
Session 6 - Spatial Data
R for Stata Users

Luiza Andrade, Rob Marty, Rony Rodriguez-Ramirez, Luis Eduardo San Martin, Leonardo Viotti
The World Bank – DIME | WB Github
March 2024

https://github.com/worldbank
https://github.com/worldbank


Table of contents

1. Overview of GIS concepts
2. Load and explore polygons, polylines, and points
3. Static maps
4. Interactive maps
5. Spatial operations applied on one dataset
6. Spatial operations applied on multiple datasets

2 / 79



Vector data

Points, lines, or polygons
Common file formats include shapefiles (.shp) and
geojsons (.geojson)
Examples: polygons on countries, polylines of roads,
points of schools

Raster data

Spatially referenced grid
Common file format is a geotif (.tif)
Example: Satellite imagery of nighttime lights

Overview of GIS conceps
Spatial data: The two main types of spatial data are vector data and raster data

 
3 / 79



Coordinate Reference Systems (CRS)
Coordinate reference systems use pairs of numbers to define a location on the earth
For example, the World Bank is at a latitude of 38.89 and a longitude of -77.04

4 / 79



Coordinate Reference Systems (CRS)
There are many different coordinate reference systems, which can be grouped into geographic and projected coordinate
reference systems. Geographic systems live on a sphere, while projected systems are “projected” onto a flat surface.

5 / 79



Units: Defined by latitude and longitude, which measure
angles and units are typically in decimal degrees. (Eg, angle
is latitude from the equator).

Latitude & Longitude:

On a grid X = longitude, Y = latitude; sometimes
represented as (longitude, latitude).
Also has become convention to report them in
alphabetical order: (latitude, longitude) — such as in
Google Maps.
Valid range of latitude: -90 to 90
Valid range of longitude: -180 to 180
{Tip} Latitude sounds (and looks!) like latter.

Geographic Coordinate Systems

6 / 79



Distance on a sphere

At the equator (latitude = 0), a 1 decimal degree
longitude distance is about 111km; towards the poles
(latitude = -90 or 90), a 1 decimal degree longitude
distance converges to 0 km.
We must be careful (ie, use algorithms that account for
a spherical earth) to calculate distances! The distance
along a sphere is referred to as a great circle distance.
Multiple options for spherical distance calculations,
with trade-off between accuracy & complexity. (See
distance section for details).

Geographic Coordinate Systems

7 / 79

https://en.wikipedia.org/wiki/Great-circle_distance


Datums

Is the earth flat? No!
Is the earth a sphere? No!
Is the earth a lumpy ellipsoid? Yes!

The earth is a lumpy ellipsoid, a bit flattened at the poles.

A datum is a model of the earth that is used in
mapping. One of the most common datums is WGS 84,
which is used by the Global Positional System (GPS).
A datum is a reference ellipsoid that approximates the
shape of the earth.
Other datums exist, and the latitude and longitude
values for a specific location will be different
depending on the datum.

Geographic Coordinate Systems

8 / 79

https://oceanservice.noaa.gov/facts/earth-round.html#:~:text=The%20Earth%20is%20an%20irregularly%20shaped%20ellipsoid.&text=While%20the%20Earth%20appears%20to,unique%20and%20ever%2Dchanging%20shape.
https://www.maptoaster.com/maptoaster-topo-nz/articles/projection/datum-projection.html
https://en.wikipedia.org/wiki/World_Geodetic_System


Projected coordinate systems project spatial data from a
3D to 2D surface.

Distortions: Projections will distort some combination of
distance, area, shape or direction. Different projections can
minimize distorting some aspect at the expense of others.

Units: When projected, points are represented as
“northings” and “eastings.” Values are often represented in
meters, where northings/eastings are the meter distance
from some reference point. Consequently, values can be
very large!

Datums still relevant: Projections start from some
representation of the earth. Many projections (eg, UTM) use
the WGS84 datum as a starting point (ie, reference datum),
then project it onto a flat surface.

Click here to see why Toby & CJ are confused (hint:
projections!)

Projected Coordinate Systems

9 / 79

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://www.youtube.com/watch?v=eLqC3FNNOaI


Projected Coordinate Systems

10 / 79



Referencing coordinate reference systems

There are many ways to reference coordinate systems, some of which are
verbose.
PROJ (Library for projections) way of referencing WGS84 +proj=longlat
+datum=WGS84 +no_defs +type=crs

EPSG Assigns numeric code to CRSs to make it easier to reference. Here, WGS84 is
4326 .

11 / 79

https://epsg.io/


Coordinate Reference Systems
Whenever have spatial data, need to know which coordinate reference system (CRS) the data is in.

