
Session 2: Introduction to R Programming
R for Data Analysis

DIME Analytics
The World Bank | WB Github
April 2025

https://github.com/worldbank

Table of contents
1. Introduction
2. Initial settings
3. File paths
4. Using Packages
5. Functions inception
6. Mapping and iterations
7. Custom functions
8. Appendix

2 / 90

Introduction

3 / 90

What this session is about
In the first session, you learned how to work with R. You are probably eager to start programming in R by now

But before you start, we recommend learning how to write R code that will be reproducible, efficient, intelligible and
easy to navigate

Today, we will cover common coding practices in R so that you can make the most efficient use for it

We will also discuss some styling conventions to make your code readable and clear

This will give you a solid foundation to write code in R and hopefully you'll be able to skip some painful steps of the
"getting-your-hands-dirty" learning approach

4 / 90

Initial settings

5 / 90

Initial settings
Let's start by opening RStudio or by closing and opening it again

Notice two things:

1. Your environment is probably empty (it's okay if it's not)

6 / 90

Initial settings
Let's start by opening RStudio or by closing and opening it again

Notice two things:

1. Your environment is probably empty (it's OK if it's not)
2. Go to the Console panel and use the up and down keys to navigate through previously executed commands. They are

saved by default in a file named .Rhistory that you might have noticed

7 / 90

Initial settings
Let's start by opening RStudio or by closing and opening it again

Notice two things:

1. Your environment is probably empty (it's OK if it's not)
2. Go to the Console panel and use the up and down keys to navigate through previously executed commands. They are

saved by default in a file named .Rhistory that you might have noticed

We usually want these two things —an empty environment and the history of commands executed in previous sessions—
to be present every time we open a new RStudio session

8 / 90

Initial settings
Have you ever seen these lines of code before?

9 / 90

Initial settings
Have you ever seen these lines of code before?

We don't need to set the memory or the maximum number of variables in R

The equivalent of set more off is the default

The equivalent of clear in R is rm(list = ls()) , which removes all the objects in the environment. It is not always
default setting, but we'll make sure it is set in exercise 1

10 / 90

Initial settings

Exercise 1 (1 min)

After this, you'll never have to use the equivalent of clear all

1. Go to Tools > Global Options...

2. In the General tab, make sure the following options are set:

Un-check Restore .RData into workspace at startup
For Save workspace to .RData on exit, select Never
Make sure Always save history (even when not saving .RData) is checked

3. Now restart RStudio

11 / 90

Initial settings

12 / 90

Initial settings

13 / 90

File paths

14 / 90

File paths
What about working directories? We usually do something like this every time we start a new script in Stata:

The command to print the current working directory in R is:

And the direct equivalent to cd in R is this command:

However, we recommend not using it unless it's absolutely necessary (never, if possible)

getwd()

setwd("your/path")

15 / 90

RStudio projects
Instead, you should use RStudio projects and the here library

RStudio projects let you "bind" your project files to a root directory, regardless of the path to it

This is crucial because it allows smooth interoperability between different computers where the exact path to the project
root directory differs

Additionally, each RStudio project you work on keeps their own history of commands!

Important: We won't get into the specifics of directory organization here, but we'll assume that all the files you use for a
specific project (data, scripts, and outputs) reside in the same project directory. We'll call this the working directory.

16 / 90

RStudio projects

Exercise 2 (3 min)

1. Create a folder named dime-r-training in your preferred location in your computer

2. Go to https://osf.io/382kv and download the file DataWork.zip (click on the vertical ellipsis next to the file
name)

3. Unzip DataWork.zip in your folder dime-r-training-202403

4. On RStudio, select File > New Project... (the window will load for a few seconds)

5. Select Existing Directory

6. Browse to the location of dime-r-training and select Create Project

17 / 90

https://osf.io/382kv

RStudio projects

18 / 90

RStudio projects

19 / 90

The here library
Now that we're working in a project, we can use the library here to define any file paths relative to the project folder.

