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Introduction

Initial Setup

1. Go to the dime-r-training-mar2024  folder that you created yesterday, and open the dime-r-training-mar2024  R project
that you created there.
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Introduction

Initial Setup

1. Open RStudio.

2. Type in the following lines, replacing “YOURFILEPATHHERE” (use forward slashes only: "/") with a file path where the file
path where you will place this R project.

3. In the console, type in the requisite number to delete the .zip file (we don't need it anymore)

4. A new RStudio environment will open. Use this for the session today.

install.packages("usethis")

library(usethis)

usethis::use_course(

    "https://github.com/worldbank/dime-r-training/archive/main.zip",

    destdir = "YOURFILEPATHHERE"

)
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Introduction

Goals of this session
To organize data in a manner that makes it easier to analyze and communicate.

Things to keep in mind
We'll take you through the same steps we've taken when we were preparing the datasets used in this course.

In most cases, your datasets won't be tidy .

Tidy data: A dataset is said to be tidy if it satisfies the following conditions:

Therefore, messy data is any other arrangement of the data.
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Introduction
In this session, you'll be introduced to some basic concepts of data cleaning in R. We will cover:

1. Exploring a dataset;
2. Creating new variables;
3. Filtering and subsetting datasets;
4. Merging datasets;
5. Dealing with factor variables;
6. Saving data.

There are many other tasks that we usually perform as part of data cleaning that are beyond the scope of this
session.

Before we start, let's make sure we are ready:
1. Start a fresh RStudio session.
2. Open the RStudio project you created yesterday.
3. Create a new R Script called exercises-session3.R
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R is a new phone R packages are apps on your phone

Introduction: Packages

Another important aspect to consider is R packages. Consider the following:
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RECAP: Packages

To install a package you can run the following command:

Unlike Stata, R packages need to be loaded in each R session that will use them.
That means that, for example, a function that comes from the dplyr  package cannot be used if the package has not been
installed and loaded first.

To load a package you can run the following command:

# To install

install.packages("dplyr")

# To load

library(dplyr)
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RECAP: loading packages

Notes: Remember you should always load your packages before your start coding.

# If you haven't installed the packages uncomment the next line

# install.packages("tidyverse")

# install.packages("here")

# install.packages("janitor")

library(tidyverse)  # To wrangle data

library(here)       # A package to work with relative file paths

library(janitor)    # Additional data cleaning tools

## Warning: package 'janitor' was built under R version 4.3.1
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The goal of this package is to:

Easily reference your files in project-oriented
workflows.

Using here :

Load the library.
Use here()  for relative file paths.

RECAP: File paths
The here  package allows you to interact with your working directory. It will look for the closest R Project and set its location as
the working directory. That's why it is important to set your RStudio project correctly.

  path <- here("data", "raw", "data-file.csv")

  df <- read.csv(path)
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RECAP: Loading a dataset in R
Before we start wrangling our data, let's read our dataset. In R, we can use the read.csv  function from Base R, or read_csv
from the readr  package if we want to load a CSV file. For this exercise, we are going to use the World Happiness Report (2015-
2018)

Exercise 1: Loading data using the here  package:

Use either of the functions mentioned above and load the three WHR datasets from the DataWork/DataSets/Raw/Un
WHR  folder. Use the following notation for each dataset: whrYY , e.g. WHR2015.csv  becomes the whr15  dataset.

Solution:

whr15 <- read_csv(here("DataWork", "DataSets", "Raw", "Un WHR", "WHR2015.csv")) 

whr16 <- read_csv(here("DataWork", "DataSets", "Raw", "Un WHR", "WHR2016.csv")) 

whr17 <- read_csv(here("DataWork", "DataSets", "Raw", "Un WHR", "WHR2017.csv"))
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The pipe %>% (or |>) operator
"Piping" in R can be seen as "chaining." This means that we are invoking multiple method calls.
Every time you have invoked a method (a function) this return an object that then is going to be used in the next pipe.