You wouldn’t say “I am 5 away”
You would say “I am 5 [miles / kilometers / minutes / hours] away” (units!)
Similarly, a “complete” way to describe location would be: I am at 6.51 latitude, 3.52 longitude using the WGS 84 CRS

12 / 79



Introduction
This session could be a whole course on its own, but we only have an hour and half.
To narrow our subject, we will focus on only one type of spatial data, vector data.
This is the most common type of spatial data that non-GIS experts will encounter in their work.
We will use the sf  package, which is the tidyverse-compatible package for geospatial data in R.
For visualizing, we'll rely on ggplot2  for static maps and leaflet  for interactive maps

13 / 79



Setup
1. Copy/paste the following code into a new RStudio script, replacing "YOURFOLDERPATHHERE" with the folder within which

you'll place this R project:

2. In the console, type in the requisite number to delete the .zip file (we don't need it anymore).

3. A new RStudio environment will open. Use this for the session today.

library(usethis)

use_course(

  url = "https://github.com/worldbank/dime-r-training/archive/main.zip",

  destdir = "YOURFOLDERPATHHERE"

)

14 / 79



Setup
Install new packages

And load them

install.packages(c("sf",

                   "leaflet",

                   "geosphere"),

                 dependencies = TRUE)

library(here)

library(tidyverse)

library(sf)        # Simple features

library(leaflet)   # Interactive map

library(geosphere) # Great circle distances

15 / 79



Load and explore polylines, polylines, and points
The main package we'll rely on is the sf  (simple features) package. With sf , spatial data is structured similarly to a
dataframe; however, each row is associated with a geometry. Geometries can be one of the below types.

16 / 79



Load and explore polygon
The first thing we will do in this session is to recreate this data set:

country_sf <- 

  st_read(here("DataWork",

               "DataSets",

               "Final",

               "country.geojson"))

## Reading layer `country' from data source 

##   `/Users/robmarty/Documents/Github/dime-r-training/DataWork/DataSets/Final/country.geojson' 

##   using driver `GeoJSON'

## Simple feature collection with 300 features and 13 fields

## Geometry type: MULTIPOLYGON

## Dimension:     XY

## Bounding box:  xmin: 33.90959 ymin: -4.720417 xmax: 41.92622 ymax: 5.061166

## Geodetic CRS:  WGS 84

17 / 79



Exploring the data
Look at first few observations

head(country_sf)

## Simple feature collection with 6 features and 13 fields

## Geometry type: MULTIPOLYGON

## Dimension:     XY

## Bounding box:  xmin: 35.52292 ymin: -0.198901 xmax: 36.29659 ymax: 0.990413

## Geodetic CRS:  WGS 84

##       GID_2 GID_0 COUNTRY   GID_1  NAME_1 NL_NAME_1          NAME_2 VARNAME_2

## 1 KEN.1.1_1   KEN   Kenya KEN.1_1 Baringo      <NA>             805      <NA>

## 2 KEN.1.2_1   KEN   Kenya KEN.1_1 Baringo      <NA> Baringo Central      <NA>

## 3 KEN.1.3_1   KEN   Kenya KEN.1_1 Baringo      <NA>   Baringo North      <NA>

## 4 KEN.1.4_1   KEN   Kenya KEN.1_1 Baringo      <NA>   Baringo South      <NA>

## 5 KEN.1.5_1   KEN   Kenya KEN.1_1 Baringo      <NA>   Eldama Ravine      <NA>

## 6 KEN.1.6_1   KEN   Kenya KEN.1_1 Baringo      <NA>         Mogotio      <NA>

##   NL_NAME_2       TYPE_2    ENGTYPE_2 CC_2 HASC_2

## 1      <NA> Constituency Constituency  162   <NA>

## 2      <NA> Constituency Constituency  159   <NA>

## 3      <NA> Constituency Constituency  158   <NA>

## 4      <NA> Constituency Constituency  160   <NA> 18 / 79



Exploring the data
Number of rows

nrow(country_sf)

## [1] 300

19 / 79



Exploring the data
Check coordinate reference system

st_crs(country_sf)

## Coordinate Reference System:

##   User input: WGS 84 

##   wkt:

## GEOGCRS["WGS 84",

##     DATUM["World Geodetic System 1984",

##         ELLIPSOID["WGS 84",6378137,298.257223563,

##             LENGTHUNIT["metre",1]]],

##     PRIMEM["Greenwich",0,

##         ANGLEUNIT["degree",0.0174532925199433]],

##     CS[ellipsoidal,2],

##         AXIS["geodetic latitude (Lat)",north,

##             ORDER[1],

##             ANGLEUNIT["degree",0.0174532925199433]],

##         AXIS["geodetic longitude (Lon)",east,

##             ORDER[2],

##             ANGLEUNIT["degree",0.0174532925199433]],

##     ID["EPSG",4326]] 20 / 79



Exploring the data
Plot the data. To plot using ggplot2 , we use the geom_sf  geometry.

