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Simulated Choice Probabilities
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Mixed Logit Choice Probability

Pni =
∫

Lni (β)f (β | θ)dβ

Lni (β) = eVni (β)∑J
j=1 eVnj (β)

The mixed logit choice probability is a weighted average of logit choice
probabilities

The logit choice probabilities are evaluated at different values of β
Each logit choice probability is weighted by the density f (β | θ)

This choice probability does not have a closed-form solution, so we cannot
calculate it directly

But we can approximate it using numerical simulation
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Simulated Choice Probability Intuition

Pni =
∫

Lni (β)f (β | θ)dβ

Lni (β) = eVni (β)∑J
j=1 eVnj (β)

We effectively want to do the following:
1 Calculate the logit choice probability at every possible β, Lni (β)
2 Weight each of these values by the likelihood of observing that β in

the population, f (β | θ)
3 Sum these weighted logit choice probabilities

But β is usually continuous, so it takes on infinitely many values
We will approximate this procedure by considering only a finite
random sample of all possible values of β
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Simulated Choice Probability

Pni =
∫

Lni (β)f (β | θ)dβ

Lni (β) = eVni (β)∑J
j=1 eVnj (β)

Given a set of parameters, θ, that defines the random coefficient
distributions, f (β | θ), we can simulate this mixed logit choice probability

1 Draw R random vectors from f (β | θ), denoted {β1,β2, . . . ,βR}
2 For each random vector, βr , calculate the conditional logit choice

probability, Lni (βr )
3 Average over these R conditional logit choice probabilities

P̌ni = 1
R

R∑
r=1

Lni (βr )
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Simulated Choice Probability Details

Step 1: Draw R random vectors from f (β | θ), denoted {β1,β2, . . . ,βR}
If β contains K random coefficients, then we need R × K total
random variables
We are incorporating the “weighting” into our simulation by drawing
these coefficients from f (β | θ)

I We are more likely to draw coefficients with a greater probability
density or “weighting”

See chapter 9 of the Train textbook for more details on drawing
random variables
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Simulated Choice Probability Details

Step 2: For each random vector, βr , calculate the conditional logit choice
probability, Lni (βr )

Lni (βr ) = eVni (βr )∑J
j=1 eVnj (βr )

We will have R conditional logit choice probabilities for a single
alternative for one decision maker

I We would have R × N × J total conditional choice probabilities if we
calculated a conditional choice probability for every random coefficient
vector draw for each decision maker for every alternative
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Simulated Choice Probability Details

Step 3: Average over these R conditional logit choice probabilities

P̌ni = 1
R

R∑
r=1

Lni (βr )

This simulated integral converges almost surely to the actual integral
with the number of random draws, R, so long as the random draws
are from f (β | θ)

1
R

R∑
r=1

Lni (βr ) a.s.→
∫

Lni (β)f (β | θ)dβ
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Simulation-Based Estimators
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Simulation-Based Estimation

Simulation-based estimators are roughly equivalent to their traditional
analogs

We replace terms that are difficult or impossible to calculate with
their simulated counterparts

I Example: Mixed logit choice probabilities include an integral and do
not have a closed-form expression, so we replace them with simulated
choice probabilities

Simulation can potentially introduce bias or noise into the estimation,
which we need to consider when using simulation-based estimators
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Maximum Simulated Likelihood Estimation

Maximum simulated likelihood (MSL) estimation, or simulated maximum
likelihood estimation, is the simulation analog of maximum likelihood
estimation

The maximum simulated likelihood estimator is the set of parameters that
maximizes the simulated log-likelihood

θ̂ = argmax
θ

ln Ľ(θ | y ,X)

where ln Ľ(θ | y ,X) is the log of the simulated likelihood

ln Ľ(θ | y ,X) =
N∑

n=1
ln f̌ (yn | xn,θ)

and f̌ (yn | xn,θ) is a simulated density function
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Maximum Simulated Likelihood with Discrete Choice
For discrete choice applications, the log of simulated likelihood is a
function of simulated choice probabilities

ln Ľ(θ | y ,X) =
N∑

n=1

J∑
i=1

yni ln P̌ni (xn,θ)

so the MSL estimator for a discrete choice model is

θ̂ = argmax
θ

N∑
n=1

J∑
i=1

yni ln P̌ni (xn,θ)

which gives first-order conditions equivalent to

N∑
n=1

J∑
i=1

yni
∂ ln P̌ni (xn, θ̂)

