
| ⊏ | SquareSubset | 0228F | 8847 |
| ⊑ | SquareSubsetEqual | 02291 | 8849 |
| ⊐ | SquareSuperset | 02290 | 8848 |
| ⊒ | SquareSupersetEqual | 02292 | 8850 |
| ⊔ | SquareUnion | 02294 | 8852 |
| ▪ | squarf | 025AA | 9642 |
| ▪ | squf | 025AA | 9642 |
| → | srarr | 02192 | 8594 |
| 𝒮 | Sscr | 1D4AE | 119982 |
| 𝓈 | sscr | 1D4C8 | 120008 |
| ∖ | ssetmn | 02216 | 8726 |
| ⌣ | ssmile | 02323 | 8995 |
| ⋆ | sstarf | 022C6 | 8902 |
| ⋆ | Star | 022C6 | 8902 |
| ☆ | star | 02606 | 9734 |
| ★ | starf | 02605 | 9733 |
| ϵ | straightepsilon | 003F5 | 1013 |
| ϕ | straightphi | 003D5 | 981 |
| ¯ | strns | 000AF | 175 |
| ⋐ | Sub | 022D0 | 8912 |
| ⊂ | sub | 02282 | 8834 |
| ⪽ | subdot | 02ABD | 10941 |
| ⫅ | subE | 02AC5 | 10949 |
| ⊆ | sube | 02286 | 8838 |
| ⫃ | subedot | 02AC3 | 10947 |
| ⫁ | submult | 02AC1 | 10945 |
| ⫋ | subnE | 02ACB | 10955 |
| ⊊ | subne | 0228A | 8842 |
| ⪿ | subplus | 02ABF | 10943 |
| ⥹ | subrarr | 02979 | 10617 |
| ⋐ | Subset | 022D0 | 8912 |
| ⊂ | subset | 02282 | 8834 |
| ⊆ | subseteq | 02286 | 8838 |
| ⫅ | subseteqq | 02AC5 | 10949 |
| ⊆ | SubsetEqual | 02286 | 8838 |
| ⊊ | subsetneq | 0228A | 8842 |
| ⫋ | subsetneqq | 02ACB | 10955 |
| ⫇ | subsim | 02AC7 | 10951 |
| ⫕ | subsub | 02AD5 | 10965 |
| ⫓ | subsup | 02AD3 | 10963 |
| ≻ | succ | 0227B | 8827 |
| ⪸ | succapprox | 02AB8 | 10936 |
| ≽ | succcurlyeq | 0227D | 8829 |
| ≻ | Succeeds | 0227B | 8827 |
| ⪰ | SucceedsEqual | 02AB0 | 10928 |
| ≽ | SucceedsSlantEqual | 0227D | 8829 |
| ≿ | SucceedsTilde | 0227F | 8831 |
| ⪰ | succeq | 02AB0 | 10928 |
| ⪺ | succnapprox | 02ABA | 10938 |
| ⪶ | succneqq | 02AB6 | 10934 |
| ⋩ | succnsim | 022E9 | 8937 |
| ≿ | succsim | 0227F | 8831 |
| ∋ | SuchThat | 0220B | 8715 |
| ∑ | Sum | 02211 | 8721 |
| ∑ | sum | 02211 | 8721 |
| ♪ | sung | 0266A | 9834 |
| ⋑ | Sup | 022D1 | 8913 |
| ⊃ | sup | 02283 | 8835 |
| ¹ | sup1 | 000B9 | 185 |
| ² | sup2 | 000B2 | 178 |
| ³ | sup3 | 000B3 | 179 |
| ⪾ | supdot | 02ABE | 10942 |
| ⫘ | supdsub | 02AD8 | 10968 |
| ⫆ | supE | 02AC6 | 10950 |
| ⊇ | supe | 02287 | 8839 |
| ⫄ | supedot | 02AC4 | 10948 |
| ⊃ | Superset | 02283 | 8835 |