ggplot() +

  geom_sf(data = country_sf)

21 / 79



Attributes of data
We want the area of each location, but we don't have a variable for area

names(country_sf)

##  [1] "GID_2"     "GID_0"     "COUNTRY"   "GID_1"     "NAME_1"    "NL_NAME_1"

##  [7] "NAME_2"    "VARNAME_2" "NL_NAME_2" "TYPE_2"    "ENGTYPE_2" "CC_2"     

## [13] "HASC_2"    "geometry"

22 / 79



Attributes of data
Determine area. Note the CRS is spherical (WGS84), but st_area  gives area in meters squared. R uses s2 geomety for this.

st_area(country_sf)

## Units: [m^2]

##   [1]   174612548   664171032  1640235288  1893541200   909726196  1162391322

##   [7]  4446442673   244343146   319588761   546475821   791703635   487034695

##  [13]   347077424   234870080   320531683   178295354   302805234   267396640

##  [19]   950722974   208724111   377069605   235040170   166654802   311166355

##  [25]   244842707   270856300   195816268   234613620   250070745   300226047

##  [31]   544675636   890441628   819095221   562423505   473818437   774008353

##  [37]  1329273270   340468166  4248579388  7557295525 16712310204   603028994

##  [43]  8442761951  6483073596   270237144   247974418   626536513   259329880

##  [49]  1032562720   699140857   292011673  1147576864   124531035 15430646699

##  [55] 10122778443  4333824029  3283326674   112849413  6385975697  7975956018

##  [61]   210204075   144513355   145118575   102257259   162397218   424754069

##  [67]   278291541   175812288   138974871   258559234   412385494   246642948

##  [73]   447240937   317315791   755656427   354432319   466560197   244100322

##  [79]   214221442   184422278   336670907    59209638    79588059   106276706

##  [85]   172477093   468135485   283853034   204126728   232219565  2950195157

##  [91]   703903982   832269572   436237078  6970056180   614090663   201415848 23 / 79



Operations similar to dataframes
Create new dataset that captures locations for one administrative region

city_sf <- country_sf %>% 

  filter(NAME_1 == "Nairobi")

24 / 79



Operations similar to dataframes
Plot the dataframe

ggplot() +

  geom_sf(data = city_sf)

25 / 79



Load and explore polyline

Exercise:

Load the roads data roads.geojson  and name the object roads_sf
Look at the first few observations
Check the coordinate reference system
Map the polyline

Solution:

roads_sf <- st_read(here("DataWork", "DataSets", "Final", "roads.geojson"))

head(roads_sf)

st_crs(roads_sf)

ggplot() +

  geom_sf(data = roads_sf)

26 / 79



Load and explore polyline

roads_sf <- 

  st_read(here("DataWork",

               "DataSets",

               "Final",

               "roads.geojson"))

## Reading layer `roads' from data source 

##   `/Users/robmarty/Documents/Github/dime-r-training/DataWork/DataSets/Final/roads.geojson' 

##   using driver `GeoJSON'

## Simple feature collection with 3326 features and 3 fields

## Geometry type: MULTILINESTRING

## Dimension:     XY

## Bounding box:  xmin: 36.68034 ymin: -1.430759 xmax: 37.07664 ymax: -1.162558

## Geodetic CRS:  WGS 84

ggplot() +

  geom_sf(data = roads_sf)

27 / 79



Load and explore polyline

Exercise: Determine length of each line (hint: use st_length )

Solution:

st_length(roads_sf)

## Units: [m]

##    [1]  901.5756687  137.8591461  166.0896978   24.2633581  174.3557406

##    [6]  482.5503262  486.2506610   64.1042587  615.4574212   16.7135334

##   [11]   19.6987155    3.8487318    4.1237787  555.4454885  551.5809255

##   [16]    7.0648280  229.5654887  588.9304516  136.9445835  579.1322038

##   [21]   58.3317564   21.7936436   90.1570913   41.2507165   81.7085529

##   [26]   68.3241690  496.3577265   14.1516418   44.0357348   45.8100172

##   [31]   41.6768610   35.1260485   40.5775920   43.1833377 1068.7247201

##   [36]  254.9862449  554.1882417  280.0103135  573.6525111  632.2063080

##   [41]  903.4320724   15.2156667   84.9916400   89.5853644   39.3628302

##   [46]  656.4399014  562.9941828   53.0465233   55.0490837   22.1513814

##   [51]  157.2766915  742.1361789  255.6841254  188.6658952  196.8677316

##   [56]  322.5741540  136.8794494  145.1362286 1123.8795488  449.7621126
28 / 79

01:00



Load and explore point data
We'll load a dataset of the location of schools

schools_df <- 

  read_csv(here("DataWork",

                "DataSets",

                "Final",

                "schools.csv"))

