
Session 1 - Introduction to R
R for Stata Users

DIME Analytics
The World Bank | WB Github
March 2024

https://github.com/worldbank

Table of contents
1. Introduction
2. Getting started
3. Data in R
4. Functions
5. R objects
6. Basic types of data
7. Advanced types of data
8. Appendix

2 / 90

Sessions format

Welcome!
We're glad you're joining us today!

Format
These are hands-on sessions. You are strongly encouraged to follow along in your computer what the presenter is doing

The sessions include exercises. If time allows, you will be given a few minutes to solve each exercise before we show the
solution

3 / 90

Sessions format

Format
Every session has a TA. For this session, our TA is Maria (Mer) Reyes Retana

The TAs will help you troubleshooting particular issues which make you unable to follow along the presentation. Send a
message over the chat whenever you need help

4 / 90

Sessions format

Format
If you have a question feel free to unmute yourself or use the chat to ask it

Please mute your microphone the rest of the time

If your connection is good enough, please leave your video on

The materials of each session will be shared in the OSF page of the course by the end of each session:
https://osf.io/86g3b/

The recordings will be shared each day after the session

5 / 90

https://osf.io/86g3b/

Introduction

6 / 90

Introduction

About this course
These training sessions will offer an introduction to R, its amazing features, and how Stata users can adapt from using Stata to
using R.

We assume that you know how to do statistical programming in Stata or that you have a computer programming background.

About this session
This first session will present the basic concepts you will need to use R.

7 / 90

Getting started

8 / 90

Getting started - RStudio interface

9 / 90

Getting started - RStudio interface

10 / 90

Getting started - RStudio interface

11 / 90

Getting started - RStudio interface

12 / 90

Getting started - RStudio interface

13 / 90

Getting started - Importing data
Let's start by loading the data we'll be using:

Exercise 1: Import data manually (3 min)

1. Go to the OSF page of the course (https://osf.io/86g3b/) and download the file located in R for Stata Users - 2024
March > Data > whr_panel.csv

2. In RStudio, go to File > Import Dataset > From Text (base) and open the whr_panel.csv file.

Depending on your version of RStudio, it might be File > Import Dataset > From CSV

3. Assign the name whr to the data on the Import Dataset window.

4. If you solved the exercise correctly, you'll see that RStudio opens a tab with a viewer of the dataframe

14 / 90

https://osf.io/86g3b/

Getting started - Importing data

15 / 90

Getting started - Importing data

16 / 90

Getting started - RStudio interface

17 / 90

Data in R

18 / 90

Data in R

In Stata:
You can open one dataset and perform operations that can change that dataset.

You can also have other things, such as matrices, macros and tempfiles, but they are secondary. Most functions only use
the main dataset.

If you wish to do any non-permanent changes to your data, you'll need to preserve the original data to keep it intact.

19 / 90

Data in R

In R:
Datasets are called dataframes. R works with them in a different way:

You can load as many dataframes as you wish or your computer's memory allows

Operations will have lasting effects only if you store their results

20 / 90

Data in R

In R:
Everything that exists in R's memory -variables, dataframes, functions- is an object

You could think of an object like a chunk of data with some properties that has a name by which you call it

If you create an object, it's going to be stored in memory until you delete it or quit R

Whenever you run anything you intend to use in the future, you need to store it as an object.

21 / 90

Data in R
To better understand the idea, we're going to use the data we opened from the United Nations' World Happiness Report.

First, let's take a look at the data.

Type the following code in the Console panel and press Enter to explore the data:

We can use the function View() to browse the whole data

View(whr) # <--- Note that the first letter is uppercase

22 / 90

Data in R
Alternatively we can print the first 6 obs. with head() :

 Run CodeCode  Start Over

1
2
3

23 / 90

Data in R
Now, let's try some simple manipulations. First, assume we're only interested in data of the year 2016.

Exercise 2: Subset the data (1 min)

Subset the dataframe, keeping only observations where variable year equals 2016 .