| ⊇ | SupersetEqual | 02287 | 8839 |
| ⟉ | suphsol | 027C9 | 10185 |
| ⫗ | suphsub | 02AD7 | 10967 |
| ⥻ | suplarr | 0297B | 10619 |
| ⫂ | supmult | 02AC2 | 10946 |
| ⫌ | supnE | 02ACC | 10956 |
| ⊋ | supne | 0228B | 8843 |
| ⫀ | supplus | 02AC0 | 10944 |
| ⋑ | Supset | 022D1 | 8913 |
| ⊃ | supset | 02283 | 8835 |
| ⊇ | supseteq | 02287 | 8839 |
| ⫆ | supseteqq | 02AC6 | 10950 |
| ⊋ | supsetneq | 0228B | 8843 |
| ⫌ | supsetneqq | 02ACC | 10956 |
| ⫈ | supsim | 02AC8 | 10952 |
| ⫔ | supsub | 02AD4 | 10964 |
| ⫖ | supsup | 02AD6 | 10966 |
| ⤦ | swarhk | 02926 | 10534 |
| ⇙ | swArr | 021D9 | 8665 |
| ↙ | swarr | 02199 | 8601 |
| ↙ | swarrow | 02199 | 8601 |
| ⤪ | swnwar | 0292A | 10538 |
| ß | szlig | 000DF | 223 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Tab | 00009 | 9 | |
| ⌖ | target | 02316 | 8982 |
| Τ | Tau | 003A4 | 932 |
| τ | tau | 003C4 | 964 |
| ⎴ | tbrk | 023B4 | 9140 |
| Ť | Tcaron | 00164 | 356 |
| ť | tcaron | 00165 | 357 |
| Ţ | Tcedil | 00162 | 354 |
| ţ | tcedil | 00163 | 355 |
| Т | Tcy | 00422 | 1058 |
| т | tcy | 00442 | 1090 |
| ⃛ | tdot | 020DB | 8411 |
| ⌕ | telrec | 02315 | 8981 |
| 𝔗 | Tfr | 1D517 | 120087 |
| 𝔱 | tfr | 1D531 | 120113 |
| ∴ | there4 | 02234 | 8756 |
| ∴ | Therefore | 02234 | 8756 |
| ∴ | therefore | 02234 | 8756 |
| Θ | Theta | 00398 | 920 |
| θ | theta | 003B8 | 952 |
| ϑ | thetasym | 003D1 | 977 |
| ϑ | thetav | 003D1 | 977 |
| ≈ | thickapprox | 02248 | 8776 |
| ∼ | thicksim | 0223C | 8764 |
| ThickSpace | 0205F + 0200A | 8287 | |
| thinsp | 02009 | 8201 | |
| ThinSpace | 02009 | 8201 | |
| ≈ | thkap | 02248 | 8776 |
| ∼ | thksim | 0223C | 8764 |
| Þ | THORN | 000DE | 222 |
| þ | thorn | 000FE | 254 |
| ∼ | Tilde | 0223C | 8764 |
| ˜ | tilde | 002DC | 732 |
| ≃ | TildeEqual | 02243 | 8771 |
| ≅ | TildeFullEqual | 02245 | 8773 |
| ≈ | TildeTilde | 02248 | 8776 |
| × | times | 000D7 | 215 |
| ⊠ | timesb | 022A0 | 8864 |
| ⨱ | timesbar | 02A31 | 10801 |
| ⨰ | timesd | 02A30 | 10800 |
| ∭ | tint | 0222D | 8749 |
| ⤨ | toea | 02928 | 10536 |
| ⊤ | top | 022A4 | 8868 |
| ⌶ | topbot | 02336 | 9014 |
| ⫱ | topcir | 02AF1 | 10993 |
| 𝕋 | Topf | 1D54B | 120139 |