## Rows: 3546 Columns: 5

## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","

## chr (2): name, amenity

## dbl (3): osm_id, longitude, latitude

## 

## ℹ Use `spec()` to retrieve the full column specification for this data.

## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

29 / 79



Explore data

head(schools_df)

## # A tibble: 6 × 5

##       osm_id name                 amenity longitude latitude

##        <dbl> <chr>                <chr>       <dbl>    <dbl>

## 1   30312225 Consolata School     school       36.8    -1.27

## 2  674552830 <NA>                 <NA>         36.8    -1.26

## 3 1399125354 Galitos restaurant   school       36.8    -1.29

## 4 1764153756 Makini Schools       school       36.8    -1.30

## 5 1867185524 Bohra Primary School school       36.8    -1.26

## 6 2061462027 <NA>                 <NA>         36.8    -1.26

30 / 79



Explore data

names(schools_df)

## [1] "osm_id"    "name"      "amenity"   "longitude" "latitude"

31 / 79



Convert to spatial object
We define the (1) coordinates (longitude and latitude) and (2) CRS. Note: We must determine the CRS from the data metadata.
This dataset comes from OpenStreetMaps, which uses EPSG:4326.

Assigning the incorrect CRS is one of the most common sources of issues I see with geospatial work. If something looks
weird, check the CRS!

schools_sf <- st_as_sf(schools_df, 

                       coords = c("longitude", "latitude"),

                       crs = 4326)

32 / 79



Convert to spatial object

head(schools_sf$geometry)

## Geometry set for 6 features 

## Geometry type: POINT

## Dimension:     XY

## Bounding box:  xmin: 36.76877 ymin: -1.296051 xmax: 36.80406 ymax: -1.258515

## Geodetic CRS:  WGS 84

## First 5 geometries:

## POINT (36.80406 -1.267486)

## POINT (36.79734 -1.25969)

## POINT (36.77077 -1.290325)

## POINT (36.76877 -1.296051)

## POINT (36.79066 -1.258515)

33 / 79



Map points object: Using sf

ggplot() +

  geom_sf(data = schools_sf)

34 / 79



Map points object: Using dataframe

ggplot() +

  geom_point(data = schools_df,

             aes(x = longitude,

                 y = latitude))

35 / 79



Make better static map
Lets make a better static map.

# Adding a variable with squared km

city_sf <- city_sf %>%

  mutate(area_m = city_sf %>% st_area() %>% as.numeric(),

         area_km = area_m / 1000^2)

# Plotting

ggplot() +

  geom_sf(data = city_sf,

          aes(fill = area_km)) +

  labs(fill = "Area") +

  scale_fill_distiller(palette = "Blues") + 

  theme_void()

36 / 79



Make better static map
Lets add another spatial layer

ggplot() +

  geom_sf(data = city_sf,

          aes(fill = area_km)) +

  geom_sf(data = schools_sf,

          aes(color = "Schools")) +

  labs(fill = "Area",

       color = NULL) +

  scale_fill_distiller(palette = "Blues") + 

  scale_color_manual(values = "black") +

  theme_void()

37 / 79



Another static map

Exercise: Make a static map of roads, coloring each road by its type. (Hint: The highway  variable indicates the type).

Solution:

ggplot() +

  geom_sf(data = roads_sf,

          aes(color = highway)) +

  theme_void() +

  labs(color = "Road Type")

38 / 79
01:00



Another static map

ggplot() +

  geom_sf(data = roads_sf,

          aes(color = highway)) +

  theme_void() +

  labs(color = "Road Type")

39 / 79



Interactive map
We use the leaflet  package to make interactive maps. Leaflet is a JavaScript library, but the leaflet  R package allows
making interactive maps using R. Use of leaflet somewhat mimics how we use ggplot.

Start with leaflet()  (instead of ggplot() )
Add spatial layers, defining type of layer (similar to geometries)

leaflet() %>%

  addTiles() # Basemap

40 / 79

+

−

Leaflet | © OpenStreetMap, ODbL

https://leafletjs.com/
https://openstreetmap.org/copyright/
https://opendatacommons.org/licenses/odbl/


Interactive map
We use the leaflet  package to make interactive maps. Leaflet is a JavaScript library, but the leaflet  R package allows
making interactive maps using R. Use of leaflet somewhat mimics how we use ggplot.