here locates files relative to your project root

It uses the root project directory to build paths to files easily

It allows for interoperability between different computers where the absolute path to the same file is not the same

20 / 90

Usage of here
Load here

Now you'll be able to use here() to point the location of every file relative to your project root

For example, to load a csv file located in: C:/WBG/project-root/data/raw/data-file.csv , you should use:

Notes:

Your project root is the directory that contains the .Rproj file
The result of here() is an absolute path that points to a file or folder location in your computer

install.packages("here") # install first if you don't have it

library(here)

path <- here("data", "raw", "data-file.csv")

df <- read.csv(path)

21 / 90

File paths

Exercise 3 (3 min)

1. Go to File > New File > R Script to open a new script

2. In the new script, load here and read the .csv file in DataWork/DataSets/Final/whr_panel.csv using here()

Use the function read.csv() to load the file. The argument for read.csv() is the result of here()
Remember to assign the dataframe you're reading to an object with <- . You can call it whr as we did
yesterday
If you get an error saying could not find function "here" , then load the library first with library(here)

whr <- read.csv(here("DataWork", "DataSets", "Final", "whr_panel.csv"))

22 / 90

RStudio projects and here
If you did the exercise correctly, you should see the whr dataframe listed in the Environment panel

23 / 90

Using packages

24 / 90

Packages
Installing R in your computer gives you access to its basic functions

Additionally, you can also install packages. Packages are code with additional R functions that allow you to do:

Operations that basic R functions don't do (example: work with geographic data)

Operations that basic R functions do, but easier (example: data wrangling)

Packages are also called libraries or dependencies

25 / 90

Packages
In a nutshell:

26 / 90

Packages
You can install packages with the command install.packages() .

You only have to install a package once, but you have to load them every new session with library()

Installing a package

install.packages("dplyr")

Installing a package

library(dplyr)

27 / 90

Packages
Package installation: only once in your computer

Package loading: in every new RStudio session

28 / 90

Using packages

Exercise 4 (1 min)

1. Load the packages dplyr and purrr using library(dplyr) and library(purrr)

Note: There is probably no need to install dplyr and purrr as they are part of the meta-library tidyverse , which we asked to
install before this course. If you didn't have the chance to install tidyverse , then first install dplyr and purrr with:

And then just load them:

Important: installing requires the user to refer to the package name as a string using quotes. Loading the package doesn't use
quotes for the package name.

install.packages("dplyr")

install.packages("purrr")

library(dplyr)

library(purrr)

29 / 90

Warnings vs errors
What if this happens?

30 / 90

Warnings vs errors
R has two types of error messages, warnings and actual errors:

Errors - break your code, usually preventing it from running
Warnings - your code kept running, but R wants you to be aware of something that might be a problem later

RStudio prints warning messages but it doesn't stop the code excution if warnings occur.

31 / 90

Functions inception

32 / 90

A function inside a function
In R, you can write one function inside another

Here's an example:

33 / 90

A function inside a function

 Run CodeCode  Start Over

Print the summary of the logarithm of the happiness score

The long way:

log_score <- log(whr$happiness_score)

summary(log_score)

The shortcut

summary(log(whr$happiness_score))

34 / 90

A function inside a function
This is a simple example of metaprogramming (that's the real name of this technique) and may seem trivial, but it's not

For starters, you can't do it in Stata!