| 𝕥 | topf | 1D565 | 120165 |
| ⫚ | topfork | 02ADA | 10970 |
| ⤩ | tosa | 02929 | 10537 |
| ‴ | tprime | 02034 | 8244 |
| ™ | TRADE | 02122 | 8482 |
| ™ | trade | 02122 | 8482 |
| ▵ | triangle | 025B5 | 9653 |
| ▿ | triangledown | 025BF | 9663 |
| ◃ | triangleleft | 025C3 | 9667 |
| ⊴ | trianglelefteq | 022B4 | 8884 |
| ≜ | triangleq | 0225C | 8796 |
| ▹ | triangleright | 025B9 | 9657 |
| ⊵ | trianglerighteq | 022B5 | 8885 |
| ◬ | tridot | 025EC | 9708 |
| ≜ | trie | 0225C | 8796 |
| ⨺ | triminus | 02A3A | 10810 |
| ⃛ | TripleDot | 020DB | 8411 |
| ⨹ | triplus | 02A39 | 10809 |
| ⧍ | trisb | 029CD | 10701 |
| ⨻ | tritime | 02A3B | 10811 |
| ⏢ | trpezium | 023E2 | 9186 |
| 𝒯 | Tscr | 1D4AF | 119983 |
| 𝓉 | tscr | 1D4C9 | 120009 |
| Ц | TScy | 00426 | 1062 |
| ц | tscy | 00446 | 1094 |
| Ћ | TSHcy | 0040B | 1035 |
| ћ | tshcy | 0045B | 1115 |
| Ŧ | Tstrok | 00166 | 358 |
| ŧ | tstrok | 00167 | 359 |
| ≬ | twixt | 0226C | 8812 |
| ↞ | twoheadleftarrow | 0219E | 8606 |
| ↠ | twoheadrightarrow | 021A0 | 8608 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ú | Uacute | 000DA | 218 |
| ú | uacute | 000FA | 250 |
| ↟ | Uarr | 0219F | 8607 |
| ⇑ | uArr | 021D1 | 8657 |
| ↑ | uarr | 02191 | 8593 |
| ⥉ | Uarrocir | 02949 | 10569 |
| Ў | Ubrcy | 0040E | 1038 |
| ў | ubrcy | 0045E | 1118 |
| Ŭ | Ubreve | 0016C | 364 |
| ŭ | ubreve | 0016D | 365 |
| Û | Ucirc | 000DB | 219 |
| û | ucirc | 000FB | 251 |
| У | Ucy | 00423 | 1059 |
| у | ucy | 00443 | 1091 |
| ⇅ | udarr | 021C5 | 8645 |
| Ű | Udblac | 00170 | 368 |
| ű | udblac | 00171 | 369 |
| ⥮ | udhar | 0296E | 10606 |
| ⥾ | ufisht | 0297E | 10622 |
| 𝔘 | Ufr | 1D518 | 120088 |
| 𝔲 | ufr | 1D532 | 120114 |
| Ù | Ugrave | 000D9 | 217 |
| ù | ugrave | 000F9 | 249 |
| ⥣ | uHar | 02963 | 10595 |
| ↿ | uharl | 021BF | 8639 |
| ↾ | uharr | 021BE | 8638 |
| ▀ | uhblk | 02580 | 9600 |
| ⌜ | ulcorn | 0231C | 8988 |
| ⌜ | ulcorner | 0231C | 8988 |
| ⌏ | ulcrop | 0230F | 8975 |
| ◸ | ultri | 025F8 | 9720 |
| Ū | Umacr | 0016A | 362 |
| ū | umacr | 0016B | 363 |
| ¨ | uml | 000A8 | 168 |
| _ | UnderBar | 0005F | 95 |
| ⏟ | UnderBrace | 023DF | 9183 |