∂θ
= 0
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Method of Simulated Moments
Method of simulated moments (MSM), or simulated method of moments,
is the simulation analog of generalized method of moments

The method of simulated moments estimator is the set of parameters that
“solves” a set of simulated moments

1
N

N∑
n=1

m̌(yn, xn, zn, θ̂) = 0

where m̌(yn, xn, zn, θ̂) are the simulated sample moments that are the
simulated empirical analogs of population moment conditions

E [m(yn, xn, zn,θ)] = 0

With more moments than parameters, we cannot solve this system of
equations, so we instead minimize the weighted sum of squared simulated
sample moments
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Method of Simulated Moments with Discrete Choice

For discrete choice applications, the population moments result from the
econometric residuals being orthogonal to a set of exogenous instruments

E [(yni − Pni (xn,θ))zni ] = 0

so the MSM estimator for a discrete choice model “solves” the simulated
sample moments

1
NJ

N∑
n=1

J∑
i=1

(
yni − P̌ni (xn, θ̂)

)
zni = 0

or minimizes the weighted sum of squared simulated sample moments
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Properties of Simulation-Based Estimators
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Traditional Estimators
Traditional estimators are the set of parameters that solves a specific
system of functions that can be expressed as sample means

g(θ̂) = 1
N

N∑
n=1

gn(θ̂) = 0

ML estimation of a discrete choice model uses the functions

gn(θ) =
J∑

i=1
yni
∂ ln Pni (xn,θ)

∂θ

GMM estimation of a discrete choice model uses the functions

gn(θ) = 1
J

J∑
i=1

(yni − Pni (xn,θ))zni

When certain assumptions are met, these estimators yield consistent
estimates of the true set of parameters, θ0
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Simulation-Based Estimators

Simulation-based estimators are the set of parameters that solves the
simulation-based analog of these functions

ǧ(θ̂) = 1
N

N∑
n=1

ǧn(θ̂) = 0

where ǧn(θ) is the simulation-based analog of gn(θ)

We can express the simulation-based functions as

ǧ(θ) = ǧ(θ) + (g(θ)− g(θ)) + (Er [ǧ(θ)]− Er [ǧ(θ)])
= g(θ) + (Er [ǧ(θ)]− g(θ)) + (ǧ(θ)− Er [ǧ(θ)])

where Er [ǧ(θ)] is the expectation of ǧ(θ) over the simulation draws
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Simulation Bias and Noise

We can express the simulation-based sample mean functions as

ǧ(θ) = g(θ) + (Er [ǧ(θ)]− g(θ)) + (ǧ(θ)− Er [ǧ(θ)])

A simulation-based estimator can differ from a traditional estimator for
two reasons

Simulation bias: Er [ǧ(θ)]− g(θ)
Simulation noise: ǧ(θ)− Er [ǧ(θ)]

How do we reduce the simulation bias and noise in a simulation-based
estimator?

To reduce simulation bias, increase the number of simulation draws, R
To reduce simulation noise, increase the sample size, N
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Properties of Simulation-Based Estimators

With a sufficient number of simulation draws and a sufficient sample size,
a simulation-based estimator is:

Consistent
Asymptotically normal
Sometimes equivalent to (or converging to) its traditional analog

The specifics depend on the estimator in question
See the Train textbook for details of each simulation-based estimator
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Simulation Details
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Dependence of Simulated Choice Probabilities

The simulated choice probability that decision maker n chooses alternative
i is

P̌ni = 1
R

R∑
r=1

Lni (βr )

We need to simulate choice probabilities for every alternative for each
decision maker

For a given decision maker, use the same set of βr random draws for
every alternative in order to maintain dependence between the
alternatives

I That is, we use a single set of R draws to calculate all J alternatives
for a decision maker

Use a different set of βr draws for each decision maker in order to
maintain independence between decision makers

I That is, we need N different sets of R draws
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Numerical Optimization with Simulation

We use these simulated choice probabilities within a numerical
optimization procedure to find the estimator, θ̂

