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Agenda

Last week
Simulation-based estimation

This week
Conditional distributions of coefficients
Derivation of conditional distributions
Applications of conditional distributions
Individual-level coefficients R example

This week’s reading
Train textbook, chapter 11
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Conditional Distributions of Coefficients
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Random Coefficients in Mixed Logit Model

The mixed logit model allows for unobserved variation in preferences
throughout the population with the use of random coefficients

The distribution of these coefficients in the population is f (β | θ)
We estimate the parameters, θ, that define these population
distributions
This population distribution and the parameters that define it tell us
nothing about where any individual decision maker falls within that
distribution of coefficients

What if we want a better idea of an individual’s coefficients?
We can combine the unconditional (or population) distribution of
coefficients and the choices made by the individual to define a
conditional distribution of coefficients
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Example of Conditional Distributions

We are studying how commuters choose their travel mode
β tells us the utility of driving relative to other commute modes
We think there is heterogeneity in driving preferences, so we model β
as a random coefficient, and we estimate β ∼ N (3, 4)
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What is the individual-specific coefficient βn for some specific individual?
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Example of Conditional Distributions
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What is the individual-specific coefficient βn for:
A person drawn randomly from the population?

I The unconditional distribution of β in the population, βn ∼ N (3, 4)
Someone who regularly drives to work?

I Drivers are more likely to have relatively large values of βn

Someone who regularly does not drive to work?
I Non-drivers are more likely to have relative low or negative values of βn
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Example of Conditional Distributions
We have described three different distributions for the coefficient β

The unconditional distribution for the population (solid line)
The conditional distribution for drivers (dashed line)
The conditional distribution for non-drivers (dotted line)
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Conditional Distribution of Coefficients
Suppose that a population of individuals:

Faces an identical choice setting
I The same choice set, {1, 2, . . . , J}, and the same choice attributes, x

Has heterogeneous preferences denoted by the distribution of
coefficients, f (β | θ)

I This is the unconditional (or population) distribution that we have
previously defined

Consider everyone in the population who chooses alternative i
This group is a non-random subset of the population
These individuals also have a distribution of preferences, or βn
coefficients, but it is likely a different distribution from the population

The distribution of coefficients for this group is called a conditional
distribution and is denoted by h(β | i , x,θ)

Distribution of β among the group—from a population with an
unconditional distribution defined by θ—who choose alternative i
when faced with choice setting x
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Derivation of Conditional Distributions
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Random Utility Model with Random Coefficients

The utility that decision maker n obtains from alternative j in choice
situation t is

Unjt = β′
nxnjt + εnjt

xnjt : data about decision maker n and alternative j in situation t
βn: individual-specific coefficients with population density f (β | θ)
εnjt : i.i.d. extreme value random utility term

To simplify notation
xn: data collectively defined for all alternatives and choice situations
yn: sequence of alternatives chosen by decision maker n
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Choice Probabilities with Random Coefficients
If we knew a decision maker’s coefficients, βn, the probability of choosing
sequence yn when faced with choice settings xn would be the product of
conditional logit choice probabilities

P(yn | xn,βn) =
T∏

t=1
Lnt(ynt | βn)

where Lnt(ynt | βn) is the conditional logit choice probability

Lnt(ynt | βn) = eβ′
nxnynt t∑J

j=1 eβ′
nxnjt

But we do not know each individual’s coefficients, βn, so we have to
consider the unconditional distribution of coefficients in the population
and intergrate over this density

P(yn | xn,θ) =
∫

P(yn | xn,β)f (β | θ)dβ
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Joint Density of Choices and Coefficients

The integrand of this choice probability is the joint density of yn and β

P(yn | xn,β)× f (β | θ)

Conditional probability of yn times the unconditional density of β

If we reverse the conditioning, we instead get

h(β | yn, xn,θ)× P(yn | xn,θ)