| ⎵ | UnderBracket | 023B5 | 9141 |
| ⏝ | UnderParenthesis | 023DD | 9181 |
| ⋃ | Union | 022C3 | 8899 |
| ⊎ | UnionPlus | 0228E | 8846 |
| Ų | Uogon | 00172 | 370 |
| ų | uogon | 00173 | 371 |
| 𝕌 | Uopf | 1D54C | 120140 |
| 𝕦 | uopf | 1D566 | 120166 |
| ↑ | UpArrow | 02191 | 8593 |
| ⇑ | Uparrow | 021D1 | 8657 |
| ↑ | uparrow | 02191 | 8593 |
| ⤒ | UpArrowBar | 02912 | 10514 |
| ⇅ | UpArrowDownArrow | 021C5 | 8645 |
| ↕ | UpDownArrow | 02195 | 8597 |
| ⇕ | Updownarrow | 021D5 | 8661 |
| ↕ | updownarrow | 02195 | 8597 |
| ⥮ | UpEquilibrium | 0296E | 10606 |
| ↿ | upharpoonleft | 021BF | 8639 |
| ↾ | upharpoonright | 021BE | 8638 |
| ⊎ | uplus | 0228E | 8846 |
| ↖ | UpperLeftArrow | 02196 | 8598 |
| ↗ | UpperRightArrow | 02197 | 8599 |
| ϒ | Upsi | 003D2 | 978 |
| υ | upsi | 003C5 | 965 |
| ϒ | upsih | 003D2 | 978 |
| Υ | Upsilon | 003A5 | 933 |
| υ | upsilon | 003C5 | 965 |
| ⊥ | UpTee | 022A5 | 8869 |
| ↥ | UpTeeArrow | 021A5 | 8613 |
| ⇈ | upuparrows | 021C8 | 8648 |
| ⌝ | urcorn | 0231D | 8989 |
| ⌝ | urcorner | 0231D | 8989 |
| ⌎ | urcrop | 0230E | 8974 |
| Ů | Uring | 0016E | 366 |
| ů | uring | 0016F | 367 |
| ◹ | urtri | 025F9 | 9721 |
| 𝒰 | Uscr | 1D4B0 | 119984 |
| 𝓊 | uscr | 1D4CA | 120010 |
| ⋰ | utdot | 022F0 | 8944 |
| Ũ | Utilde | 00168 | 360 |
| ũ | utilde | 00169 | 361 |
| ▵ | utri | 025B5 | 9653 |
| ▴ | utrif | 025B4 | 9652 |
| ⇈ | uuarr | 021C8 | 8648 |
| Ü | Uuml | 000DC | 220 |
| ü | uuml | 000FC | 252 |
| ⦧ | uwangle | 029A7 | 10663 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ⦜ | vangrt | 0299C | 10652 |
| ϵ | varepsilon | 003F5 | 1013 |
| ϰ | varkappa | 003F0 | 1008 |
| ∅ | varnothing | 02205 | 8709 |
| ϕ | varphi | 003D5 | 981 |
| ϖ | varpi | 003D6 | 982 |
| ∝ | varpropto | 0221D | 8733 |
| ⇕ | vArr | 021D5 | 8661 |
| ↕ | varr | 02195 | 8597 |
| ϱ | varrho | 003F1 | 1009 |
| ς | varsigma | 003C2 | 962 |
| ⊊︀ | varsubsetneq | 0228A + 0FE00 | 8842 |
| ⫋︀ | varsubsetneqq | 02ACB + 0FE00 | 10955 |
| ⊋︀ | varsupsetneq | 0228B + 0FE00 | 8843 |
| ⫌︀ | varsupsetneqq | 02ACC + 0FE00 | 10956 |
| ϑ | vartheta | 003D1 | 977 |
| ⊲ | vartriangleleft | 022B2 | 8882 |