Then, look again at the first 6 observations

Important: It is a good practice to always write your code in the script window and run it from there

To do that we'll use the subset() function

subset(whr, year == 2016)

Use the head() function again

head(whr)

24 / 90

Data in R

 Run CodeCode  Start Over

1
2
3

subset(whr, year == 2016)

head(whr)

25 / 90

Data in R
We can see that nothing happened to the original data. This was because we didn't store the edit we made.

To store an object, we use the assignment operator (<-):
Assign the Answer to the Ultimate Question of Life,

the Universe, and Everything

x <- 42

26 / 90

Data in R

 Run CodeCode  Start Over

1
2
3

Assign the Answer to the Ultimate Question of Life,

the Universe, and Everything

x <- 42

27 / 90

Data in R
From now on, x is associated with the stored value (until you replace it, delete it, or quit the R session).

28 / 90

Data in R

Exercise 3: Create an object (1 min)

Create a new dataframe, called whr2016 , that is a subset of the whr dataframe containing only data from the year 2016.

Using the same function but now assigning it to an object

whr2016 <- subset(whr, year == 2016)

Display the 6 first obs. of the new data

head(whr2016)

Notice that we still have the original dataframe intact

head(whr)

29 / 90

Data in R
You can also see that your environment panel now has two data objects:

30 / 90

Data in R

Important features to take note:
In R, if you want to change your data, you need to store the result in an object using the arrow operator <-

It is also possible to simply replace the original data. This happens if you assign the new object to the same name as the
original.

Important: This will modify the original object — whr in this case. R will not give you a warning when you're modifying an
existing object with <-

 # This would have replaced "whr" instead of creating a new object:

 whr <- subset(whr, year == 2016)

31 / 90

Data in R

Printing a result vs storing a result
Printing (display) is built into R. If you execute any action without storing it, R will simply print the results of that action but
will not save anything in the memory.

For instance, this will only print the observations that meet the specified condition:

subset(whr, year == 2016)

To actually store the result, we would need to assign it to an object:

whr2016 <- subset(whr, year == 2016)

32 / 90

Functions

33 / 90

Functions

Quick intro to functions
head() , View() , subset() and read.csv() are functions.

Functions in R take named arguments (unlike in Stata that you have arguments and options)

Type help(subset) in the console to check the arguments of the subset() function

34 / 90

Functions

Quick intro to functions
When we used subset(whr, year == 2016) we're implicitily telling R that the x argument is whr and the subset
argument is year == 2016

In other words, these two commands will return the same results:

subset(whr, year == 2016)

subset(x = whr, subset = year == 2016)

35 / 90

Functions

Quick intro to functions
Arguments are always enclosed in parentheses

Usually the first argument is the object you want to use the function on, e.g. subset(whr, ...)

Functions usually return values that you can store in an object, print or use directly as an argument of another function.
They rarely modify an object in-place

We will explore more of these characteristics in the next sessions

36 / 90

R objects

37 / 90

R objects

R objects
Objects are the building blocks of R programming. This section will explore some of the most common classes, with a focus
on data structures.

This will give you the foundation to explore your data and construct analytical outputs.

38 / 90

R objects

What is an object?
An object is like a global or local in Stata, it's something you can refer to later in your code to get a value

But while you can only put a number or a string in a global, you can put anything into an object: scalars, strings,
dataframes, vectors, plots, functions

Objects also have attributes that can be used to manipulate them

39 / 90

R objects

Object classes
Here are the object classes we will cover in this first session:

Vectors: an uni-dimensional object that stores a sequence of values of the same class

Dataframes: a combination of different vectors of the same length (the same as a dataset in Stata)

Lists: a multidimensional object that can store several objects of different classes and dimensions

40 / 90

R objects - Vectors
A vector is an uni-dimensional object composed by one or more elements of the same type.

Use the following code to create vectors in two different ways

Creating a vector with the c() function

v1 <- c(1,2,3,4,5)

Alternative way to create an evenly spaced vector

v2 <- 1:5

41 / 90

R objects - Vectors

 Run CodeCode  Start Over

1
2
3

v1 <- c(1,2,3,4,5) # Creating a vector with the c() function

v2 <- 1:5 # Alternative way to create an evenly spaced vector

42 / 90

R objects - Vectors
You can use brackets for indexing vector elements

 Run CodeCode  Start Over

1
2
3

v2[4] # Prints the 4th element of the vector

v2[1:3] # Prints from the 1st to the 3rd element

43 / 90

R objects - Dataframes
The whr and whr2016 objects are both dataframes. You can also construct a new dataframe from scratch by combining
vectors with the same number of elements with the command data.frame() .