Conditional density of β times the unconditional probability of yn

By Bayes’ Rule, these two expressions are equal

h(β | yn, xn,θ)× P(yn | xn,θ) = P(yn | xn,β)× f (β | θ)
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Conditional Distribution of Random Coefficients
The joint density of yn and β is either side of the expression

h(β | yn, xn,θ)× P(yn | xn,θ) = P(yn | xn,β)× f (β | θ)

Rearranging terms gives an expression for the conditional distribution of β

h(β | yn, xn,θ) = P(yn | xn,β)× f (β | θ)
P(yn | xn,θ)

The numerator is the integrand of the mixed logit choice probability
The denominator is the mixed logit choice probability

The conditional distribution, h(β | yn, xn,θ), is proportional to the
product of

The probability that an individual with coefficients β would choose yn

The likelihood of observing β in the population
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Applications of Conditional Distributions
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Conditional Mean Coefficients

It is often easier to calculate a statistic derived from the conditional
distribution, rather than the conditional distribution itself

One example is the mean of the conditional distribution, or the
conditional mean coefficients

The mean of h(β | yn, xn,θ), or the mean of β among the group—from a
population with an unconditional distribution defined by θ—who choose
sequence yn when faced with choice setting xn, is

β̄n =
∫

βh(β | yn, xn,θ)dβ

=
∫

βP(yn | xn,β)f (β | θ)dβ∫
P(yn | xn,β)f (β | θ)dβ

These integrals do not have closed-form expressions and must be simulated
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Simulating Conditional Mean Coefficients
The steps to simulate conditional mean coefficients are similar to the steps
we used to simulate mixed logit choice probabilities

1 Draw R random vectors from f (β | θ), denoted {β1,β2, . . . ,βR}
2 For each random vector, βr , calculate the conditional choice

probability

P(yn | xn,β
r ) =

T∏
t=1

eβr ′xnynt t∑J
j=1 eβr ′xnjt

3 Simulate the conditional mean coefficients as the weighted average of
the R random vectors

β̌n =
R∑

r=1
w r βr

where the weight of each draw is proportional to P(yn | xn,β
r )

w r = P(yn | xn,β
r )∑R

r=1 P(yn | xn,βr )
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Individual-Specific Coefficients

As the number of observed choices (T ) increases, the conditional mean
coefficients for an individual, β̄n, converges to the individual-specific
coefficients, βn

β̄n is a consistent estimate of βn

β̄n
p→ βn

You must observe (and model) many choices for this convergence to
become close

Train conducts a Monte Carlo simulation exercise to find that even
T = 50 yields a substantial difference between β̄n and βn

See the Train textbook for more details on this point and the Monte
Carlo simulation
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Future Choice Probabilities
If we observe a decision maker’s past choices, we can refine future choice
probabilities by conditioning on those past choices

We use the past choices to define a conditional distribution of
coefficients for the decision maker
We use this conditional distribution, instead of the unconditional
distribution, to calculate mixed logit choice probabilities

The probability that decision maker n chooses alternative i in choice
situation T + 1 is

P(i | xnT+1, yn, xn,θ) =
∫

LnT+1(i | β)h(β | yn, xn,θ)dβ

where LnT+1(i | β) is the conditional logit choice probability

LnT+1(i | β) = eβ′xniT+1∑J
j=1 eβ′xnjT+1

This is a mixed logit choice probability and must be simulated
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Simulating Future Choice Probabilities
The steps to simulate future choice probabilities are similar to the steps we
used to simulate mixed logit choice probabilities

1 Draw R random vectors from f (β | θ), denoted {β1,β2, . . . ,βR}
2 For each random vector, βr , calculate the conditional choice

probability for the first T situations, P(yn | xn,β
r ), and the

conditional logit choice probabilities for situation T +1, LnT+1(i | βr )
3 Simulate the future mixed logit choice probabilities as the weighted

average of LnT+1(i | βr )