rony %>% 

  wake_up(time = "5:30") %>% 

  get_out_of_bed() %>% 

  do_exercise() %>% 

  shower() %>% 

  get_dressed() %>% 

  eat(meal = "breakfast", coffee = TRUE) %>% 

  brush_teeth() %>%

  work(effort = "mininum")

  work(

    brush_teeth(

      eat(

        get_dressed(

          shower(

            do_exercise(

              get_out_of_bed(

                wake_up(rony, time = "5:30")

              ), 

            )

          )

        ), meal = "breakfast", coffee = TRUE

      )

    ), effort = "minimum"

  )
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The pipe %>% operator
From R for Data Science by Wickham & Grolemund:

Pipes are a powerful tool for clearly expressing a sequence of multiple operations. The point of
the pipe is to help you write code in a way that is easier to read and understand. [...] It
focusses on verbs, not nouns. You can read this series of function compositions like it’s a set
of imperative actions.

(only for 🤓  nerds:)

The %>%  pipe is part of the magrittr  package. R v4.1.0  adds a native pipe via |> . you could use it like

whr15|> mean(variable, na.rm = T)
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Janitor package: The clean_names() function
The clean_names()  function helps us when our variables names are pretty bad. For example, if we have a variable that is
called GDP_per_CApita_2015 , the clean_names()  function will help us fix those messy names.

Tip: Pipe the clean_names()  function after you load a dataset.

However, if we want to to rename our variable manually, we could use:

whr15 <- whr15 %>% 

  clean_names()

whr16 <- whr16 %>% 

  clean_names()

whr17 <- whr17 %>% 

  clean_names()

whr15 <- whr15 %>% 

  rename(

    var_newname = var_oldname

  )
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Exploring your data
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Exploring a data set
These are some useful functions from base R:

View() : open the data set.
class() : reports object type of type of data stored.
dim() : reports the size of each one of an object's dimension.
names() : returns the variable names of a dataset.
str() : general information on an R object.
summary() : summary information about the variables in a data frame.
head() : shows the first few observations in the dataset.
tail() : shows the last few observations in the dataset.

Some other useful functions from the tidyverse:

glimpse() : get a glimpse of your data.
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Load and show a dataset
We can just show our dataset using the name of the object; in this case, whr15 .

whr15

## # A tibble: 158 × 12

##    country     region              happiness_rank happiness_score standard_error

##    <chr>       <chr>                        <dbl>           <dbl>          <dbl>

##  1 Switzerland Western Europe                   1            7.59         0.0341

##  2 Iceland     Western Europe                   2            7.56         0.0488

##  3 Denmark     Western Europe                   3            7.53         0.0333

##  4 Norway      Western Europe                   4            7.52         0.0388

##  5 Canada      North America                    5            7.43         0.0355

##  6 Finland     Western Europe                   6            7.41         0.0314

##  7 Netherlands Western Europe                   7            7.38         0.0280

##  8 Sweden      Western Europe                   8            7.36         0.0316

##  9 New Zealand Australia and New …              9            7.29         0.0337

## 10 Australia   Australia and New …             10            7.28         0.0408

## # ℹ 148 more rows

## # ℹ 7 more variables: economy_gdp_per_capita <dbl>, family <dbl>,

## #   health_life_expectancy <dbl>, freedom <dbl>,

## #   trust_government_corruption <dbl>, generosity <dbl>, 17 / 65



Glimpse your data
Use glimpse()  to get information about your variables (e.g., type, row, columns,)

whr15 %>% 

  glimpse()