| ⊳ | vartriangleright | 022B3 | 8883 |
| ⫫ | Vbar | 02AEB | 10987 |
| ⫨ | vBar | 02AE8 | 10984 |
| ⫩ | vBarv | 02AE9 | 10985 |
| В | Vcy | 00412 | 1042 |
| в | vcy | 00432 | 1074 |
| ⊫ | VDash | 022AB | 8875 |
| ⊩ | Vdash | 022A9 | 8873 |
| ⊨ | vDash | 022A8 | 8872 |
| ⊢ | vdash | 022A2 | 8866 |
| ⫦ | Vdashl | 02AE6 | 10982 |
| ⋁ | Vee | 022C1 | 8897 |
| ∨ | vee | 02228 | 8744 |
| ⊻ | veebar | 022BB | 8891 |
| ≚ | veeeq | 0225A | 8794 |
| ⋮ | vellip | 022EE | 8942 |
| ‖ | Verbar | 02016 | 8214 |
| | | verbar | 0007C | 124 |
| ‖ | Vert | 02016 | 8214 |
| | | vert | 0007C | 124 |
| ∣ | VerticalBar | 02223 | 8739 |
| | | VerticalLine | 0007C | 124 |
| ❘ | VerticalSeparator | 02758 | 10072 |
| ≀ | VerticalTilde | 02240 | 8768 |
| VeryThinSpace | 0200A | 8202 | |
| 𝔙 | Vfr | 1D519 | 120089 |
| 𝔳 | vfr | 1D533 | 120115 |
| ⊲ | vltri | 022B2 | 8882 |
| ⊂⃒ | vnsub | 02282 + 020D2 | 8834 |
| ⊃⃒ | vnsup | 02283 + 020D2 | 8835 |
| 𝕍 | Vopf | 1D54D | 120141 |
| 𝕧 | vopf | 1D567 | 120167 |
| ∝ | vprop | 0221D | 8733 |
| ⊳ | vrtri | 022B3 | 8883 |
| 𝒱 | Vscr | 1D4B1 | 119985 |
| 𝓋 | vscr | 1D4CB | 120011 |
| ⫋︀ | vsubnE | 02ACB + 0FE00 | |
| ⊊︀ | vsubne | 0228A + 0FE00 | |
| ⫌︀ | vsupnE | 02ACC + 0FE00 | |
| ⊋︀ | vsupne | 0228B + 0FE00 | |
| ⊪ | Vvdash | 022AA | 8874 |
| ⦚ | vzigzag | 0299A | 10650 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ŵ | Wcirc | 00174 | 372 |
| ŵ | wcirc | 00175 | 373 |
| ⩟ | wedbar | 02A5F | 10847 |
| ⋀ | Wedge | 022C0 | 8896 |
| ∧ | wedge | 02227 | 8743 |
| ≙ | wedgeq | 02259 | 8793 |
| ℘ | weierp | 02118 | 8472 |
| 𝔚 | Wfr | 1D51A | 120090 |
| 𝔴 | wfr | 1D534 | 120116 |
| 𝕎 | Wopf | 1D54E | 120142 |
| 𝕨 | wopf | 1D568 | 120168 |
| ℘ | wp | 02118 | 8472 |
| ≀ | wr | 02240 | 8768 |
| ≀ | wreath | 02240 | 8768 |
| 𝒲 | Wscr | 1D4B2 | 119986 |
| 𝓌 | wscr | 1D4CC | 120012 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| ⋂ | xcap | 022C2 | 8898 |
| ◯ | xcirc | 025EF | 9711 |
| ⋃ | xcup | 022C3 | 8899 |
| ▽ | xdtri | 025BD | 9661 |
| 𝔛 | Xfr | 1D51B | 120091 |
| 𝔵 | xfr | 1D535 | 120117 |
| ⟺ | xhArr | 027FA | 10234 |
| ⟷ | xharr | 027F7 | 10231 |
| Ξ | Xi | 0039E | 926 |