P̌niT+1(yn, xn,θ) =
R∑

r=1
w r LnT+1(i | βr )

where the weight of each draw is proportional to P(yn | xn,β
r )

w r = P(yn | xn,β
r )∑R

r=1 P(yn | xn,βr )
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Individual-Level Coefficients R Example
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Maximum Simulated Likelihood Estimation Example
We are again studying how consumers make choices about expensive and
highly energy-consuming systems in their homes

We have (real) data on 250 households in California and the type of
HVAC (heating, ventilation, and air conditioning) system in their
home. Each household has the following choice set, and we observe
the following data

Choice set
ec: electric central
ecc: electric central with AC
er: electric room
erc: electric room with AC
gc: gas central
gcc: gas central with AC
hpc: heat pump with AC

Alternative-specific data
ich: installation cost for heat
icca: installation cost for AC
och: operating cost for heat
occa: operating cost for AC

Household demographic data
income: annual income
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Load Dataset

## Load tidyverse and mlogit
library(tidyverse)
library(mlogit)
## Load dataset from mlogit package
data('HC', package = 'mlogit')
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Dataset

## Look at dataset
tibble(HC)
## # A tibble: 250 x 18
## depvar ich.gcc ich.ecc ich.erc ich.hpc ich.gc ich.ec ich.er icca
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 erc 9.7 7.86 8.79 11.4 24.1 24.5 7.37 27.3
## 2 hpc 8.77 8.69 7.09 9.37 28 32.7 9.33 26.5
## 3 gcc 7.43 8.86 6.94 11.7 25.7 31.7 8.14 22.6
## 4 gcc 9.18 8.93 7.22 12.1 29.7 26.7 8.04 25.3
## 5 gcc 8.05 7.02 8.44 10.5 23.9 28.4 7.15 25.4
## 6 gcc 9.32 8.03 6.22 12.6 27.0 21.4 8.6 19.9
## 7 gc 7.11 8.78 7.36 12.4 22.9 28.6 6.41 27.0
## 8 hpc 9.38 7.48 6.72 8.93 26.2 27.9 7.3 18.1
## 9 gcc 8.08 7.39 8.79 11.2 23.0 22.6 7.85 22.6
## 10 gcc 6.24 4.88 7.46 8.28 19.8 27.5 6.88 25.8
## # ... with 240 more rows, and 9 more variables: och.gcc <dbl>,
## # och.ecc <dbl>, och.erc <dbl>, och.hpc <dbl>, och.gc <dbl>,
## # och.ec <dbl>, och.er <dbl>, occa <dbl>, income <dbl>
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Format Dataset in a Long Format

## Pivot into a long dataset
hvac_long <- HC %>%

mutate(id = 1:n()) %>%
pivot_longer(c(starts_with('ich.'), starts_with('och.')),

names_to = c('cost', 'alt'), names_sep = '[.]',
values_to = 'value') %>%

pivot_wider(names_from = cost, values_from = value) %>%
mutate(choice = (depvar == alt)) %>%
select(-depvar)
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Dataset in a Long Format

## Look at long dataset
tibble(hvac_long)
## # A tibble: 1,750 x 8
## icca occa income id alt ich och choice
## <dbl> <dbl> <dbl> <int> <chr> <dbl> <dbl> <lgl>
## 1 27.3 2.95 20 1 gcc 9.7 2.26 FALSE
## 2 27.3 2.95 20 1 ecc 7.86 4.09 FALSE
## 3 27.3 2.95 20 1 erc 8.79 3.85 TRUE
## 4 27.3 2.95 20 1 hpc 11.4 1.73 FALSE
## 5 27.3 2.95 20 1 gc 24.1 2.26 FALSE
## 6 27.3 2.95 20 1 ec 24.5 4.09 FALSE
## 7 27.3 2.95 20 1 er 7.37 3.85 FALSE
## 8 26.5 1.63 50 2 gcc 8.77 2.3 FALSE
## 9 26.5 1.63 50 2 ecc 8.69 2.69 FALSE
## 10 26.5 1.63 50 2 erc 7.09 3.45 FALSE
## # ... with 1,740 more rows
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Clean Dataset