## Rows: 158

## Columns: 12

## $ country                     <chr> "Switzerland", "Iceland", "Denmark", "Norw…

## $ region                      <chr> "Western Europe", "Western Europe", "Weste…

## $ happiness_rank              <dbl> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,…

## $ happiness_score             <dbl> 7.587, 7.561, 7.527, 7.522, 7.427, 7.406, …

## $ standard_error              <dbl> 0.03411, 0.04884, 0.03328, 0.03880, 0.0355…

## $ economy_gdp_per_capita      <dbl> 1.39651, 1.30232, 1.32548, 1.45900, 1.3262…

## $ family                      <dbl> 1.34951, 1.40223, 1.36058, 1.33095, 1.3226…

## $ health_life_expectancy      <dbl> 0.94143, 0.94784, 0.87464, 0.88521, 0.9056…

## $ freedom                     <dbl> 0.66557, 0.62877, 0.64938, 0.66973, 0.6329…

## $ trust_government_corruption <dbl> 0.41978, 0.14145, 0.48357, 0.36503, 0.3295…

## $ generosity                  <dbl> 0.29678, 0.43630, 0.34139, 0.34699, 0.4581…

## $ dystopia_residual           <dbl> 2.51738, 2.70201, 2.49204, 2.46531, 2.4517…
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Dimensions of your data
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Dimensions of your data
Let's see first how many columns and observations the dataset has:

Dimensions of your data (Rows and Columns):

The number of distinct values of a particular variable:

The $  sign is a subsetting operator. In R, we have three subsetting operators ( [[ , [ , and $ .). It is often used to access
variables in a dataframe.

The n_distinct  function allows us to count the number of unique values of a variable length of a vector. We included na.rm
= TRUE , so we don't count missing values.

dim(whr15)

## [1] 158  12

n_distinct(DATASET$variable, na.rm = TRUE)
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Dimensions of your data

Exercise 2: Identify distinct values of a variable in a dataset. Using the n_distinct  function, can you tell how many
unique values these variables in the whr15  dataset have?

1. Country
2. Region

Solution:

n_distinct(whr15$country, na.rm = TRUE)

## [1] 158

n_distinct(whr15$region, na.rm = TRUE)

## [1] 10
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Dimensions of your data
We can also test whether the number of rows is equal to the number of distinct values in a specific variable as follows:

We can use the two functions ( nrow  and n_distinct ) together to test if their result is the same.

nrow(whr15)

## [1] 158

n_distinct(whr15$country, na.rm = TRUE) == nrow(whr15)

## [1] TRUE

n_distinct(whr16$country, na.rm = TRUE) == nrow(whr16)

## [1] TRUE

n_distinct(whr17$country, na.rm = TRUE) == nrow(whr17)

## [1] TRUE
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Wrangling your data
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Wrangling vs Cleaning

Cleaning:

Detecting and addressing inconsistencies in a dataset. Removing erroneous data
from your data.

Wrangling:

Translating raw data into a more useful form. Unifying messy and complex data.
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Wrangling your data
For data wrangling you will frequently use one tidyverse package called dplyr.

dplyr  is part of the tidyverse  package family.

You are highly encouraged to read through Hadley Wickham's chapter. It's clear and concise.

Also check out this great "cheatsheet" here.

The package is organized around a set of verbs, i.e. actions to be taken.

We operate on data.frames  or tibbles  (nicer looking data.frames.)

All verbs work as follows:

Alternatively you can (should) use the pipe  operator %>% :

verb(data.frame

1st argument

, what to do

2nd argument

)

data.frame

1st argument

 %>% 


"pipe" operator

verb(what to do

2nd argument

)
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dplyr::filter
The filter  function is used to subset rows in a dataset.

whr15 %>% filter(region == "Western Europe")

## # A tibble: 21 × 12

##    country     region         happiness_rank happiness_score standard_error

##    <chr>       <chr>                   <dbl>           <dbl>          <dbl>

##  1 Switzerland Western Europe              1            7.59         0.0341

##  2 Iceland     Western Europe              2            7.56         0.0488

##  3 Denmark     Western Europe              3            7.53         0.0333

##  4 Norway      Western Europe              4            7.52         0.0388

##  5 Finland     Western Europe              6            7.41         0.0314

##  6 Netherlands Western Europe              7            7.38         0.0280

##  7 Sweden      Western Europe              8            7.36         0.0316

##  8 Austria     Western Europe             13            7.2          0.0375

##  9 Luxembourg  Western Europe             17            6.95         0.0350

## 10 Ireland     Western Europe             18            6.94         0.0368

## # ℹ 11 more rows

## # ℹ 7 more variables: economy_gdp_per_capita <dbl>, family <dbl>,

## #   health_life_expectancy <dbl>, freedom <dbl>,

## #   trust_government_corruption <dbl>, generosity <dbl>, 26 / 65



dplyr::filter

Exercise 3: Use filter()  to extract rows in these regions: (1) Eastern Asia and (2) North America. Hint: use the or
operator ( | ):