Start with leaflet()  (instead of ggplot() )
Add spatial layers, defining type of layer (similar to geometries)

leaflet() %>%

  addTiles() %>%

  addPolygons(data = city_sf)

41 / 79

+

−

Leaflet | © OpenStreetMap, ODbL

https://leafletjs.com/
https://openstreetmap.org/copyright/
https://opendatacommons.org/licenses/odbl/


Interactive map
Add a pop-up

leaflet() %>%

  addTiles() %>%

  addPolygons(data = city_sf,

              popup = ~NAME_2)

42 / 79

+

−

Leaflet | © OpenStreetMap, ODbL

https://leafletjs.com/
https://openstreetmap.org/copyright/
https://opendatacommons.org/licenses/odbl/


Interactive map
Add more than one layer

leaflet() %>%

  addTiles() %>%

  addPolygons(data = city_sf,

              popup = ~NAME_2) %>%

  addCircles(data = schools_sf,

             popup = ~name,

             color = "black")

43 / 79

+

−

Leaflet | © OpenStreetMap, ODbL

https://leafletjs.com/
https://openstreetmap.org/copyright/
https://opendatacommons.org/licenses/odbl/


Interactive map of roads

Exercise: Create a leaflet map with roads, using the roads_sf  dataset. (Hint: Use addPolylines() )

Solution:

leaflet() %>%

  addTiles() %>%

  addPolylines(data = roads_sf)

44 / 79
02:00



Interactive map of roads

leaflet() %>%

  addTiles() %>%

  addPolylines(data = roads_sf)

45 / 79

+

−

Leaflet | © OpenStreetMap, ODbL

https://leafletjs.com/
https://openstreetmap.org/copyright/
https://opendatacommons.org/licenses/odbl/


Interactive maps
We can spent lots of time going over what we can done with leaflet - but that would take up too much time. This resource
provides helpful tutorials for things like:

Changing the basemap
Adding colors
Adding a legend
And much more!

46 / 79

https://rstudio.github.io/leaflet/articles/colors.html


Spatial operations applied on single dataset
st_transform : Transform CRS
st_buffer : Buffer point/line/polygon
st_combine : Dissolve by attribute
st_convex_hull : Create convex hull
st_centroid : Create new sf object that uses the centroid
st_drop_geometry : Drop geometry; convert from sf to dataframe
st_coordinates : Get matrix of coordinates
st_bbox : Get bounding box

47 / 79



Transform CRS
The schools dataset is currently in a geographic CRS (WGS84), where the units are in decimal degrees. We'll tranform the CRS
to a projected CRS (EPSG:32632), and where the units will be in meters.

Note that coordinate values are large! Values are large because units are in meters. Large coordinate values suggest projected
CRS; latitude is between -90 and 90 and longitude is between -180 and 180.

schools_utm_sf <- st_transform(schools_sf, 32632)

schools_utm_sf$geometry %>% head(2) %>% print()

## Geometry set for 2 features 

## Geometry type: POINT

## Dimension:     XY

## Bounding box:  xmin: 3722217 ymin: -158522.3 xmax: 3723051 ymax: -157537.6

## Projected CRS: WGS 84 / UTM zone 32N

## POINT (3723051 -158522.3)

## POINT (3722217 -157537.6)

48 / 79

https://epsg.io/32632


Buffer
We have the points of schools. Now we create a 1km buffer around schools.

schools_1km_sf <- schools_sf %>%

  st_buffer(dist = 1000) # Units are in meters. Thanks s2!

ggplot() +

  geom_sf(data = schools_1km_sf)

49 / 79



Dissolve by an attribute
Below we have the second administrative regions. Using this dataset, let's create a new object at the first administrative region
level.

country_1_sf <- country_sf %>%

  group_by(NAME_1) %>%

  summarise(geometry = st_combine(geometry)) %>%

  ungroup()

ggplot() +

  geom_sf(data = country_1_sf)

50 / 79



Exercise

Exercise: Create a polyline of all trunk roads (dissolve it using st_combine ), and buffer the polyline by 10 meters. In
roads_sf , the highway  variable notes road types.