Now, type the following code to create a new dataframe

Dataframe created by biding vectors

df1 <- data.frame(v1,v2)

df1

v1 v2

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

44 / 90

R objects - Dataframes

 Run CodeCode  Start Over

1
2
3

df1 <- data.frame(v1,v2) #creates a df by binding to existing vectors

df1

45 / 90

R objects - Dataframes
Since a dataframe has two dimensions, you can use indices for both. The first index indicates the row selection and the
second indicates the column.

Numeric indexing
The first column of whr

whr[,1]

The 45th row of whr

whr[45,]

The 45th element of the first column

whr[45,1]

46 / 90

R objects - Dataframes

 Run CodeCode  Start Over

1
2
3

whr[,1] # The first column of whr

whr[45,] # The 45th row of whr

whr[45,1] # Or the 45th element of the first column

47 / 90

R objects - Dataframes
Alternatively, you can use the column names for indexing, which is the same as using the $ sign.

Names indexing
The 22th element of the country column

whr[22,"country"] # The same as whr$country[22]

[1] "Oman"

48 / 90

R objects - Dataframes

 Run CodeCode  Start Over

1
2
3

The 22th element of the country column

whr[22,"country"] # The same as whr$country[22]

49 / 90

R objects - Dataframes

Vectors in dataframes
To R, each of the columns of the object whr is a vector.

Calling a vector from a dataframe:
We use the $ character to extract vectors (variables) by their names in a dataframe

For example:

Create a vector with the values of the "year" variable

year_vector <- whr$year

50 / 90

R objects - Dataframes

 Run CodeCode  Start Over

1
2
3

year_vector <- whr$year # creates a vector with the values of the "year" variable

51 / 90

R objects - Lists
Lists are more complex objects that can contain many objects of different classes and dimensions.

The outputs of many functions, a regression for example, are similar to lists (more on this in a later session).

Here's a quick example:

Combine several objects of different types in a list

Print the list yourself to see how it looks like.

Use the list() function

lst <- list(v1, df1, 45)

52 / 90

R objects - Lists

 Run CodeCode  Start Over

1
2
3

lst <- list(v1, df1, 45) # definition of lst

print(lst) # checking the content of lst

53 / 90

R objects - Lists
You can subset lists using single brackets ([]) or double brackets ([[]])

my_list[[i]] will return the actual item in the i-th position
my_list[i] will return a list with the item in the i-th position
Importantly, [] can be used to index elements with a numeric vector indicating the positions of the elements to subset
[[]] , on the other hand, only allows a single index

54 / 90

R objects - Lists

 Run CodeCode  Start Over

1
2
3

lst <- list(v1, df1, 45)

lst[[3]] # returns 45

lst[3] # returns a list of one element (45)

55 / 90

Basic types of data

56 / 90

Basic types of data
R has different kinds of data that can be recorded inside objects. They are very similar to what you have in Stata, and the main
types are string, integer and numeric, factors, and boolean.

Let's start with the simpler ones:

Strings
A sequence of characters that are usually represented between double quotes. They can contain single letters, words, phrases
or even some longer text.

Integer and numeric
As in Stata, there are two different ways to store numbers. They are different because they use memory differently. As default,
R stores numbers in the numeric format (double).

57 / 90

Basic types of data - Strings

Exercise 4: Concatenate strings (3 min)

1. Create the following vector of strings: str_vec <- c("R", "Python", "SAS", "Excel", "Stata")

2. Create a scalar (a vector of one element) containing the phrase "can be an option to" and call it str_scalar . Your code
will be similar to this: str_scalar <- "can be an option to"

3. Use the function paste() with 3 arguments separated by commas:

The first argument as the 1st element of str_vec .
The second argument as the str_scalar .
The third argument as the 5th element of str_vec .