## Combine heating and cooling costs into one variable
hvac_clean <- hvac_long %>%

mutate(ac = 1 * (nchar(alt) == 3),
ic = ich + ac * icca,
oc = och + ac * occa) %>%

select(id, alt, choice, ac, ic, oc, income) %>%
arrange(id, alt)
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Cleaned Dataset

## Look at cleaned dataset
tibble(hvac_clean)
## # A tibble: 1,750 x 7
## id alt choice ac ic oc income
## <int> <chr> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 1 ec FALSE 0 24.5 4.09 20
## 2 1 ecc FALSE 1 35.1 7.04 20
## 3 1 er FALSE 0 7.37 3.85 20
## 4 1 erc TRUE 1 36.1 6.8 20
## 5 1 gc FALSE 0 24.1 2.26 20
## 6 1 gcc FALSE 1 37.0 5.21 20
## 7 1 hpc FALSE 1 38.6 4.68 20
## 8 2 ec FALSE 0 32.7 2.69 50
## 9 2 ecc FALSE 1 35.2 4.32 50
## 10 2 er FALSE 0 9.33 3.45 50
## # ... with 1,740 more rows
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Convert Dataset to dfidx Format

## Convert cleaned dataset to dfidx format
hvac_dfidx <- dfidx(hvac_clean, shape = 'long',

choice = 'choice', idx = c('id', 'alt'))
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Dataset in dfidx Format

## Look at data in dfidx format
tibble(hvac_dfidx)
## # A tibble: 1,750 x 6
## choice ac ic oc income idx$id $alt
## <lgl> <dbl> <dbl> <dbl> <dbl> <int> <fct>
## 1 FALSE 0 24.5 4.09 20 1 ec
## 2 FALSE 1 35.1 7.04 20 1 ecc
## 3 FALSE 0 7.37 3.85 20 1 er
## 4 TRUE 1 36.1 6.8 20 1 erc
## 5 FALSE 0 24.1 2.26 20 1 gc
## 6 FALSE 1 37.0 5.21 20 1 gcc
## 7 FALSE 1 38.6 4.68 20 1 hpc
## 8 FALSE 0 32.7 2.69 50 2 ec
## 9 FALSE 1 35.2 4.32 50 2 ecc
## 10 FALSE 0 9.33 3.45 50 2 er
## # ... with 1,740 more rows
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Mixed Logit Model of HVAC System Choice

We previously estimated a mixed logit model with representative utility

Vnj = β1nACj + β2nICnj + β3nOCnj

where the random coefficients are normally distributed

β1n ∼ N (µ1, σ21)
β2n ∼ N (µ2, σ22)
β3n ∼ N (µ3, σ23)
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Conditional Mean Coefficients for HVAC System Choice

The public utility commission is considering a subsidy on the installation
cost of heat pump systems to incentivize households to switch to this most
efficient HVAC system

The PUC would like to target this subsidy and its marketing to
households with certain HVAC system preferences
We can use information about the HVAC system that a household
currently has to generate a conditional distribution of coefficients that
better describes that household’s preferences

For each alternative, what are the mean βn coefficients for the households
with that HVAC system?