We want to use the “same” set of βr random draws for a given
decision maker throughout the numerical optimization procedure
If we use different random draws for each iteration of the procedure,
we introduce additional noise that impedes convergence

In order to avoid this additional noise
1 Draw many (K × N × R) random variables from a standard normal

distribution before starting the numerical optimization
2 Transform this same set of standard normal random variables in each

iteration of the optimization algorithm to represent f (β | θ) for the
set of parameters, θ, of that iteration
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Transforming a Standard Normal Random Variable

We can transform a standard normal random variable (or a vector of
standard normals) into many other distributions

1 Draw K standard normal random variables, ω ∼ N (0, 1), where K is
the number of random parameters

2 Transform these standard normals into the desired distributions
I Normal: β = µ+ σω gives β ∼ N (µ, σ2)
I Log-normal: β = eµ+σω gives lnβ ∼ N (µ, σ2)
I Multivariate normal: β = µ+ Lω gives β ∼ N (µ,Σ) where β, µ, and
ω are each a vector of length equal to the number of multivariate
normal random variables, Σ is the variance-covariance matrix of these
variables, and L is the Choleski factor of Σ

I Comparable transformations exist for most distributions

See chapter 9 in the Train textbook for more on drawing and transforming
random variables
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Steps for Simulation-Based Estimation

1 Draw K × N × R standard normal random variables
I K random coefficients for each of
I N different decision makers for each of
I R different simulation draws

2 Find the set of parameters that maximizes or minimizes the objective
function of a simulation-based estimator

1 Start with some set of parameters, θ0

2 Simulate choice probabilities for the current set of parameters, P̌ni (θs)
1 Transform each set of K standard normals using θs to get a set of βr

n
2 Calculate the choice probabilities for each individual and draw, Lni (βr

n)
3 Average over all R simulation draws to get P̌ni (θs)

3 Use these simulated choice probabilities to calculate simulated
log-likelihood, simulated moments, etc.

4 Step to a better set of parameters, θs+1

5 Repeat steps (2)–(4) until the algorithm converges to a set of
parameters that is your simulation-based estimator
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Simulation-Based Estimation R Example

ResEcon 703: Advanced Econometrics Week 11: Simulation-Based Estimation 25



Maximum Simulated Likelihood Estimation Example
We are again studying how consumers make choices about expensive and
highly energy-consuming systems in their homes

We have (real) data on 250 households in California and the type of
HVAC (heating, ventilation, and air conditioning) system in their
home. Each household has the following choice set, and we observe
the following data

Choice set
ec: electric central
ecc: electric central with AC
er: electric room
erc: electric room with AC
gc: gas central
gcc: gas central with AC
hpc: heat pump with AC

Alternative-specific data
ich: installation cost for heat
icca: installation cost for AC
och: operating cost for heat
occa: operating cost for AC

Household demographic data
income: annual income
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Load Dataset

## Load tidyverse and mlogit
library(tidyverse)
library(mlogit)
## Load dataset from mlogit package
data('HC', package = 'mlogit')
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Dataset

## Look at dataset
tibble(HC)
## # A tibble: 250 x 18
## depvar ich.gcc ich.ecc ich.erc ich.hpc ich.gc ich.ec ich.er icca
## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 erc 9.7 7.86 8.79 11.4 24.1 24.5 7.37 27.3
## 2 hpc 8.77 8.69 7.09 9.37 28 32.7 9.33 26.5
## 3 gcc 7.43 8.86 6.94 11.7 25.7 31.7 8.14 22.6
## 4 gcc 9.18 8.93 7.22 12.1 29.7 26.7 8.04 25.3
## 5 gcc 8.05 7.02 8.44 10.5 23.9 28.4 7.15 25.4
## 6 gcc 9.32 8.03 6.22 12.6 27.0 21.4 8.6 19.9
## 7 gc 7.11 8.78 7.36 12.4 22.9 28.6 6.41 27.0
## 8 hpc 9.38 7.48 6.72 8.93 26.2 27.9 7.3 18.1
## 9 gcc 8.08 7.39 8.79 11.2 23.0 22.6 7.85 22.6
## 10 gcc 6.24 4.88 7.46 8.28 19.8 27.5 6.88 25.8
## # ... with 240 more rows, and 9 more variables: och.gcc <dbl>,
## # och.ecc <dbl>, och.erc <dbl>, och.hpc <dbl>, och.gc <dbl>,
## # och.ec <dbl>, och.er <dbl>, occa <dbl>, income <dbl>
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Format Dataset in a Long Format