4. If you're not sure where to start, type:

help(paste)

58 / 90

Basic types of data - Strings

 Run CodeCode  Start Over

1
2
3

str_vec <- c("R", "Python", "SAS", "Excel", "Stata")

str_scalar <- "can be an option to" # creating str_scalar

paste(str_vec[1], str_scalar, str_vec[5]) # using paste()

59 / 90

Advanced types of data

60 / 90

Advanced types of data
R also has other more complex ways of storing data. These are the most used:

Factors
Factors are numeric categorical values with text labels, equivalent to labeled variables in Stata. Turning strings into factors
makes it easier to run different analyses on them and also uses less space in your memory.

Booleans
Booleans are logical binary variables, accepting either TRUE or FALSE as values. They are automatically generated when
performing logical operations.

61 / 90

Advanced types of data

Booleans
Boolean data is the result of logical conditions. It can take two possible values: TRUE or FALSE .

Stata doesn't have boolean types as such, but Whenever you're using an if statement, you're implicitly using boolean
data.
Another difference is that in R you can assign a boolean value to an object:

Storing boolean values:

boolean_true <- TRUE

boolean_false <- FALSE

Printing:

boolean_true

[1] TRUE

boolean_false

[1] FALSE 62 / 90

Advanced types of data - Booleans

 Run CodeCode  Start Over

1
2
3

boolean_true <- TRUE

boolean_false <- FALSE

63 / 90

Advanced types of data - Booleans

Exercise 5 (3 min)

Create a boolean vector with the condition of annual income below average:

Create vector

inc_below_avg <- whr$economy_gdp_per_capita < mean(whr$economy_gdp_per_capita)

See the 6 first elements of the vector

head(inc_below_avg)

64 / 90

Advanced types of data - Booleans

 Run CodeCode  Start Over

1
2
3

inc_below_avg <- whr$economy_gdp_per_capita < mean(whr$economy_gdp_per_capita) # Create vector

head(inc_below_avg) # See the 6 first elements of the vector

65 / 90

Advanced types of data - Booleans
We can use boolean vectors to index elements:

Creating a vector with 5 elements:

my_vector <- c("1st", "2nd", "3rd", "4th", "5th")

my_vector

[1] "1st" "2nd" "3rd" "4th" "5th"

Selecting and printing the first and last elements only:

boolean1 <- c(TRUE, FALSE, FALSE, FALSE, TRUE)

my_vector[boolean1]

[1] "1st" "5th"

Selecting and printing every element but the first:

boolean2 <- c(FALSE, TRUE, TRUE, TRUE, TRUE)

my_vector[boolean2]

[1] "2nd" "3rd" "4th" "5th"

66 / 90

Advanced types of data - Booleans

 Run CodeCode  Start Over

1
2
3

my_vector <- c("1st", "2nd", "3rd", "4th", "5th")

boolean1 <- c(TRUE, FALSE, FALSE, FALSE, TRUE) # We'll use this to select the first and last elements only

boolean2 <- c(FALSE, TRUE, TRUE, TRUE, TRUE) # And this to select every element but the first

67 / 90

Advanced types of data - Booleans
Now let's use the boolean vector inc_below_avg to add a dummy variable in the whr dataframe for the same condition.

Exercise 6 (3 min)

Create a column in whr containing zeros and call it rank_low . You can do this by typing:

Now use inc_below_avg to index the lines of the income_low column and replace all observations that meet the
condition with the value 1.

Important: Notice that whr$rank_low[inc_below_avg] is subsetting the column whr$rank_low to the observations that have a
value of TRUE in the boolean vector inc_below_avg

whr$rank_low <- 0

whr$rank_low[inc_below_avg] <- 1

68 / 90

Advanced types of data - Booleans

 Run CodeCode  Start Over

1
2
3

whr$rank_low <- 0 # this creates a vector of zeros

whr$rank_low[inc_below_avg] <- 1

this ^ turns its values to 1, for the observations with a TRUE value in inc_below_avg

69 / 90

Advanced types of data - Booleans
Instead of indexing the lines with the boolean vector inc_below_avg , we could also use the boolean condition itself:

Replace with 1 those obs that meet the condition

whr$rank_low[inc_below_avg] <- 1

This is the same as

whr$rank_low[whr$economy_gdp_per_capita < mean(whr$economy_gdp_per_capita)] <- 1

This in stata would be:

gen rank_low = 0

replace rank_low = 1 if economy_gdp_per_capita < mean(economy_gdp_per_capita)

70 / 90

Thank you! Gracias!