1 Estimate the mixed logit model
2 Simulate β̌n for each household
3 Average β̌n for the households with each HVAC system
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Simulating Conditional Mean Coefficients

Two ways to simulate conditional mean coefficients for each household
mlogit package
Code the simulation by hand

The fitted() function with type = ‘parameters’ simulates the
conditional mean coefficients for every individual

This function returns the N × K matrix of conditional mean
coefficients

We can instead code the simulation by hand
We may want to simulate additional objects that are not part of the
mlogit functionality
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Mixed Logit Model Using mlogit

## Model choice using ac, ic, and oc with normal random coefficients
model_1 <- mlogit(formula = choice ~ ac + ic + oc | 0 | 0,

data = hvac_dfidx,
reflevel = 'hpc',
rpar = c(ac = 'n', ic = 'n', oc = 'n'),
R = 1000, seed = 703)
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Mixed Logit Model Results Using mlogit
## Summarize model results
summary(model_1)
##
## Call:
## mlogit(formula = choice ~ ac + ic + oc | 0 | 0, data = hvac_dfidx,
## reflevel = "hpc", rpar = c(ac = "n", ic = "n", oc = "n"),
## R = 1000, seed = 703)
##
## Frequencies of alternatives:choice
## hpc ec ecc er erc gc gcc
## 0.104 0.004 0.016 0.032 0.004 0.096 0.744
##
## bfgs method
## 22 iterations, 0h:0m:24s
## g'(-H)^-1g = 7.26E-07
## gradient close to zero
##
## Coefficients :
## Estimate Std. Error z-value Pr(>|z|)
## ac 10.8829832 3.8264644 2.8441 0.004453 **
## ic -0.2150971 0.0349316 -6.1577 7.382e-10 ***
## oc -1.1233808 0.1865858 -6.0207 1.736e-09 ***
## sd.ac 4.4597527 3.6209211 1.2317 0.218075
## sd.ic 0.0010176 0.3371230 0.0030 0.997592
## sd.oc 0.0110849 1.7285017 0.0064 0.994883
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -327.22
##
## random coefficients
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## ac -Inf 7.8749258 10.8829832 10.8829832 13.8910407 Inf
## ic -Inf -0.2157834 -0.2150971 -0.2150971 -0.2144107 Inf
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Conditional Mean Coefficients Using mlogit
## Calculate mean coefficient for each household
coefs_1 <- model_1 %>%

fitted(type = 'parameters') %>%
as_tibble() %>%
rename(ac_coef = ac, ic_coef = ic, oc_coef = oc)

coefs_1
## # A tibble: 250 x 3
## ac_coef ic_coef oc_coef
## <dbl> <dbl> <dbl>
## 1 12.4 -0.215 -1.12
## 2 11.8 -0.215 -1.12
## 3 11.8 -0.215 -1.12
## 4 12.0 -0.215 -1.12
## 5 12.5 -0.215 -1.12
## 6 11.6 -0.215 -1.12
## 7 4.44 -0.215 -1.12
## 8 11.6 -0.215 -1.12
## 9 11.8 -0.215 -1.12
## 10 11.7 -0.215 -1.12
## # ... with 240 more rows
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Average Conditional Mean Coefficients Using mlogit

## Average coefficient over all households with each HVAC system
hvac_clean %>%

filter(choice == 1) %>%
cbind(coefs_1) %>%
group_by(alt) %>%
summarize(ac_coef = mean(ac_coef),

ic_coef = mean(ic_coef),
oc_coef = mean(oc_coef),
.groups = 'drop')

## # A tibble: 7 x 4
## alt ac_coef ic_coef oc_coef
## <chr> <dbl> <dbl> <dbl>
## 1 ec 4.40 -0.215 -1.12
## 2 ecc 11.9 -0.215 -1.12
## 3 er 4.35 -0.215 -1.12
## 4 erc 12.4 -0.215 -1.12
## 5 gc 4.30 -0.215 -1.12
## 6 gcc 11.9 -0.215 -1.12
## 7 hpc 11.9 -0.215 -1.12
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Steps for Simulating Conditional Mean Coefficients

β̌n =
∑R

r=1 βr P(yn | xn,β
r )∑R

r=1 P(yn | xn,βr )

1 Draw K × N × R standard normal random variables
I K random coefficients for each of
I N different decision makers for each of
I R different simulation draws

2 Find the MSL estimator, θ̂
I See slides from last week on MSL estimation

3 Simulate conditional mean coefficients using the MSL estimator, θ̂
1 Transform each set of K standard normals using θ̂ to get βr