Solution:

A more elegant approach would be to use the %in%  operator (equivalent to inlist()  in Stata):

whr15 %>% 

  filter(region == "Eastern Asia" | region == "North America")

whr15 %>% 

  filter(region %in% c("Eastern Asia", "North America"))
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dplyr::filter

  Run CodeCode  Start Over

1
2
3
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dplyr::filter missing cases
If you want to remove (or identify) missing cases for a specific variable, you can use is.na() .

This function returns a value of true and false for each value in a data set.
If the value is NA the is.na()  function returns TRUE, otherwise, it returns FALSE.
In this way, we can check NA values that can be used for other functions.
We can also negate the function using !is.na()  which indicates that we want to return those observations with no
missing values in a variable.

The function syntax in a pipeline is as follows:

What are we returning here?

The observations with missing values for the variable VAR.

DATA %>% 

  filter(

    is.na(VAR)

  )
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dplyr::filter missing cases
Let's try filtering the whr15  data. Let's keep those observations that have information per region, i.e., no missing values.

Notice that we are negating the function, i.e., !is.na()
In case we want to keep the observations that contains missing information we will only use is.na() .

whr15 %>% 

  filter(!is.na(region)) %>%

  head(5)

## # A tibble: 5 × 12

##   country     region         happiness_rank happiness_score standard_error

##   <chr>       <chr>                   <dbl>           <dbl>          <dbl>

## 1 Switzerland Western Europe              1            7.59         0.0341

## 2 Iceland     Western Europe              2            7.56         0.0488

## 3 Denmark     Western Europe              3            7.53         0.0333

## 4 Norway      Western Europe              4            7.52         0.0388

## 5 Canada      North America               5            7.43         0.0355

## # ℹ 7 more variables: economy_gdp_per_capita <dbl>, family <dbl>,

## #   health_life_expectancy <dbl>, freedom <dbl>,

## #   trust_government_corruption <dbl>, generosity <dbl>,

## #   dystopia_residual <dbl>

30 / 65



dplyr::filter missing cases

  Run CodeCode  Start Over

1
2
3
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Creating new variables
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Creating new variables
We use dplyr::mutate()  to create new variables. For example:

This will add a new variable called hap_hle  which is the interaction of happiness score and health life expectancy.

whr15 %>%

  mutate(

    hap_hle = happiness_score * health_life_expectancy

  )
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Creating new variables: Dummy variables

What do you think is happening to this variable?

This new variables contains either TRUE  or FALSE . To have it as a numeric variable (1 or 0, respectively), we include the
as.numeric()  function.

Finally, instead of using a random number, such as 6, we can do the following:

whr15 %>%

  mutate(happiness_score_6 = (happiness_score > 6))

whr15 %>%

  mutate(happiness_score_6 = as.numeric((happiness_score > 6)))

whr15 %>%

  mutate(

    happiness_high_mean = as.numeric((happiness_score > mean(happiness_score, na.rm = TRUE)))

  )
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Creating variables by groups
In R, we can use dplyr::group_by()  before we mutate to group an estimation. For example, we are going to pipe the following
functions:

1. Group our data by the region  variable.
2. Create a variable that would be the mean of happiness_score  by each region.
3. Select the variables country, region, happiness_score, mean_hap .

DATASET %>% 

  group_by(GROUPING VARIABLE) %>%

  mutate(

    NAME OF NEW VAR = mean(VARIABLE, na.rm = TRUE)

  ) %>% 

  select(VAR1, VAR2, VAR3, VAR4)
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Creating variables by groups
In R, we can use dplyr::group_by()  before we mutate to group an estimation. For example, we are going to pipe the following
functions:

1. Group our data by the region  variable.
2. Create a variable that would be the mean of happiness_score  by each region.
3. Select the variables country, region, happiness_score, mean_hap .

whr15 %>% 

  group_by(region) %>%

  mutate(

    mean_hap = mean(happiness_score, na.rm = TRUE)

  ) %>% 

  select(country, region, happiness_score, mean_hap)

35 / 65
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Creating variables by groups
In R, we can use dplyr::group_by()  before we mutate to group an estimation. For example, we are going to pipe the following
functions:

1. Group our data by the region  variable.
2. Create a variable that would be the mean of happiness_score  by each region.
3. Select the variables country, region, happiness_score, mean_hap .