Solution:

roads_sf %>%

  filter(highway == "trunk") %>%

  summarise(geometry = st_combine(geometry)) %>%

  st_buffer(dist = 10)

## Simple feature collection with 1 feature and 0 fields

## Geometry type: MULTIPOLYGON

## Dimension:     XY

## Bounding box:  xmin: 36.68359 ymin: -1.430867 xmax: 37.07692 ymax: -1.204784

## Geodetic CRS:  WGS 84

##                         geometry

## 1 MULTIPOLYGON (((36.76646 -1...

51 / 79
02:00



Convex Not convex

Convex Hull
Simple definition: Get the outer-most coordinates of a shape and connect-the-dots.

Formal definition: A convex hull of a shape the smallest "convex set" that contains it. (A convex set is where a straight line can
be drawn anywhere in the space and the space fully contains the line).

Source: Wikipedia

52 / 79

https://en.wikipedia.org/wiki/Convex_set
https://en.wikipedia.org/wiki/Convex_set


Convex hull
In the below example, we create a conex hull around schools; creating a polygon that includes all schools.

Incorrect attempt

schools_chull1_sf <- schools_sf %>%

  st_convex_hull()

nrow(schools_chull1_sf)

## [1] 3546

53 / 79



Convex hull
Correct

schools_chull2_sf <- schools_sf %>%

  summarise(geometry = st_combine(geometry)) %>%

  st_convex_hull()

ggplot() +

  geom_sf(data = schools_chull2_sf) +

  geom_sf(data = schools_sf, color = "red")

54 / 79



Determine centroid
Sometimes we want to represent a polygon or polyline as a single point. For this, we can compute the centroid (ie, geographic
center) of a polygon/polyline.

Source: Wikipedia

55 / 79

https://en.wikipedia.org/wiki/Centroid


Determine centroid
Determine centroid of second administrative regions

country_c_sf <- st_centroid(country_sf)

## Warning: st_centroid assumes attributes are constant over geometries

ggplot() +

  geom_sf(data = country_c_sf)

56 / 79



Remove geometry
Incorrect approach

city_sf %>% 

  select(-geometry) %>%

  head()

## Simple feature collection with 6 features and 15 fields

## Geometry type: MULTIPOLYGON

## Dimension:     XY

## Bounding box:  xmin: 36.67803 ymin: -1.370704 xmax: 36.99025 ymax: -1.234921

## Geodetic CRS:  WGS 84

##        GID_2 GID_0 COUNTRY    GID_1  NAME_1 NL_NAME_1           NAME_2

## 1 KEN.30.1_1   KEN   Kenya KEN.30_1 Nairobi      <NA>  Dagoretti North

## 2 KEN.30.2_1   KEN   Kenya KEN.30_1 Nairobi      <NA>  Dagoretti South

## 3 KEN.30.3_1   KEN   Kenya KEN.30_1 Nairobi      <NA> Embakasi Central

## 4 KEN.30.4_1   KEN   Kenya KEN.30_1 Nairobi      <NA>    Embakasi East

## 5 KEN.30.5_1   KEN   Kenya KEN.30_1 Nairobi      <NA>   Embakasi North

## 6 KEN.30.6_1   KEN   Kenya KEN.30_1 Nairobi      <NA>   Embakasi South

##   VARNAME_2 NL_NAME_2       TYPE_2    ENGTYPE_2 CC_2 HASC_2   area_m   area_km

## 1      <NA>      <NA> Constituency Constituency  275   <NA> 26850519 26.850519

## 2      <NA>      <NA> Constituency Constituency  276   <NA> 28881788 28.881788 57 / 79



Remove geometry
Correct

city_sf %>% 

  st_drop_geometry() %>%

  head()

##        GID_2 GID_0 COUNTRY    GID_1  NAME_1 NL_NAME_1           NAME_2

## 1 KEN.30.1_1   KEN   Kenya KEN.30_1 Nairobi      <NA>  Dagoretti North

## 2 KEN.30.2_1   KEN   Kenya KEN.30_1 Nairobi      <NA>  Dagoretti South

## 3 KEN.30.3_1   KEN   Kenya KEN.30_1 Nairobi      <NA> Embakasi Central

## 4 KEN.30.4_1   KEN   Kenya KEN.30_1 Nairobi      <NA>    Embakasi East

## 5 KEN.30.5_1   KEN   Kenya KEN.30_1 Nairobi      <NA>   Embakasi North

## 6 KEN.30.6_1   KEN   Kenya KEN.30_1 Nairobi      <NA>   Embakasi South

##   VARNAME_2 NL_NAME_2       TYPE_2    ENGTYPE_2 CC_2 HASC_2   area_m   area_km

## 1      <NA>      <NA> Constituency Constituency  275   <NA> 26850519 26.850519

## 2      <NA>      <NA> Constituency Constituency  276   <NA> 28881788 28.881788

## 3      <NA>      <NA> Constituency Constituency  284   <NA>  8249195  8.249195

## 4      <NA>      <NA> Constituency Constituency  285   <NA> 86236564 86.236564

## 5      <NA>      <NA> Constituency Constituency  283   <NA>  5451808  5.451808

## 6      <NA>      <NA> Constituency Constituency  282   <NA> 17635838 17.635838
58 / 79



Grab coordinates
Create a matrix of coordinates

schools_sf %>% 

  st_coordinates() %>%

  head()