2 Calculate the conditional logit choice probability of the chosen
alternative, P(yn | xn,β

r ), for each household and random draw
3 For each household, take a weighted average of βr , with weights

proportional to P(yn | xn,β
r ), to get β̌n
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Step 1: Draw Random Variables and Organize Data

## Set seed for replication
set.seed(703)
## Draw standard normal random variables for each household
draws_hh <- map(1:250, ~ tibble(ac_draw = rnorm(100),

ic_draw = rnorm(100),
oc_draw = rnorm(100)))

## Split data into list by household
data_hh <- hvac_clean %>%

group_by(id) %>%
group_split()
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Step 2a: Simulate Choice Probabilities for One Household
## Function to simulate choice probabilities for an individual household
sim_probs_ind <- function(params, draws_ind, data_ind){

## Select relevant variables and convert into a matrix [J x K]
data_matrix <- data_ind %>%

select(ac, ic, oc) %>%
as.matrix()

## Transform random coefficients based on parameters [R x K]
coef_matrix <- draws_ind %>%

mutate(ac_coef = params[1] + params[4] * ac_draw,
ic_coef = params[2] + params[5] * ic_draw,
oc_coef = params[3] + params[6] * oc_draw) %>%

select(ac_coef, ic_coef, oc_coef) %>%
as.matrix()

## Calculate representative utility for each alternative in each draw [R x J]
utility <- (coef_matrix %*% t(data_matrix)) %>%

pmin(700) %>%
pmax(-700)

## Sum the exponential of utility over alternatives [R x 1]
prob_denom <- utility %>%

exp() %>%
rowSums()

## Calculate the conditional probability for each alternative and draw [R x J]
cond_prob <- exp(utility) / prob_denom
## Calculate simulated choice probabilities as means over all draws [1 x J]
sim_prob <- colMeans(cond_prob)
## Add simulated probability to initial dataset
data_ind_out <- data_ind %>%

mutate(prob = sim_prob)
## Return initial dataset with simulated probability variable
return(data_ind_out)

}
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Step 2b: Calculate Simulated Log-Likelihood
## Function to calculate simulated log-likelihood
sim_ll_fn <- function(params, draws_list, data_list){

## Simulate probabilities for each individual household
data_sim_ind <- map2(.x = draws_list, .y = data_list,

.f = ~ sim_probs_ind(params = params,
draws_ind = .x,
data_ind = .y))

## Combine individual datasets into one
data_sim <- data_sim_ind %>%

bind_rows()
## Calculate log of simulated probability for the chosen alternative
data_sim <- data_sim %>%

filter(choice == TRUE) %>%
mutate(log_prob = log(prob))

## Calculate the simulated log-likelihood
sim_ll <- sum(data_sim$log_prob)
## Return the negative of simulated log-likelihood
return(-sim_ll)

}
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Step 2c: Maximize Simulated Log-Likelihood

## Maximize the log-likelihood function
model_2 <- optim(par = c(6.53, -0.17, -1.04, 0, 0, 0), fn = sim_ll_fn,

draws_list = draws_hh, data_list = data_hh,
method = 'BFGS', hessian = TRUE,
control = list(trace = 1, REPORT = 5))

## initial value 330.051626
## iter 5 value 329.842440
## iter 10 value 329.559384
## iter 15 value 326.652634
## iter 20 value 325.961965
## iter 25 value 325.960937
## final value 325.959722
## converged
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Step 2d: Report MSLE Results