35 / 90

A function inside a function

36 / 90

A function inside a function
Metaprogramming is a very powerful technique, as you will soon see

It's also a common source of error, as you can only use one function inside the other if the output of the inner function
can be taken as the input of the outer function

It can also get quite tricky to follow what a line of code with multiple functions inceptions is doing

37 / 90

Piping
Ever heard of piping? It's this: %>%

Piping is a way of doing metaprogramming

The actual meaning of the pipes is: Pipes take the output of the function at the left and pass it as the first argument of
the function at the right

The advantages of using piping is that it allows to have a cleaner division of successively applied functions in R code,
drastically improving code readability

38 / 90

Piping

In other words:

x %>% f() is the same as f(x)

x %>% f() %>% g() is the same as g(f(x))

 # 1: Doing it the long way -----------------------------

 log_score <- log(whr$happiness_score)

 mean(log_score)

 # 2: Shortcut to get to the same place -----------------

 mean(log(whr$happiness_score))

 # 3: Now with pipes ------------------------------------

 whr$happiness_score %>% log() %>% mean()

39 / 90

Remember that pipes are part of the library dplyr ,
you need to load it before using them

Pipes also avoid the hassle of having to save
intermediate results in new objects in the
environment, improving efficiency

Many R coders use pipes and internet examples
assume you know them

We'll use pipes from now on for some of the next
examples and exercises of the rest of this training

Piping

Always use pipes!
Now that you now about the power of the pipes, use them wisely!

40 / 90

Mapping and iterations

41 / 90

Iterations in R
In Stata, we use for loops very frequently

In R, the syntax of for loops is this:

 for (number in 1:3) {

 print(number)

 }

[1] 1

[1] 2

[1] 3

42 / 90

Map
R, however, has a set of functions that allows users to loop through an object in a more efficient way, without using
explicit loops

In this training we'll introduce map() . It is a function part of purrr , a package that contains tools for functional
programming

Also, in case you have not noticed yet: R is vectorized! this means that many operations are applied element-wise by
default so you don't have to code loops to apply them to each element of a vector or dataframe

43 / 90

Map
To use map() , you need to load the package purrr

The basic syntax of map() is:

map(X, function, ...) : applies function to each of the elements of X . If X is a dataframe then function is
applied column-wise while if it's a vector or a list it is applied item-wise. The output of map() is always a list with the
results.

X: a dataframe, matrix or vector the function will be applied to
function: the name of the function you want to apply to each of the elements of X

44 / 90

Map

 Run CodeCode  Start Over

Round the values of the following vector

x <- c(1.2, 2.5, 9.1, 5.8)

map(x, round)) # Rounding the vector elements, same as x %>% map(round)

round(x) # since R is vectorized, this also works

45 / 90

Map vs looping
When looping, you repeat the same operation over a set of items

map() , instead, takes all your elements at once and applies an operation to them simultaneously

The difference is like this:

Imagine you ask a yes/no question to a group of people
You can collect the answers by asking each one of them individually -- this is looping
Otherwise, you can ask them to raise their hands and collect all answers at once -- this is map()

46 / 90

Map vs looping
The output of a loop is the regular output of the operation you're repeating, times the number of iterations you did

The output of map() will be always a list

When it comes to code clarity, map() has a few advantages:

Loops often have side effect results, like a temporary variable that stays in the environment after the loop finishes
map() often involves less lines of code than loops

47 / 90

Map vs looping

Exercise 5: Looping over a dataframe (3 min)

Create a toy dataframe of 50,000 columns and 400 observations using this code

Create an empty vector named col_means_loop where you will store column means with this code:
col_means_loop <- c()

Loop over every column to get the column means and store them in the vector

Inside the loop:

Use mean() to get each column mean
Use append() to add a new mean to the vector: col_means_loop <- append(col_means_loop, new_mean)

df <- data.frame(replicate(50000, sample(1:100, 400, replace=TRUE)))

for (column in df) {

}

48 / 90

Map vs looping
The solution is this:

df <- data.frame(replicate(50000, sample(1:100, 400, replace=TRUE)))

col_means_loop <- c()

for (column in df){

 new_mean <- mean(column)

 col_means_loop <- append(col_means_loop, new_mean)

}

49 / 90

Map vs looping

Exercise 6: Now use map() (1 min)

1. Use map() to produce a list with the means of the columns of df
2. Store the result in a list named col_means_map

Hints:

Remember the syntax of map() : map(X, function_name)
The function name inside map() shouldn't have parentheses next to it (i.e.: mean instead of mean())

(the exercise solution is shown in the next slide)

50 / 90

Map vs looping
The solution is this:

You can also do it with pipes:

col_means_map <- map(df, mean)

col_means_map <- df %>% map(mean)

51 / 90

Map vs looping
Compare the syntax of the solutions of both exercises:

Do you remember which one ran faster?