##             X         Y

## [1,] 36.80406 -1.267486

## [2,] 36.79734 -1.259690

## [3,] 36.77077 -1.290325

## [4,] 36.76877 -1.296051

## [5,] 36.79066 -1.258515

## [6,] 36.77899 -1.264575

59 / 79



Get bounding box

schools_sf %>% 

  st_bbox()

##      xmin      ymin      xmax      ymax 

## 36.691965 -1.374473 37.065336 -1.177316

60 / 79



Spatial operations using multiple datasets
st_distance : Calculate distances.
st_intersects : Indicates whether simple features intersect.
st_intersection : Cut one spatial object based on another.
st_difference : Remove part of spatial object based on another.
st_join : Spatial join (ie, add attributes of one dataframe to another based on location).

61 / 79



Distances
For this example, we'll compute the distance between each school to a motorway.

motor_sf <- roads_sf %>%

  filter(highway == "motorway")

# Matrix: distance of each school to each motorway

dist_mat <- st_distance(schools_sf, motor_sf)

# Take minimun distance for each school

dist_mat %>% apply(1, min) %>% head()

## [1]   33.78464  155.32799 4006.16459 4662.68796  176.10524 1382.28513

62 / 79



Exercise

Exercise: Calculate the distance from the centroid of each second administrtaive division to the nearest trunk road.

Solution:

Distances

city_cent_sf <- city_sf %>% st_centroid()

## Warning: st_centroid assumes attributes are constant over geometries

trunk_sf <- roads_sf %>%

  filter(highway == "trunk")

# Matrix: distance of each school to each motorway

dist_mat <- st_distance(city_cent_sf, trunk_sf)

# Take minimun distance for each school

dist_mat %>% apply(1, min) %>% head()

## [1] 2127.34583 2215.07338  929.39785 5642.60850 2015.55906   19.97698

63 / 79
02:00



Distances

# s2

st_distance(schools_sf[1,], schools_sf[2,]) %>% 

  as.numeric()

## [1] 1144.271

# Nigeria-specific CRS

schools_utm_sf <- st_transform(schools_sf, 32632)

st_distance(schools_utm_sf[1,], schools_utm_sf[2,]) %>

  as.numeric()

## [1] 1290.671

# World mercator

schools_merc_sf <- st_transform(schools_sf, 3395)

st_distance(schools_merc_sf[1,], schools_merc_sf[2,]) 

  as.numeric()

# Haversine

distHaversine(

  p1 = schools_sf[1,] %>% st_coordinates,

  p2 = schools_sf[2,] %>% st_coordinates)

## [1] 1145.551

# Vincenty's method

distVincentySphere(

  p1 = schools_sf[1,] %>% st_coordinates,

  p2 = schools_sf[2,] %>% st_coordinates)

## [1] 1145.551

# Karney’s method 

distGeo(p1 = schools_sf[1,] %>% st_coordinates,

        p2 = schools_sf[2,] %>% st_coordinates)

## [1] 1141.16
64 / 79



Intersects
For this example we'll determine which second administrative divisions intersects with a motorway.

# Sparse matrix

st_intersects(city_sf, motor_sf) %>% print()

## Sparse geometry binary predicate list of length 17, where the predicate

## was `intersects'

## first 10 elements:

##  1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...

##  2: (empty)

##  3: (empty)

##  4: 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, ...

##  5: (empty)

##  6: 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, ...

##  7: (empty)

##  8: (empty)

##  9: (empty)

##  10: 42, 43, 45, 64

65 / 79



Intersects
Take max  ( FALSE  corresponds to 0 and TRUE  corresponds to 1). So taking max will yeild if unit intersects with any motorway

# Matrix

st_intersects(city_sf, motor_sf, sparse = F) %>% 

  apply(1, max) %>%

  head()

## [1] 1 0 0 1 0 1

66 / 79



Exercise

Exercise: Determine which motorways intersect with a trunk road

Solution:

trunk_sf <- roads_sf %>% filter(highway == "trunk")

motor_sf <- roads_sf %>% filter(highway == "motorway")

st_intersects(motor_sf, trunk_sf, sparse = F) %>% 

    apply(1, max) %>%

    head()