## # A tibble: 7 × 4

## # Groups:   region [2]

##   country     region         happiness_score mean_hap

##   <chr>       <chr>                    <dbl>    <dbl>

## 1 Switzerland Western Europe            7.59     6.69

## 2 Iceland     Western Europe            7.56     6.69

## 3 Denmark     Western Europe            7.53     6.69

## 4 Norway      Western Europe            7.52     6.69

## 5 Canada      North America             7.43     7.27

## 6 Finland     Western Europe            7.41     6.69

## 7 Netherlands Western Europe            7.38     6.69 35 / 65
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Creating multiple variables at the same time
We can create multiple variables in an easy way. Let's imagine that we want to estimate the mean value for the variables:
happiness_score , health_life_expectancy , and trust_government_corruption  .

How we can do it?

We can use the function across() .
Syntax: across(VARS that you want to transform, FUNCTION to execute) .
across()  should be always use inside summarise()  or mutate() .

vars <- c("happiness_score", "health_life_expectancy", "trust_government_corruption")

whr15 %>%

  group_by(region) %>%

  summarize(

    across(

      all_of(vars), mean

    )

  ) %>%

  head(3)
36 / 65
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Creating multiple variables at the same time
We can create multiple variables in an easy way. Let's imagine that we want to estimate the mean value for the variables:
happiness_score , health_life_expectancy , and trust_government_corruption  .

How we can do it?

We can use the function across() .
Syntax: across(VARS that you want to transform, FUNCTION to execute) .
across()  should be always use inside summarise()  or mutate() .

## # A tibble: 3 × 4

##   region           happiness_score health_life_expectancy trust_government_cor…¹

##   <chr>                      <dbl>                  <dbl>                  <dbl>

## 1 Australia and N…            7.28                  0.920                 0.393 

## 2 Central and Eas…            5.33                  0.719                 0.0867

## 3 Eastern Asia                5.63                  0.877                 0.128 

## # ℹ abbreviated name: ¹​trust_government_corruption
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Creating variables

Exercise 4: Create a variable called year  that equals to the year of each dataframe using the mutate() . Remember to
assign it to the same dataframe.

Solution:

whr15 <- whr15 %>% 

  mutate(year = 2015)

whr16 <- whr16 %>% 

  mutate(year = 2016)

whr17 <- whr17 %>% 

  mutate(year = 2017)

37 / 65

01:00



Creating variables

  Run CodeCode  Start Over

1
2
3
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Appending and merging data sets
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Appending dataframes
Now that we can identify the observations, we can combine the data set. Here are two functions to append objects by row

Exercise 5: Append data sets. Use the function bind_rows  to append the three WHR datasets:

Solution:

Notes

One of the problems with binding rows like this is that, sometimes, some columns are not fully compatible.

rbind(df1, df2, df3) # The base R function

bind_rows(df1, df2, df3) # The dplyr function, making some improvements to base R

bind_rows(whr15, whr16, whr17)
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Appending dataframes

  Run CodeCode  Start Over

1
2
3
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Appending and merging data sets

Exercise 6: Fixing our variables and appending the data frames correctly.

Exercise 6a

Load the R data set regions.RDS  from DataWork/DataSets/Raw/Un WHR  using the read_rds  function.

Solution:

regions <- read_rds(here("DataWork", "DataSets", "Raw", "Un WHR", "regions.RDS"))
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Appending and merging data sets
We can use the dplyr::left_join()  function to merge two dataframes. The function syntax is: left_join(a_df, another_df,
by = c("id_col1")) .