| ξ | xi | 003BE | 958 |
| ⟸ | xlArr | 027F8 | 10232 |
| ⟵ | xlarr | 027F5 | 10229 |
| ⟼ | xmap | 027FC | 10236 |
| ⋻ | xnis | 022FB | 8955 |
| ⨀ | xodot | 02A00 | 10752 |
| 𝕏 | Xopf | 1D54F | 120143 |
| 𝕩 | xopf | 1D569 | 120169 |
| ⨁ | xoplus | 02A01 | 10753 |
| ⨂ | xotime | 02A02 | 10754 |
| ⟹ | xrArr | 027F9 | 10233 |
| ⟶ | xrarr | 027F6 | 10230 |
| 𝒳 | Xscr | 1D4B3 | 119987 |
| 𝓍 | xscr | 1D4CD | 120013 |
| ⨆ | xsqcup | 02A06 | 10758 |
| ⨄ | xuplus | 02A04 | 10756 |
| △ | xutri | 025B3 | 9651 |
| ⋁ | xvee | 022C1 | 8897 |
| ⋀ | xwedge | 022C0 | 8896 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ý | Yacute | 000DD | 221 |
| ý | yacute | 000FD | 253 |
| Я | YAcy | 0042F | 1071 |
| я | yacy | 0044F | 1103 |
| Ŷ | Ycirc | 00176 | 374 |
| ŷ | ycirc | 00177 | 375 |
| Ы | Ycy | 0042B | 1067 |
| ы | ycy | 0044B | 1099 |
| ¥ | yen | 000A5 | 165 |
| 𝔜 | Yfr | 1D51C | 120092 |
| 𝔶 | yfr | 1D536 | 120118 |
| Ї | YIcy | 00407 | 1031 |
| ї | yicy | 00457 | 1111 |
| 𝕐 | Yopf | 1D550 | 120144 |
| 𝕪 | yopf | 1D56A | 120170 |
| 𝒴 | Yscr | 1D4B4 | 119988 |
| 𝓎 | yscr | 1D4CE | 120014 |
| Ю | YUcy | 0042E | 1070 |
| ю | yucy | 0044E | 1102 |
| Ÿ | Yuml | 00178 | 376 |
| ÿ | yuml | 000FF | 255 |
| Character | Entity Name | Hex | Dec |
|---|---|---|---|
| Ź | Zacute | 00179 | 377 |
| ź | zacute | 0017A | 378 |
| Ž | Zcaron | 0017D | 381 |
| ž | zcaron | 0017E | 382 |
| З | Zcy | 00417 | 1047 |
| з | zcy | 00437 | 1079 |
| Ż | Zdot | 0017B | 379 |
| ż | zdot | 0017C | 380 |
| ℨ | zeetrf | 02128 | 8488 |
| | ZeroWidthSpace | 0200B | 8203 |
| Ζ | Zeta | 00396 | 918 |
| ζ | zeta | 003B6 | 950 |
| ℨ | Zfr | 02128 | 8488 |
| 𝔷 | zfr | 1D537 | 120119 |
| Ж | ZHcy | 00416 | 1046 |
| ж | zhcy | 00436 | 1078 |
| ⇝ | zigrarr | 021DD | 8669 |
| ℤ | Zopf | 02124 | 8484 |
| 𝕫 | zopf | 1D56B | 120171 |
| 𝒵 | Zscr | 1D4B5 | 119989 |
| 𝓏 | zscr | 1D4CF | 120015 |
| | zwj | 0200D | 8205 |
| | zwnj | 0200C | 8204 |
┏┳┓ ╔╦╗ ╓╥╖ ┌┬┐ ╭╮ ╱╲
┣╋┫ ╠╬╣ ╟╫╢ ├┼┤ ╰╯ ╲╱
┗┻┛ ╚╩╝ ╙╨╜ └┴┘
━━ ══ ┅┅ ┈┈ ﹍ ﹎﹉ ﹊
_ _ ﹏ ˉ  ̄ ﹌ ˇ
╳ ¦ ‖ ︴ ︳| ┃ ║ ┆ ┇
┏━━┳━━┓ ╔══╦══╗ ┌┈┈┬┈┈┐ ╭┈┈┬┈┈╮
┣━━╋━━┫ ║ ║ ║ ├┈┈┼┈┈┤ ├┈┈┼┈┈┤
┃ ┃ ┃ ╠══╬══╣ ┆ ┆ ┆ ├┈┈┼┈┈┤