71 / 90

Appendix

72 / 90

Appendix - R and RStudio Installation

Installation
This training requires that you have R and RStudio installed in your computer:

Instructions
To install R, visit (https://cran.r-project.org) and select a Comprehensive R Archive Network (CRAN) mirror close to you.

To install RStudio, go to https://www.rstudio.com/. Note that you need to install R first.

73 / 90

https://cran.r-project.org/
https://www.rstudio.com/

Appendix - R vs Stata
R is object oriented while Stata is action oriented:

Classic example: Stata's summarize vs R's summary()
In Stata you declare what you want to do, while in R you usually declare the result you want to get

R needs to load non-base commands (packages) at the beginning of each session

Imagine that in Stata you'd have to load a command installed with ssc install every time you'll use it in a new
session

R is less specialized, which means more flexibility and functionalities.

R has a much broader network of users:

More resources online, which makes using Google a lot easier. You'll never want to see Statalist again in your life!
Development of new features and bug fixes happen faster.

74 / 90

Appendix - R vs Stata
Some possible disadvantages of Stata:

Higher cost of entry than Stata for learning how to use R.

Stata is more specialized, which makes certain common tasks simpler. For example:

Running a regression with clustered standard errors
Analyzing survey data with weights

Stata has wider adoption among micro-econometricians (though R adoption is steadily increasing).

Network externalities in your work environment.
Development of new specialized techniques and tools could happen faster (e.g. ietoolkit).

75 / 90

Appendix - R vs Stata
Here are some advantages of R:

R is a free and open source software, a huge advantage for open science

It allows you to have several dataframes open simultaneously

No need to use keep , preserve , restore

It can run complex Geographic Information System (GIS) analyses

You can use it for web scrapping and APIs

You can easily run machine learning algorithms with it

You can create complex Markdown documents. This presentation, for example, is entirely done in R

You can create interactive dashboards and online applications with the Shiny package

76 / 90

Appendix - Syntax
R's syntax is heavier than Stata's:

Parentheses to separate function names from its arguments.
Commas to separate arguments.
For comments we use the # sign.
You can have line breaks inside function statements.
In R, functions can be treated much like any other object. Therefore, they can be passed as arguments to other functions.

Similarly to Stata:

Square brackets are used for indexing.
Curly braces are used for loops and if statements.
Largely ignores white spaces.

77 / 90

Appendix - RStudio interface

Script
Where you write your code. Just like a do file.

Console
Where your results and messages will be displayed. But you can also type commands directly into the console, as in Stata.

Environment
What's in R's memory.

The 4th pane
Can display different things, including plots you create, packages loaded and help files.

78 / 90

Appendix - RStudio vs R GUI

RStudio
RStudio is an integrated development environment for R

It's a software that uses the base R installation of your computer and provides an expanded interface that greatly
facilitates R programming

R GUI
The basic R Graphic User Interface (GUI) can also be used to program in R. You will find it in your computer with a name
similar to R<version> , as in R4.0.2

Opening the R GUI allows to work with R in a command line format, where you introduce one R command and the
interface executes it and prints any message if needed

It's very similar to the console panel of RStudio and it also allows to open a script editor, but it will not show you a list of
the variables loaded on your environment

79 / 90

Appendix - RStudio vs R GUI

80 / 90

Appendix - Matrices
A matrix a bi-dimensional object composed by one or more vectors of the same type.