Dataframe creation

df <- data.frame(replicate(50000, sample(1:100, 400, replace=TRUE)))

Loop exercise

col_means_loop <- c()

for (col in df){

 col_means_loop <- append(col_means_loop, mean(col))

}

Map exercise

col_means_map <- map(df, mean)

52 / 90

Map vs looping
Also, remember we said that loops produce side effects?

53 / 90

Map vs looping
map() looks nice, doesn't it?

But what about cases when it's impossible to implement the operations I want to apply in only one function? Do I have to
use for loops then?

Not at all! Let's get to the next section for those cases.

54 / 90

Custom functions

55 / 90

Writing your own functions
As we have said several times, R is super flexible

One example of that is that it's super easy and quick to create custom functions

Here's how:

56 / 90

Custom functions

 Run CodeCode  Start Over

 square <- function(x) {

 y <- x ^ 2

 return(y)

 }

57 / 90

Custom functions

Exercise 7 (2 min)

Create a function named zscore that standardizes the values of a vector.

Hints:

The command to obtain the mean of a vector is mean(x)
The command to get the SD of a vector is sd(x)
R is vectorized: you can operate vectors and numbers directly and the result will be a vector
Don't forget to include the argument na.rm = TRUE in mean() and sd()
Recall the syntax of custom functions in R:

function_name <- function(input) {

 output <- operation(input)

 return(output)

}

58 / 90

Custom functions

 Run CodeCode  Start Over

zscore <- function(x) {

 mean <- mean(x, na.rm = TRUE)

 sd <- sd(x, na.rm = TRUE)

 z <- (x - mean)/sd

 return(z)

 }

59 / 90

Custom functions

Exercise 8
1. Subselect the columns health_life_expectancy and freedom in whr

Use dplyr's select() for this, as in: whr %>% select(freedom, happiness_score)

2. Use map() combined with the zscore function to get the z-score of these two columns and assign the resulting
list to an object named z_scores

3. Use list indexing on z_scores to generate two new columns in whr with the standardized values of
health_life_expectancy and freedom

Hints:

Don't use parenthesis next to the function name we're using map() with
Use double brackets instead of single brackets or the symbol $ to index the elements of a list

60 / 90

Custom functions

Code  Start Over Run Code

1
2
3

z_scores <- whr %>%

 select(health_life_expectancy, freedom) %>%

 map(zscore)

whr$hle_st <- z_scores[[1]]

whr$freedom_st <- z_scores[[2]]

61 / 90

Thank you!

62 / 90

Appendix

63 / 90

Appendix - .Rhistory and .RData
.Rhistory automatically stores the commands entered in the console

.RData stores the objects in your environment only if you save your workspace, and loads them again in the next RStudio
session

Both files are stored in the working directory where your RStudio session started

64 / 90

Appendix - More on packages
Once a package is loaded, you can use its features and functions. Here's a list of some useful packages:

Rcmdr - easy to use GUI
swirl - an interactive learning environment for R and statistics.
ggplot2 - beautiful and versatile graphics (the syntax is a pain, though)
stargazer - awesome latex regression and summary statistics tables
foreign - reads .dta and other formats from inferior statistical software
zoo - time series and panel data manipulation useful functions
data.table - some functions to deal with huge dataframes
sp and rgeos - spatial analysis
multiwayvcov and sandwich - clustered and robust standard errors
RODBC , RMySQL , RPostgresSQL , RSQLite - For relational databases and using SQL in R.

65 / 90

Appendix - Git
Git is a version-control system for tracking changes in code and other text files. It is a great resource to include in your work
flow.