67 / 79
02:00



Intersection
We have roads for the full city. Here, we want to create new roads object that only includes roads in one unit.

loc_sf <- city_sf %>%

  head(1)

roads_loc_sf <- st_intersection(roads_sf, loc_sf)

## Warning: attribute variables are assumed to be spatially constant throughout

## all geometries

ggplot() +

  geom_sf(data = roads_loc_sf)

68 / 79



Difference
We have roads for all of the city. Here, we want to create new roads object that excludes roads in one unit.

roads_notloc_sf <- st_difference(roads_sf, loc_sf)

## Warning: attribute variables are assumed to be spatially constant throughout

## all geometries

ggplot() +

  geom_sf(data = loc_sf, fill = NA, color = "red") +

  geom_sf(data = roads_notloc_sf)

69 / 79



Overlay
Intersections and differencing are overlay functions

70 / 79



Exercise

Exercise: Create a map of schools that are within 1km of a motorway.

Solution:

motor_1km_sf <- roads_sf %>% 

  filter(highway == "motorway") %>%

  st_buffer(dist = 1000)

schools_nr_motor_sf <- schools_sf %>%

  st_intersection(motor_1km_sf)

leaflet() %>%

  addTiles() %>%

  addCircles(data = schools_nr_motor_sf)

71 / 79
02:00



Exercise
Note that there are multiple approaches we could have used for creating a map of schools that are within 1km of a trunk road.

1. Buffer trunk roads by 1km and do a spatial intersection with schools
2. Calculate the distance of each school to the nearest trunk road, then filter schools that are within 1km of a trunk road

72 / 79



Spatial join
We have a dataset of schools. The school dataframe contains information such as the school name, but not on the
administrative region it's in. To add data on the administrative region that the school is in, we'll perform a spatial join.

Check the variable names. No names of second administrative divison :(

names(schools_sf)

## [1] "osm_id"   "name"     "amenity"  "geometry"

73 / 79



Spatial join
Use st_join  to add attributes from city_sf  to schools_sf . st_join  is similar to other join methods (eg, left_join ); instead
of joining on a varible, we join based on location.

schools_city_sf <- st_join(schools_sf, city_sf)

schools_city_sf %>% 

  names() %>% 

  print() %>%

  tail(10)

##  [1] "osm_id"    "name"      "amenity"   "geometry"  "GID_2"     "GID_0"    

##  [7] "COUNTRY"   "GID_1"     "NAME_1"    "NL_NAME_1" "NAME_2"    "VARNAME_2"

## [13] "NL_NAME_2" "TYPE_2"    "ENGTYPE_2" "CC_2"      "HASC_2"    "area_m"   

## [19] "area_km"

##  [1] "NL_NAME_1" "NAME_2"    "VARNAME_2" "NL_NAME_2" "TYPE_2"    "ENGTYPE_2"

##  [7] "CC_2"      "HASC_2"    "area_m"    "area_km"

74 / 79



Spatial join

Exercise: Make a static map using of administrative areas, where each administrative area polygon displays the
number of schools within the administrative area.

Solution:

## Dataframe of number of schools per NAME_2

n_school_df <- schools_city_sf %>%

  st_drop_geometry() %>%

  group_by(NAME_2) %>%

  summarise(n_school = n()) %>%

  ungroup()

## Merge info with city_sf

city_sch_sf <- city_sf %>% left_join(n_school_df, by = "NAME_2")

## Map

p <- ggplot() +

  geom_sf(data = city_sch_sf,

          aes(fill = n_school)) 75 / 79



Spatial join

ggplot() +

  geom_sf(data = city_sch_sf,

          aes(fill = n_school)) +

  labs(fill = "N\nSchools") +

  scale_fill_distiller(palette = "YlOrRd") +

  theme_void()

76 / 79



Spatial join
Let's outsource to chatGPT (or gemini or your other favorite AI). Try entering the below prompt into chatGPT to see how it does.
Does chatGPT give a correct answer? Do you need to modify chatGPT's output to make it work?

In R, I have an sf points object of schools called schools_sf. I also have the second administrative divisions of a city as an sf
polygon called city_sf and where each location is uniquely defined by the variable NAME_2. Make a static map using of
administrative areas, where each administrative area polygon displays the number of schools within the administrative area.
Provide R code for this.

77 / 79

https://chatgpt.com/
https://gemini.google.com/app


Resources

sf package cheatsheet
Spatial Data Science with Applications in R
Geocomputation with R

78 / 79

https://github.com/rstudio/cheatsheets/blob/main/sf.pdf
https://r-spatial.org/book/
https://r.geocompx.org/


Thank you!

79 / 79