## Pivot into a long dataset
hvac_long <- HC %>%

mutate(id = 1:n()) %>%
pivot_longer(c(starts_with('ich.'), starts_with('och.')),

names_to = c('cost', 'alt'), names_sep = '[.]',
values_to = 'value') %>%

pivot_wider(names_from = cost, values_from = value) %>%
mutate(choice = (depvar == alt)) %>%
select(-depvar)
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Dataset in a Long Format

## Look at long dataset
tibble(hvac_long)
## # A tibble: 1,750 x 8
## icca occa income id alt ich och choice
## <dbl> <dbl> <dbl> <int> <chr> <dbl> <dbl> <lgl>
## 1 27.3 2.95 20 1 gcc 9.7 2.26 FALSE
## 2 27.3 2.95 20 1 ecc 7.86 4.09 FALSE
## 3 27.3 2.95 20 1 erc 8.79 3.85 TRUE
## 4 27.3 2.95 20 1 hpc 11.4 1.73 FALSE
## 5 27.3 2.95 20 1 gc 24.1 2.26 FALSE
## 6 27.3 2.95 20 1 ec 24.5 4.09 FALSE
## 7 27.3 2.95 20 1 er 7.37 3.85 FALSE
## 8 26.5 1.63 50 2 gcc 8.77 2.3 FALSE
## 9 26.5 1.63 50 2 ecc 8.69 2.69 FALSE
## 10 26.5 1.63 50 2 erc 7.09 3.45 FALSE
## # ... with 1,740 more rows
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Clean Dataset

## Combine heating and cooling costs into one variable
hvac_clean <- hvac_long %>%

mutate(ac = 1 * (nchar(alt) == 3),
ic = ich + ac * icca,
oc = och + ac * occa) %>%

select(id, alt, choice, ac, ic, oc, income) %>%
arrange(id, alt)

ResEcon 703: Advanced Econometrics Week 11: Simulation-Based Estimation 31



Cleaned Dataset

## Look at cleaned dataset
tibble(hvac_clean)
## # A tibble: 1,750 x 7
## id alt choice ac ic oc income
## <int> <chr> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 1 ec FALSE 0 24.5 4.09 20
## 2 1 ecc FALSE 1 35.1 7.04 20
## 3 1 er FALSE 0 7.37 3.85 20
## 4 1 erc TRUE 1 36.1 6.8 20
## 5 1 gc FALSE 0 24.1 2.26 20
## 6 1 gcc FALSE 1 37.0 5.21 20
## 7 1 hpc FALSE 1 38.6 4.68 20
## 8 2 ec FALSE 0 32.7 2.69 50
## 9 2 ecc FALSE 1 35.2 4.32 50
## 10 2 er FALSE 0 9.33 3.45 50
## # ... with 1,740 more rows
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Random Utility Model of HVAC System Choice
We model the utility to household n of installing HVAC system j as

Unj = Vnj + εnj

where Vnj depends on the data about alternative j and household n

What might affect the utility of the different HVAC systems?
Installation cost
Annual operating cost
HVAC system technology

I Does the system have air conditioning or not?
Anything else?

What if the effects of these attributes on utility vary throughout the
population?

We can use a mixed logit model with random coefficients
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Representative Utility of HVAC System Choice

We model the representative utility to household n of installing HVAC
system j as

Vnj = β1nACj + β2nICnj + β3nOCnj

where the random coefficients are normally distributed

β1n ∼ N (µ1, σ
2
1)

β2n ∼ N (µ2, σ
2
2)

β3n ∼ N (µ3, σ
2
3)

We will estimate the six parameters that define the distributions of these
random coefficients

θ = {µ1, σ2
1, µ2, σ2

2, µ3, σ2
3}
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Choice Probabilities of HVAC System Choice
The mixed logit choice probabilities for this model are

Pni =
∫

Lni (β)f (β | θ)dβ

where Lni (β) is the logit probability at a given set of coefficients, β

Lni (β) = eβ1ACi +β2ICni +β3OCnj∑J
j=1 eβ1ACj +β2ICnj +β3OCnj

These choice probabilities do not have a closed-form expression, so we will
simulate them