## Report model results
model_2
## $par
## [1] 11.0917037025 -0.2164020694 -1.1278947803 4.5934515313 0.0002048493 0.0057092340
##
## $value
## [1] 325.9597
##
## $counts
## function gradient
## 94 28
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 4.0451882 95.551233 3.536574 -4.1442779 3.285546 0.2552387
## [2,] 95.5512329 4130.546546 -215.794416 -92.6246226 122.374461 9.2682826
## [3,] 3.5365739 -215.794416 144.136869 -3.9213534 -5.159820 1.3656793
## [4,] -4.1442779 -92.624623 -3.921353 4.4151970 -7.345430 -0.2337583
## [5,] 3.2855456 122.374461 -5.159820 -7.3454298 2686.692261 -15.9361930
## [6,] 0.2552387 9.268283 1.365679 -0.2337583 -15.936193 42.8194368
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Step 3a: Simulate Coefficients for One Household

β̌n =
∑R

r=1 βr P(yn | xn,β
r )∑R

r=1 P(yn | xn,βr )
## Function to simulate individual coefficients for one individual
calc_mean_coefs <- function(params, draws_ind, data_ind){

## Select relevant variables and convert into a matrix [J x K]
data_matrix <- data_ind %>%

select(ac, ic, oc) %>%
as.matrix()

## Transform random draws into coefficients based on parameters
coef <- draws_ind %>%

mutate(ac_coef = params[1] + params[4] * ac_draw,
ic_coef = params[2] + params[5] * ic_draw,
oc_coef = params[3] + params[6] * oc_draw) %>%

select(ac_coef, ic_coef, oc_coef)
## Convert coefficients tibble to a matrix [R x K]
coef_matrix <- as.matrix(coef)
## Calculate representative utility for each alternative in each draw [R x J]
utility <- (coef_matrix %*% t(data_matrix)) %>%

pmin(700) %>%
pmax(-700)

## Sum the exponential of utility over alternatives [R x 1]
prob_denom <- utility %>%

exp() %>%
rowSums()

## Calculate the conditional probability for each alternative and draw [R x J]
cond_prob <- exp(utility) / prob_denom
## Calculate the numerator of the draw weights as prob of chosen alt [R x 1]
weights_num <- c(cond_prob %*% data_ind$choice)
## Calculate the draw weights [R x 1]
weights <- weights_num / sum(weights_num)
## Add draw weights to dataset of coefficients
coef <- coef %>%

mutate(weight = weights)
## Calculate weighted mean for each coefficient
coef_means <- coef %>%

summarize(ac_coef_mean = sum(ac_coef * weight),
ic_coef_mean = sum(ic_coef * weight),
oc_coef_mean = sum(oc_coef * weight))

## Add individual coefficient means to initial dataset
data_ind_out <- data_ind %>%

bind_cols(coef_means)
## Return initial dataset with simulated probability variable
return(data_ind_out)

}
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Step 3b: Simulate Coefficients for All Households

β̌n =
∑R

r=1 βr P(yn | xn,β
r )∑R

r=1 P(yn | xn,βr )

## Calculate mean coefficients for each individual
data_2_ind <- map2(.x = draws_hh, .y = data_hh,

.f = ~ calc_mean_coefs(params = model_2$par,
draws_ind = .x,
data_ind = .y))

## Combine list of data into one tibble
data_2 <- data_2_ind %>%

bind_rows()
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Conditional Mean Coefficients for Each HVAC System

## Calculate mean coefficients by chosen alternative
data_2 %>%

filter(choice == 1) %>%
group_by(alt) %>%
summarize(ac_coef = mean(ac_coef_mean),

ic_coef = mean(ic_coef_mean),
oc_coef = mean(oc_coef_mean),
.groups = 'drop')

## # A tibble: 7 x 4
## alt ac_coef ic_coef oc_coef
## <chr> <dbl> <dbl> <dbl>
## 1 ec 4.05 -0.216 -1.13
## 2 ecc 12.3 -0.216 -1.13
## 3 er 4.39 -0.216 -1.13
## 4 erc 12.1 -0.216 -1.13
## 5 gc 4.20 -0.216 -1.13
## 6 gcc 12.2 -0.216 -1.13
## 7 hpc 12.2 -0.216 -1.13
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