We didn't cover it here because of time constraints, but below are some useful links, and DIME Analytics provides trainings on
Git and GitHub, so keep an eye out for them.

DIME Analytics git page: https://worldbank.github.io/dimeanalytics/git/

A Quick Introduction to Version Control with Git and GitHub: https://journals.plos.org/ploscompbiol/article?
id=10.1371/journal.pcbi.1004668

66 / 90

https://worldbank.github.io/dimeanalytics/git/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004668
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004668

Appendix - More on R projects
If you want to learn more about them, we recommend starting here: https://r4ds.had.co.nz/workflow-projects.html

67 / 90

https://r4ds.had.co.nz/workflow-projects.html

Appendix - More on folder management
A discussion of folder structure and data managament can be found here:
https://dimewiki.worldbank.org/wiki/DataWork_Folder

For a broader discussion of data management, go to https://dimewiki.worldbank.org/wiki/Data_Management

68 / 90

https://dimewiki.worldbank.org/wiki/DataWork_Folder
https://dimewiki.worldbank.org/wiki/Data_Management

Appendix - Column extraction operators
Remember the use of $ to extract columns from a dataframe?

Other than $, we can also use double brackets to extract the column of a dataframe:

With $:

whr$year

With [[]]:

whr[["year"]] # Notice the use of double quotes

69 / 90

Appendix - Column extraction operators: [[]] vs $
What's the key difference between them?

Well, [[]] lets us use other objects to refer to column names, while $ doesn't

col_name <- "year"

head(whr$col_name) # this returns a NULL object because no column has the name "col_name" in whr

Warning: Unknown or uninitialised column: `col_name`.

NULL

col_name <- "year"

head(whr[[col_name]])

[1] 2015 2015 2015 2015 2015 2015

70 / 90

Appendix - Column extraction operators: [[]] vs $
This difference is key because we can use [[]] to loop through column names, while this is not directly possible with $.

Printing the first observation of every column of whr

for (col in colnames(whr)) {

 whr[[col]] %>%

 head(1) %>%

 print()

}

[1] "Switzerland"

[1] "Western Europe"

[1] 2015

[1] 1

[1] 7.587

[1] 1.39651

[1] 0.94143

[1] 0.66557

71 / 90

Appendix - Apply
Apart from purrr's map() , base R also has a set of functions that allows users to apply a function to a number of objects
without using explicit loops

They're called apply and there are many of them, with different use cases

If you look for the apply help file, you can see all of them

We'll show only two of them, sapply and apply

72 / 90

Appendix - Apply
The syntax of sapply() is:

Its main arguments are:

X: a dataframe, matrix or vector the function will be applied to
FUN: the function you want to apply

sapply() applies the function (FUN) to all the elements of X . If X is a dataframe then the function is applied column-
wise, while if it's a vector or a list it is applied item-wise

The output of sapply() is usually a vector with the results, but it can be a matrix if the results have more than one
dimension

sapply(X, FUN, ...)

73 / 90

Appendix - Apply

 # A for loop in R

 for (number in c(1.2, 2.5)) {

 print(round(number))

 }

 # A much more elegant option

 sapply(c(1.2, 2.5), round)

74 / 90

Appendix - Apply

Printing the first observation of every column of whr

for (col in names(whr)) {

 print(head(whr[[col]], 1))

} # Option 1

sapply(whr, head, 1) # A more elegant and efficient option

75 / 90

Appendix - Apply
A more general version of sapply() is the apply() function. This is its syntax:

Arguments:

X: a dataframe (or matrix) the function will be applied to
MARGIN: 1 to apply the function to all rows or 2 to apply the function to all columns
FUN: the function you want to apply

apply() applies a function (FUN) to all columns or rows of matrix (X). A value of 1 in MARGIN indicates that the funcion
should be applied row-wise, while 2 indicates columns

apply(X, MARGIN, FUN, ...)