A left join takes all the values from the first table, and looks for matches in the second table. If it finds a match, it
adds the data from the second table; if not, it adds missing values. It is the equivalent of merge, keep(master
matched)  in Stata.
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Solution: Notes:

Look at the everything()  function. It takes all the
variables from the dataframe and put them after
country and region. In this way, select can be use
to order columns!

Appending and merging data sets

Exercise 6b: Join the dataframes: regions  and whr17 .

whr17 <- whr17 %>%

  left_join(regions, by = "country") %>%

  select(country, region, everything())
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Appending and merging data sets

Exercise 6c: Check if there is any other countries in whr17  without region info:

Only use pipes %>%
And filter()

Do not assign it to an object.

Solution:

whr17 %>% 

  filter(is.na(region))

## # A tibble: 2 × 14

##   country         region happiness_rank happiness_score whisker_high whisker_low

##   <chr>           <chr>           <dbl>           <dbl>        <dbl>       <dbl>

## 1 Taiwan Provinc… <NA>               33            6.42         6.49        6.35

## 2 Hong Kong S.A.… <NA>               71            5.47         5.55        5.39

## # ℹ 8 more variables: economy_gdp_per_capita <dbl>, family <dbl>,

## #   health_life_expectancy <dbl>, freedom <dbl>, generosity <dbl>,

## #   trust_government_corruption <dbl>, dystopia_residual <dbl>, year <dbl>
45 / 65
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So we ended up with two countries with NAs
This is due to the name of the countries. The regions dataset doesn't have "Taiwan Province of China" nor "Hong Kong S.A.R.,
China" but "Taiwan" and "Hong Kong."

How do you think we should solve this?

My approach would be to:

1. fix the names of these countries in the whr17  dataset (a data cleaning task) and;
2. merge (left_join) it with the regions dataset.

Appendix: case_when and mutate for more information.
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Appending and merging data sets
Finally, let's keep those relevant variables first and bind those rows.

Exercise 7: Bind all rows and create a panel called: whr_panel .

Select the variables: country , region , year , happiness_rank , happiness_score , economy_gdp_per_capita ,
health_life_expectancy , freedom  for each df, i.e., whr15 , whr16 , whr17 .
Use rbind()

Solution:

vars_to_keep <- c("country", "region", "year", "happiness_rank", 

              "happiness_score", "economy_gdp_per_capita", 

              "health_life_expectancy", "freedom")

whr15 <- select(whr15, all_of(vars_to_keep))

whr16 <- select(whr16, all_of(vars_to_keep))

whr17 <- select(whr17, all_of(vars_to_keep))

whr_panel <- rbind(whr15, whr16, whr17)    # or bind_rows 47 / 65
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Appending and merging data sets
There are other types of joins in the dplyr  package. We won't get into detail, but here are some examples.

You can also check this chapter, which is very clear.
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Saving a dataset

49 / 65



Saving a dataset
The dataset you have is the same data set we’ve been using for earlier sessions, so we can save it now.
To save a dataset we can use the write_csv  function from the readr  package, or write.csv  from base R.

The function takes the following syntax:

write_csv(x, file, append = FALSE, row.names = FALSE, na = "") :

x:  the object (usually a data frame) you want to export to CSV
file:  the file path to where you want to save it, including the file name and the format (“.csv”)
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Saving a dataset

Exercise 8: Save the dataset as csv format in the "Final" folder with the name whr_panel_**YOUR INITIALS**.csv

Use write_csv()
Use here()

Solution:

The problem with CSVs is that they cannot differentiate between strings  and factors
They also don’t save factor orders
Data attributes (which are beyond the scope of this training, but also useful to document data sets) are also lost.

write_csv(

  whr_panel, here("DataWork", "DataSets", "Final", "whr_panel_MA.csv")

)
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Saving a dataset
The R equivalent of a .dta  file is a .rds  file. It can be saved and loaded using the following commands:

write_rds(object, file = "") : Writes a single R object to a file.

read_rds(file) : Load a single R object from a file.

# Save the data set

write_rds(

  whr_panel, 

  here("DataWork", "DataSets", "Final", "whr_panel_MA.Rds")

)
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And that's it for this session. Join us tomorrow!!
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Appendix
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Missings in R are treated differently than in Stata. They
are represented by the NA symbol.
Impossible values are represented by the symbol NaN
which means 'not a number.'
R uses the same symbol for character and numeric
data.