Type the following code to test two different ways of creating matrices
Matrix created by joining two vectors:

m1 <- cbind(v1,v1)

Matrix using the

m2 <- matrix(c(1,1,2,3,5,8), ncol = 2)

81 / 90

Appendix - Matrices

Now use the following code to check the elements of these matrices by indexing
Matrix indexing: typing matrix[i,j] will give you

the element in the ith row and jth column of that matrix

#m2[1,2]

Matrix indexing: typing matrix[i,] will give you the

ith row of that matrix

m1[1,]

Matrix indexing: typing matrix[,j] will give you the

jth column of that matrix (as a vector)

m1[,2]

82 / 90

Appendix - Advanced types of data - Factors

Factors
Create a factor vector using the following code

Basic factor vector

num_vec <- c(1,2,2,3,1,2,3,3,1,2,3,3,1)

fac_vec <- factor(num_vec)

A bit fancier factor vector

fac_vec <- factor(num_vec,labels=c("A","B","C"))

Change labels

levels(fac_vec) = c('One','Two','Three')

83 / 90

Appendix - Numbers and integers

Two scalars, one with a round number the other with a fractional part:
a numeric scalar with an integer number

int <- 13

num <- 12.99

84 / 90

Appendix - Numbers and integers
Now we can see the objects classes with the class() function and test it with the is.integer() and is.numeric() functions.

Did you notice anything strange? That happens because the default way R stores numbers is numeric, which is equivalent to
double in Stata.

you can see the number's format using the class function:

class(int)

[1] "numeric"

class(num)

[1] "numeric"

is.integer(int)

[1] FALSE

is.numeric(int)

[1] TRUE

85 / 90

Appendix - Numbers and integers

Numbers and integers
We can, however, coerce objects into different classes. We just need to be careful because the result might not be what we're
expecting.

Use the as.integer() and round() functions on the num object to see the difference:

as.integer(num)

[1] 12

and

round(num)

[1] 13

86 / 90

Appendix - Help, Google and Stack Overflow
Help in R works very much like in Stata: the help files usually start with a brief description of the function, explain its syntax
and arguments and list a few examples. There are two ways to access help files:

Exercise 7: Use help
You can use the help() function

help(summary)

or its abbreviation

?summary

87 / 90

Appendix - Help, Google and Stack Overflow
The biggest difference, however, is that R has a much wider user community and it has a lot more online resources.

For instance, in 2014, Stata had 11 dedicated blogs written by users, while R had 550 (check
http://r4stats.com/articles/popularity/ for more details).

The most powerful problem-solving tool in R, however, is Google. Searching the something yields tons of results.

Often that means a Stack Overflow page where someone asked the same question and several people gave different
answers. Here's a typical example: https://stackoverflow.com/questions/1660124/how-to-sum-a-variable-by-group

88 / 90

http://r4stats.com/articles/popularity/
https://stackoverflow.com/questions/1660124/how-to-sum-a-variable-by-group

Appendix - Useful resources

Blogs, courses and resources:
Surviving graduate econometrics with R: https://thetarzan.wordpress.com/2011/05/24/surviving-graduate-econometrics-
with-r-the-basics-1-of-8/

CRAN's manuals: https://cran.r-project.org/manuals.html

R programming in Coursera: https://www.coursera.org/learn/r-programming

R programming for dummies: http://www.dummies.com/programming/r/

R bloggers: https://www.r-bloggers.com/

R statistics blog: https://www.r-statistics.com/

The R graph gallery: https://www.r-graph-gallery.com/

R Econ visual library: (developed and maintained by DIME Analytics!) https://worldbank.github.io/r-econ-visual-library/

89 / 90

https://thetarzan.wordpress.com/2011/05/24/surviving-graduate-econometrics-with-r-the-basics-1-of-8/
https://thetarzan.wordpress.com/2011/05/24/surviving-graduate-econometrics-with-r-the-basics-1-of-8/
https://cran.r-project.org/manuals.html
https://www.coursera.org/learn/r-programming
http://www.dummies.com/programming/r/
https://www.r-bloggers.com/
https://www.r-statistics.com/
https://www.r-graph-gallery.com/
https://worldbank.github.io/r-econ-visual-library/

Appendix - Useful resources

Books:
R for Stata Users - Robert A. Muenchen and Joseph Hilbe

R Graphics Cookbook - Winston Chang https://r-graphics.org/

R for Data Science - Hadley Wickham and Garrett Grolemund https://r4ds.had.co.nz/

90 / 90

https://r-graphics.org/
https://r4ds.had.co.nz/