┗━━┻━━┛ ╚══╩══╝ └┈┈┴┈┈┘ ╰┈┈┴┈┈╯
△ ▽ ○ ◇ □ ☆ ▷ ◁ ☼ ☏
▲ ▼ ● ◆ ■ ★ ▶ ◀ ☀ ☎
♤ ♡ ♢ ♧ ♠ ♥ ♦ ♣ ☻ ❤
▁ ▂ ▃ ▄ ▅ ▆ ▇ █ ☜ ☞
▉ ▊ ▋ ▌ ▍ ▎ ▏ ‥ … ▪
• ☉ ⊕ Θ ◎ ¤ ⊿ の
↖ ↑ ↗ ▧ ▤ ▨ ▥ ▩ ▦ ⊹
← ↔ → ▏ ▕ ▁ ▔ ▬ 〓 ≡
↙ ↓ ↘ ¬ ¬ † ‡ ▫ ◈ ▣
◤ ◥ ♩ ♪ ♫ ♬ § ¶ ♭ ♯
◣ ◢ ∮ ‖ ㊣ € $ ¥ ☑ ☒
░ ▒ ▓ ◐ ◑ ◕ ♀ ♂ 卍 卐
⊱ ⋛ ⋌ ⋚ ⊰ ☌ ☍ ☋ ∷ Ω
® © ™ ª ㈱ ¢ ℡ № 囍
* * ※ ✲ ❈ ❉ ✿ ❀ ❃ ❁
✪ ☄ ☢ ☣ ☭ ❂ ☪ ➹ ☃ ☂
❦ ❧ ✎ ✄ Ю ✟ ۩ ღ ஐ ☠
♨ ۞
🀀 🀄︎ 🀁 🀂 🀃 🀅 🀆
🀇 🀈 🀉 🀊 🀋 🀌 🀍 🀎 🀏
🀐 🀑 🀒 🀓 🀔 🀕 🀖 🀗 🀘
🀙 🀚 🀛 🀜 🀝 🀞 🀟 🀠 🀡
🀢 🀣 🀤 🀥 🀦 🀧 🀨 🀩
+ - × · ÷ / ± ㏒ ㏑ ∑
∏ × √ ﹢ ﹣ ± ∫ ∮ ∝ ∞
∧ ∨ = ≈ ≡ ≠ < > ≤ ≥
≦ ≧ ≮ ≯ º ¹ ² ³ ½ ¾
¼ % ‰
· ∶ ∴ ∵ ∷ ⊙ ∪ ∩ △ ▽
○ □ → ∉ ∅ ∈ ≌ ∽ ≒ ∥
⊿ ⌒ Φ √ ∠ ⊥
° ㎎ ㎏ μm ㎜ ㎝ ㎞ ㎡ ℃ ℉
′ ″ ㏄ ㏎ ml mol 〒 ¤ ㏕ ¢
µ $ € ¥ ฿
Α Β Γ Δ Ε Ζ Η Θ Ι Κ
Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ
Φ Χ Ψ Ω
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ⑪ ⑫ ⑬ ⑭ ⑮ ⑯
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ ⑺ ⑻ ⑼ ⑽ ⑾ ⑿ ⒀ ⒁ ⒂ ⒃
⒈ ⒉ ⒊ ⒋ ⒌ ⒍ ⒎ ⒏ ⒐ ⒑ ⒒ ⒓ ⒔ ⒕ ⒖ ⒗
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ XI XII XIII XIV XV XVI
ⅰ ⅱ ⅲ ⅳ ⅵ ⅶ ⅷ ⅸ ⅹ
❶ ❷ ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿
㈠ ㈡ ㈢ ㈣ ㈤ ㈥ ㈦ ㈧ ㈨ ㈩
。 ? ! , 、 ; : ~ @ #
. ? ! , \ ; : ~ @ #
% & * + - = < | …… ·
﹪ & * + - = ﹤ ︳ ^ `
- ∕ ¦ ‖ ︴
( ) 【 】 “ ” ‘ ’ 《 》
( ) [ ] " " ' ' « »
﹝ ﹞ < > 〖 〗 { } 〈 〉
〔 〕 < > ‹ › [ ] 「 」
『 』
︵ ︷ ︿ ︹ ︽ ﹁ ﹃ ︻ ﹍ ﹎
︶ ︸ ﹀ ︺ ︾ ﹂ ﹄ ︼ ﹉ ﹊
_ _ ﹏ ˉ  ̄ ﹌ ˇ ¿ ¡
Α Β Γ Δ Ε Ζ Η Θ Ι Κ
Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ
Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ
λ μ ν ξ ο π ρ σ τ υ
φ χ ψ ω
À Á Â Ã Ä Å Æ Ç È É
Ê Ë Ì Í Î Ï Ð Ñ Ò Ó
Ô Õ Ö Ø Ù Ú Û Ü Ý Þ
Š Ÿ Œ
à á â ã ä å æ ç è é
ê ë ì í î ï ð ñ ò ó
õ ô ö ø ù ú û ü ý þ
š ÿ œ
ā á ǎ à ō ó ǒ ò ē é
ě è ń ň ī í ǐ ì ū
ú ǔ ù ǖ ǘ ǚ ǜ ü ɑ
А Б В Г Д Е Ё Ж З И
Й К Л М Н О П Р С Т
У Ф Х Ц Ч Ш Щ Ъ Ы Ь
Э Ю Я
а б в г д е ё ж з и
й к л м н о п р с т
у ф х ц ч ш щ ъ ы ь
э ю я
あ い う え ア イ ウ エ
お か き く オ カ キ ク
け こ さ し ケ コ サ シ
す せ そ た ス セ ソ タ
ち つ て と チ ツ テ ト
な に ぬ ね ナ ニ ヌ ネ
の は ひ ふ ノ ハ ヒ フ
へ ほ ま み ヘ ホ マ ミ
む め も や ム メ モ ヤ
ゆ よ ら り ユ ヨ ラ リ
る れ ろ わ ル レ ロ ワ
を ん ヲ ン
が ぎ ぐ げ ガ ギ グ ゲ
ご ざ じ ず ゴ ザ ジ ズ
ぜ ぞ だ ぢ ゼ ゾ ダ ヂ
づ で ど ば ヅ デ ド バ
び ぶ べ ぼ ビ ブ ベ ボ
ぱ ぴ ぷ ぺ パ ピ プ ペ
ぽ ポ
ぁ ぃ ぅ ぇ ァ ィ ゥ ェ
ぉ ゃ ゅ ょ ォ ャ ュ ョ
っ ゐ ゑ ゎ ッ ヰ ヱ ヮ
ヵ ヶ
。 ゛ ゜ 「 」 ・ 、 ー