NA is not a string or a numeric value, but an indicator
of missingness.
NAs are contagious. This means that if you compare a
number with NAs you will get NAs.
Therefore, always remember the na.rm = TRUE
argument if needed.

Missing values in R
Quick Note:
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Other relevant functions: slice, subset, select

Arrange : allows you to order by a specific column.

whr15 %>% 

  arrange(region, country) %>% 

  head(5)

## # A tibble: 5 × 8

##   country     region  year happiness_rank happiness_score economy_gdp_per_capita

##   <chr>       <chr>  <dbl>          <dbl>           <dbl>                  <dbl>

## 1 Australia   Austr…  2015             10            7.28                  1.33 

## 2 New Zealand Austr…  2015              9            7.29                  1.25 

## 3 Albania     Centr…  2015             95            4.96                  0.879

## 4 Armenia     Centr…  2015            127            4.35                  0.768

## 5 Azerbaijan  Centr…  2015             80            5.21                  1.02 

## # ℹ 2 more variables: health_life_expectancy <dbl>, freedom <dbl>
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Other relevant functions: slice, subset, select

Slice : allows you to select, remove, and duplicate rows.

You can also use slice_head  and slice_tail  to select the first or last rows respectively. Or slice_sample  to randomly draw n
rows.

whr15 %>% 

  slice(1:5) # to select the first 5 rows

## # A tibble: 5 × 8

##   country     region  year happiness_rank happiness_score economy_gdp_per_capita

##   <chr>       <chr>  <dbl>          <dbl>           <dbl>                  <dbl>

## 1 Switzerland Weste…  2015              1            7.59                   1.40

## 2 Iceland     Weste…  2015              2            7.56                   1.30

## 3 Denmark     Weste…  2015              3            7.53                   1.33

## 4 Norway      Weste…  2015              4            7.52                   1.46

## 5 Canada      North…  2015              5            7.43                   1.33

## # ℹ 2 more variables: health_life_expectancy <dbl>, freedom <dbl>

56 / 65

Arrange Slice Select Combining functions

https://raw.githack.com/worldbank/dime-r-training/main/Presentations/03-data-wrangling.html?panelset3=arrange#panelset3_arrange
https://raw.githack.com/worldbank/dime-r-training/main/Presentations/03-data-wrangling.html?panelset3=select#panelset3_select
https://raw.githack.com/worldbank/dime-r-training/main/Presentations/03-data-wrangling.html?panelset3=combining-functions#panelset3_combining-functions


Other relevant functions: slice, subset, select

Select : allows you to select specific columns.

whr15 %>% 

  select(region, country, happiness_rank)

## # A tibble: 158 × 3

##    region                    country     happiness_rank

##    <chr>                     <chr>                <dbl>

##  1 Western Europe            Switzerland              1

##  2 Western Europe            Iceland                  2

##  3 Western Europe            Denmark                  3

##  4 Western Europe            Norway                   4

##  5 North America             Canada                   5

##  6 Western Europe            Finland                  6

##  7 Western Europe            Netherlands              7

##  8 Western Europe            Sweden                   8

##  9 Australia and New Zealand New Zealand              9

## 10 Australia and New Zealand Australia               10

## # ℹ 148 more rows
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Other relevant functions: slice, subset, select

Select : allows you to specific columns.

whr15 %>% 

  arrange(region, country) %>%                        # Sort by region and country

  filter(!is.na(region)) %>%                          # Filter those non-missing obs for region if any

  select(country, region, starts_with("happin")) %>%  # Select country, year, and vars that stars with happin

  slice_head()                                        # Get the first row

## # A tibble: 1 × 4

##   country   region                    happiness_rank happiness_score

##   <chr>     <chr>                              <dbl>           <dbl>

## 1 Australia Australia and New Zealand             10            7.28
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Using ifelse when creating a variable
We can also create a dummy variable with the ifelse()  function. The way we use this function is as: ifelse(test, yes, no) .
We can also use another function called case_when() .

