Lecture 16 - Interference
Source: Arronow et al. (2021)
Student | Grades if Alice wins prize | Grades if Bob wins prize | Grades if Charlie wins prize | Grades if no prize awarded |
---|---|---|---|---|
Alice | 10 | 5 | 7 | 7 |
Bob | 5 | 5 | 5 | 5 |
Charlie | 9 | 5 | 9 | 9 |
Student | Grades if Alice wins prize | Grades if Bob wins prize | Grades if Charlie wins prize | Grades if no prize awarded |
---|---|---|---|---|
Alice | 10 | 5 | 7 | 7 |
Bob | 5 | 5 | 5 | 5 |
Charlie | 9 | 5 | 9 | 9 |
Source: Collazos et al. (2021)
a
= housemate’s treatment status (0=control, 1=treated)b
= own treatment status (0=control, 1=treated)Notation | Housemate | Self | Interpretation |
---|---|---|---|
\(Y_{00}\) | Control | Control | Baseline outcome |
\(Y_{01}\) | Control | Treated | Direct treatment effect |
\(Y_{10}\) | Treated | Control | Spillover effect |
\(Y_{11}\) | Treated | Treated | Combined effects |
Village | Untreated (\(Y_{00}\)) | Adjacent village treated (\(Y_{10}\)) | Treated (\(Y_{01}\)) |
---|---|---|---|
A | 0 | 2 | 0 |
B | 6 | 2 | 10 |
C | 0 | 4 | 4 |
D | 6 | 6 | 6 |
F | 6 | NA | 3 |
Village | A | B | C | D | F | Pr(assignment to control) | Pr(assignment to spillover) | Pr(assignment to treatment) |
---|---|---|---|---|---|---|---|---|
1 | \(Y_{01}\) | \(Y_{10}\) | \(Y_{00}\) | \(Y_{00}\) | \(Y_{00}\) | 0.6 | 0.2 | 0.2 |
2 | \(Y_{10}\) | \(Y_{01}\) | \(Y_{10}\) | \(Y_{00}\) | \(Y_{00}\) | 0.4 | 0.4 | 0.2 |
3 | \(Y_{00}\) | \(Y_{10}\) | \(Y_{01}\) | \(Y_{10}\) | \(Y_{00}\) | 0.4 | 0.4 | 0.2 |
4 | \(Y_{00}\) | \(Y_{00}\) | \(Y_{00}\) | \(Y_{10}\) | \(Y_{01}\) | 0.6 | 0.2 | 0.2 |
5 | \(Y_{00}\) | \(Y_{00}\) | \(Y_{00}\) | \(Y_{00}\) | \(Y_{01}\) | 0.8 | 0 | 0.2 |
\[ \hat{E}[Y_{01} - Y_{00}] = \frac{\frac{6}{0.2}}{\frac{1}{0.2}} - \frac{\frac{0}{0.6} + \frac{6}{0.4} + \frac{6}{0.8}}{\frac{1}{0.6} + \frac{1}{0.4} + \frac{1}{0.8}} = 1.85. \]
\[ \hat{E}[Y_{10} - Y_{00}] = \frac{\frac{4}{0.4}}{\frac{1}{0.4}} - \frac{\frac{0}{0.6} + \frac{6}{0.4}}{\frac{1}{0.6} + \frac{1}{0.4}} = 0.40. \]
Source: Clifford et al (2021)
Source: Hemming et al (2014)
Assigned treatment
Market | Week 1 | Week 2 | Week 3 |
---|---|---|---|
1 | 01 | 11 | 11 |
2 | 00 | 00 | 01 |
3 | 00 | 01 | 11 |
4 | 00 | 00 | 01 |
5 | 00 | 00 | 00 |
6 | 01 | 11 | 11 |
7 | 00 | 00 | 00 |
8 | 00 | 01 | 11 |
Observed outcomes
Market | Week 1 | Week 2 | Week 3 |
---|---|---|---|
1 | 7 | 9 | 4 |
2 | 7 | 5 | 7 |
3 | 1 | 2 | 10 |
4 | 4 | 3 | 10 |
5 | 3 | 3 | 3 |
6 | 10 | 8 | 10 |
7 | 2 | 3 | 4 |
8 | 3 | 1 | 3 |
Probabilities of assignment to treatment condition
Treatment Condition | Week 1 | Week 2 | Week 3 |
---|---|---|---|
Pr(00) | 0.75 | 0.50 | 0.25 |
Pr(01) | 0.25 | 0.25 | 0.25 |
Pr(11) | 0 | 0.25 | 0.50 |
\[ \begin{aligned} \widehat{E}[Y_{01} - Y_{00}] &= \frac{\frac{7 + 10}{0.25} + \frac{2 + 1}{0.25} + \frac{7 + 10}{0.25}}{\frac{2}{0.25} + \frac{2}{0.25} + \frac{2}{0.25}} \\ &- \frac{\frac{7 + 1 + 4 + 4 + 3 + 2 + 3}{0.75} + \frac{5 + 3 + 3 + 3}{0.50} + \frac{3 + 4}{0.25}}{\frac{6}{0.75} + \frac{4}{0.50} + \frac{2}{0.25}} = 2.72. \end{aligned} \]
\[ \begin{aligned} \widehat{E}[Y_{11} - Y_{00}] &= \frac{\frac{9 + 8}{0.25} + \frac{4 + 10 + 10 + 3}{0.50}}{\frac{2}{0.25} + \frac{4}{0.50}} \\ &- \frac{\frac{5 + 3 + 3 + 3}{0.50} + \frac{3 + 4}{0.25}}{\frac{4}{0.50} + \frac{2}{0.25}} = 4.13. \end{aligned} \]