Lecture 15 - Cloud Computing II
On-premise | IaaS | PaaS | SaaS |
---|---|---|---|
Application | Application | Application | Application |
Middleware | Middleware | Middleware | Middleware |
OS | OS | OS | OS |
Virtualisation | Virtualisation | Virtualisation | Virtualisation |
Servers | Servers | Servers | Servers |
Networking | Networking | Networking | Networking |
User manages
Provider manages
apt update
, apt upgrade
, apt install`scp
and chmod
Source: DataCamp
ls
, cd
, pwd
, etc)sudo
to run commands as root (superuser)
apt
(Advanced Package Tool)apt update
refreshes the package listapt install
installs a packagesudo apt python3
installs Python 3sudo apt install python3-pip
installs pipchmod 400
/home/user
directory is by typing cd
and that will automatically bring you to your home dirUbuntu on Windows (WSL)
Name and tags
. For example, name your instance qtm350
Ubuntu Server 24.04 LTS
as the OS image and 64-bit (x86)
as the architecturet2.micro
or t1.micro
, both of which are free tier eligibleCreate a new key pair
and give it a name (e.g. qtm350
)ED25519
and .pem
as the file formatCreate Key Pair
and save it to a secure locationNetwork settings
, you may check Allow HTTPs traffic from the internet
and Allow HTTP traffic from the internet
so that you can access the web servers hosted on your EC2 VMRoot
volume under Configure storagegp3
is the default volume type, and it works fine for most use casesio2
is the fastest and most expensive volume type, usually used for high-performance databases (which require milisecond latency)sc1
or st1
for cost savingsLaunch instance
! 🚀Launch
, you will be taken to the Instances pageConnect to instance
to see the instructionsSSH client
to see the command to connect to your instancechmod 400 "name-of-your-key.pem"
and the Example
commands provided by AWS to connect to your instanceInstances
link on the left to see the details of your instancesudo apt update
to refresh the package listsudo apt get upgrade
to install the latest updates
-y
flag to automatically answer yes
to all promptssudo apt install
sudo apt install python3
sudo apt install python3-pip
sudo apt update && sudo apt upgrade && sudo apt install python3 && sudo apt install -y python3-pip
scp
(secure copy)scp
is a command-line tool that allows you to copy files securelyscp -i "name-of-your-key.pem" file-to-copy ubuntu@public-ip:/path/to/destination
scp -i "name-of-your-key.pem" ubuntu@public-ip:/path/to/file-to-copy /path/to/destination
scp
to copy files between two remote serversecho "print('Hello, QTM350!')" > hello.py
scp -i qtm350.pem hello.py ubuntu@XXXXXX.compute-1.amazonaws.com:~
XXXXXX
with your public IP and ~
with the path to your home directoryls
) and run (python3
) the file on your instance
jupyter
sudo apt install python3-notebook
source ~/.profile
which python3
, which pip3
, and which jupyter
8000
ssh -i "<your-key>.pem" ubuntu@<public_IPv4_DNS_address_of_your_EC2_instance> -L 8000:localhost:8888
jupyter notebook
http://localhost:8000
print('Hello, QTM350!')
(or any other code you like!)sudo apt install python3-numpy python3-pandas python3-matplotlib python3-seaborn
# weather_data.py
import pandas as pd
import numpy as np
import datetime
# Set seed for reproducibility
np.random.seed(42)
# Generate dates for the past 30 days
dates = pd.date_range(end=datetime.datetime.now(), periods=30).tolist()
dates = [d.strftime('%Y-%m-%d') for d in dates]
# Generate temperature data with some randomness
temp_high = np.random.normal(75, 8, 30)
temp_low = temp_high - np.random.uniform(10, 20, 30)
precipitation = np.random.exponential(0.5, 30)
humidity = np.random.normal(65, 10, 30)
# Create a structured dataset
weather_data = pd.DataFrame({
'date': dates,
'temp_high': temp_high,
'temp_low': temp_low,
'precipitation': precipitation,
'humidity': humidity
})
# Save to a text file
with open('weather_data.txt', 'w') as f:
f.write("# Weather data for the past 30 days\n")
f.write(weather_data.to_string(index=False))
print("Weather data saved to weather_data.txt")
python3 weather_data.py
weather_data.txt
with 30 days of weather datascp -i <your-key>.pem weather_data.txt ubuntu@<your-instance-ip>:~/
# weather_analysis.py
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from io import StringIO # Add proper import for StringIO
# Read the weather data
with open('weather_data.txt', 'r') as f:
lines = f.readlines()
# Skip the header comment
data_str = ''.join(lines[1:])
df = pd.read_csv(StringIO(data_str), sep=r'\s+') # Fix StringIO import and use raw string for regex
# Print basic statistics
print("Weather Data Analysis:")
print("=====================")
print(f"Number of days: {len(df)}")
print(f"Average high temperature: {df['temp_high'].mean():.1f}°F")
print(f"Average low temperature: {df['temp_low'].mean():.1f}°F")
print(f"Maximum temperature: {df['temp_high'].max():.1f}°F on {df.loc[df['temp_high'].idxmax(), 'date']}")
print(f"Minimum temperature: {df['temp_low'].min():.1f}°F on {df.loc[df['temp_low'].idxmin(), 'date']}")
print(f"Days with precipitation > 1 inch: {len(df[df['precipitation'] > 1])}")
# Create a visualisation
plt.figure(figsize=(12, 6))
sns.set_style("whitegrid")
# Plot temperature range
plt.fill_between(df['date'], df['temp_low'], df['temp_high'], alpha=0.3, color='skyblue')
plt.plot(df['date'], df['temp_high'], marker='o', color='red', label='High Temp')
plt.plot(df['date'], df['temp_low'], marker='o', color='blue', label='Low Temp')
# Add precipitation as bars on a secondary axis
ax2 = plt.twinx()
ax2.bar(df['date'], df['precipitation'], alpha=0.3, color='navy', width=0.5, label='Precipitation')
ax2.set_ylabel('Precipitation (inches)', color='navy')
ax2.tick_params(axis='y', labelcolor='navy')
# Formatting
plt.title('30-Day Weather Report: Temperature Range and Precipitation', fontsize=16)
plt.xticks(rotation=45, ha='right')
plt.ylabel('Temperature (°F)')
plt.legend(loc='upper left')
plt.tight_layout()
# Save the figure
plt.savefig('weather_analysis.png')
print("Analysis complete. Results saved to 'weather_analysis.png'")
scp -i <your-key>.pem <file> ubuntu@<your-instance-ip>:~/
ssh -i <your-key>.pem ubuntu@<your-instance-ip> -L 8000:localhost:8888
jupyter notebook
http://localhost:8000
) and run your analysisscp -i <your-key>.pem ubuntu@<your-instance-ip>:~/weather_analysis.png ./
When you run the activity, you should get a weather analysis graph similar to this one:
You’ve just completed a full data analysis workflow in the cloud 🎉
This workflow is similar to how data scientists use cloud resources for larger datasets and more complex analyses!