whr15 %>% 

  mutate(

    latin_america_car = ifelse(region == "Latin America and Caribbean", 1, 0)

  ) %>% 

  arrange(-latin_america_car) %>% 

  head(5)

## # A tibble: 5 × 9

##   country    region   year happiness_rank happiness_score economy_gdp_per_capita

##   <chr>      <chr>   <dbl>          <dbl>           <dbl>                  <dbl>

## 1 Costa Rica Latin …  2015             12            7.23                  0.956

## 2 Mexico     Latin …  2015             14            7.19                  1.02 

## 3 Brazil     Latin …  2015             16            6.98                  0.981

## 4 Venezuela  Latin …  2015             23            6.81                  1.04 

## 5 Panama     Latin …  2015             25            6.79                  1.06 

## # ℹ 3 more variables: health_life_expectancy <dbl>, freedom <dbl>,

## #   latin_america_car <dbl>
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Using case_when() to update a variable
Recall the problem we have with regions in the whr17  data. We can fix it as follows:

whr17 <- whr17 %>% 

  mutate(

    country = case_when(

      country == "Hong Kong S.A.R., China" ~ "Hong Kong", 

      country == "Taiwan Province of China" ~ "Taiwan",

      TRUE ~ country

    )

  )

whr17 %>%

  left_join(regions, by = "country") %>% 

  rename(region = region.y) %>% 

  select(-region.x) %>% 

  select(country, region, everything()) %>% 

  filter(is.na(region))
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Factor variables
When we imported this data set, we told R explicitly to not read strings as factor.
We did that because we knew that we’d have to fix the country names.
The region variable, however, should be a factor.

str(whr_panel$region)

##  chr [1:470] "Western Europe" "Western Europe" "Western Europe" ...
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Factor variables
To create a factor variable, we use the factor()  function (or as_factor()  from the forcats  package).

factor(x, levels, labels)  : turns numeric or string vector x  into a factor vector.
levels : a vector containing the possible values of x .
labels : a vector of strings containing the labels you want to apply to your factor variable
ordered : logical flag to determine if the levels should be regarded as ordered (in the order given).

If your categorical variable does not need to be ordered, and your string variable already has the label you want, making the
conversion is quite easy.
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Factor variables

Extra exercise: Turn a string variable into a factor.

Use the mutate function to create a variable called region_cat containing a categorical version of the region
variable.
TIP: to do this, you only need the first argument of the factor function.

Solution:

And now we can check the class of our variable.

whr_panel <- mutate(whr_panel, region_cat = factor(region))

class(whr_panel$region_cat)

## [1] "factor"
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Reshaping a dataset
Finally, let's try to reshape our dataset using the tidyverse functions. No more reshape  from Stata. We can use pivot_wider  or
pivot_longer . Let's assign our wide format panel to an object called whr_panel_wide.

whr_panel %>% 

  select(country, region, year, happiness_score) %>% 

  pivot_wider(

    names_from = year, 

    values_from = happiness_score

  ) %>% 

  head(3)

## # A tibble: 3 × 5

##   country     region         `2015` `2016` `2017`

##   <chr>       <chr>           <dbl>  <dbl>  <dbl>

## 1 Switzerland Western Europe   7.59   7.51   7.49

## 2 Iceland     Western Europe   7.56   7.50   7.50

## 3 Denmark     Western Europe   7.53   7.53   7.52
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Reshaping a dataset
Finally, let's try to reshape our dataset using the tidyverse functions. No more reshape  from Stata. We can use pivot_wider  or
pivot_longer . Let's assign our wide format panel to an object called whr_panel_wide.

whr_panel_wide %>% 

  pivot_longer(

    cols = `2015`:`2017`,  

    names_to = "year",

    values_to = "happiness_score" 

  ) %>% 

  head(3)

## # A tibble: 3 × 4

##   country     region         year  happiness_score

##   <chr>       <chr>          <chr>           <dbl>

## 1 Switzerland Western Europe 2015             7.59

## 2 Switzerland Western Europe 2016             7.51

## 3 Switzerland Western Europe 2017             7.49
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Thank you!!
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