76 / 90

Appendix - Apply

matrix <- matrix(c(1, 24, 9, 6, 9, 4, 2, 74, 2), nrow = 3) # Defining a matrix

apply(matrix, 1, mean) # row means

apply(matrix, 2, mean) # column means

77 / 90

Appendix - Assignment 1

Exercise: Get the row max
1. Select the columns freedom and happiness_score of whr

2. Use apply() to get the row max between these two columns, for every row

Hints:
Remember the syntax of apply() : apply(X, MARGIN, FUN)
A value of 1 for MARGIN indicates that the function must applied row-wise
The function to get the maximum over a set of number is max

78 / 90

Appendix - Apply
Solution:

whr %>%

 select(freedom, happiness_score) %>%

 apply(1, max)

79 / 90

Appendix - Commenting
To comment a line, write # as its first character

You can also add # halfway through a line to comment whatever comes after it

In Stata, you can use /* and */ to comment in the middle of a line's code. That is not possible in R: everything that
comes after # will always be a comment

To comment a selection of lines, press Ctrl + Shift + C

This is a comment

print("But this part is not")

print("This part is not a comment") # And this is a comment

80 / 90

Appendix - Assignment 2

Exercise
1. In your script panel, select all the lines of your script

2. Use the keyboard shortcut to comment these lines.

Shortcut: Ctrl + Shift + C

3. Use the keyboard shortcut to comment these lines again. What happened?

81 / 90

Appendix - Document outline
RStudio allows you to create an interactive index for your scripts

To add a section to your code, create a commented line with the title of your section and add at least 4 trailing dashes (-
---), pound signs (####) or equal signs (====) after it

82 / 90

Appendix - Document outline
The outline can be accessed by clicking on the button on the top right corner of the script window. You can use it to jump
from one section to another

You can also use the keyboard shortcuts Alt + L (Cmd + Option + L on Mac) and Alt + Shift + L to collapse and
expand sections

83 / 90

Appendix - Indentation

Here's some code

annualHappy_reg <- aggregate(happy_score ~ year + region, data = whr, FUN = mean)

ggplot(annualHappy_reg,aes(y = happy_score,x = as.factor(year), color = region, group = region)) +

geom_line() + geom_point()

Here's the same code

annualHappy_reg <-

 aggregate(happiness_score ~ year + region,

 data = whr,

 FUN = mean)

ggplot(annualHappy_reg,

 aes(y = happiness_score,

 x = as.factor(year),

 color = region,

 group = region)) +

geom_line() +

geom_point()

84 / 90

Appendix - Indentation

85 / 90

Appendix - Indentation
R understands what unindented code says, but it can be quite difficult for a human being to read it

On the other hand, white space does not have a special meaning for R, so it will understand code that is more readable
for a human being

86 / 90

Appendix - Indentation
Indentation in R looks different than in Stata:

To indent a whole line, you can select that line and press Tab
To unindent a whole line, you can select that line and press Shift + Tab
However, this will not always work for different parts of a code in the same line

In R, we typically don't introduce white space manually

It's rather introduced by RStudio for us

87 / 90

Appendix - Assignment 3

Exercise
To see an example of how indenting works in RStudio, let's use an example with map() :

1. Add a line between the two arguments of the function (the vector of numbers and round)

2. Now add a line between the numbers in the vector.

An elegant "loop" in R

map(c(1.2, 2.5, 9.1, 5.8), round)

88 / 90

Appendix - Indentation
Note that RStudio formats the different arguments of the function differently:

A much more elegant loop in R

map(c(1.2,

 2.5,

 9.1,

 5.8),

 round)

89 / 90

Appendix - Exploring a dataframe
Some useful functions:

View() : opens a visualization of the dataframe

class() : reports object type or type of data stored

dim() : reports the size of each one of an object's dimension

names() : returns the variable names of a dataframe

str() : general information about the structure of an R object

summary() : summary information about the variables in a dataframe

head() : shows the first few observations in the dataframe

tail() : shows the last few observations in the dataframe

90 / 90