P̌ni = 1
R

R∑
r=1

Lni (βr )

and estimate the parameters of the model using maximum simulated
likelihood
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Steps for Simulation-Based Estimation

1 Draw K × N × R standard normal random variables
I K random coefficients for each of
I N different decision makers for each of
I R different simulation draws

2 Find the set of parameters that maximizes or minimizes the objective
function of a simulation-based estimator

1 Start with some set of parameters, θ0

2 Simulate choice probabilities for the current set of parameters, P̌ni (θs)
1 Transform each set of K standard normals using θs to get a set of βr

n
2 Calculate the choice probabilities for each individual and draw, Lni (βr

n)
3 Average over all R simulation draws to get P̌ni (θs)

3 Use these simulated choice probabilities to calculate simulated
log-likelihood, simulated moments, etc.

4 Step to a better set of parameters, θs+1

5 Repeat steps (2)–(4) until the algorithm converges to a set of
parameters that is your simulation-based estimator
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map() Function in R
We will use the map() and map2() functions to help with our simulation

map() applies a function to each element of a vector or list
map2() applies a function to elements from two vectors or lists

## List to pass to the map function
list(1:5, 6:10)
## [[1]]
## [1] 1 2 3 4 5
##
## [[2]]
## [1] 6 7 8 9 10

## Take mean of each list element
list(1:5, 6:10) %>%

map(~ mean(.x))
## [[1]]
## [1] 3
##
## [[2]]
## [1] 8
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Step 0: Set a Seed for Replication
We first set a seed so we can replicate our random simulation draws
## Random draws without setting a seed
rnorm(5)
## [1] -0.3909622 -0.5784037 0.1795797 0.2347137 1.6660060

rnorm(5)
## [1] -0.7767224 0.5861849 1.0504761 -0.4099935 1.6521323

## Random draws with the same seed
set.seed(703)
rnorm(5)
## [1] -1.313404 0.865439 -1.247334 0.598521 -1.224091

set.seed(703)
rnorm(5)
## [1] -1.313404 0.865439 -1.247334 0.598521 -1.224091

## Set seed for replication
set.seed(703)

ResEcon 703: Advanced Econometrics Week 11: Simulation-Based Estimation 38



Step 1: Draw Random Variables

Draw K × N × R standard normal random variables and organize into a
list with each element corresponding to one household
## Draw standard normal random variables for each household
draws_hh <- map(1:250, ~ tibble(ac_draw = rnorm(100),

ic_draw = rnorm(100),
oc_draw = rnorm(100)))

draws_hh[[1]]
## # A tibble: 100 x 3
## ac_draw ic_draw oc_draw
## <dbl> <dbl> <dbl>
## 1 -1.31 0.107 0.945
## 2 0.865 -0.935 1.37
## 3 -1.25 -0.304 0.322
## 4 0.599 0.160 -0.268
## 5 -1.22 -1.09 -0.923
## 6 -0.231 0.105 1.27
## 7 -0.708 0.708 0.125
## 8 0.444 -1.55 2.05
## 9 -1.47 -0.467 0.525
## 10 -0.347 0.967 -0.202
## # ... with 90 more rows
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Step 1.5: Organize Data

Organize data into a list with each element corresponding to one
household to be compatible with random draws
## Split data into list by household
data_hh <- hvac_clean %>%

group_by(id) %>%
group_split()

data_hh[[1]]
## # A tibble: 7 x 7
## id alt choice ac ic oc income
## <int> <chr> <lgl> <dbl> <dbl> <dbl> <dbl>
## 1 1 ec FALSE 0 24.5 4.09 20
## 2 1 ecc FALSE 1 35.1 7.04 20
## 3 1 er FALSE 0 7.37 3.85 20
## 4 1 erc TRUE 1 36.1 6.8 20
## 5 1 gc FALSE 0 24.1 2.26 20
## 6 1 gcc FALSE 1 37.0 5.21 20
## 7 1 hpc FALSE 1 38.6 4.68 20
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Step 2: Find the MSL Estimator

## Help file for the optimization function, optim
?optim
## Arguments for optim function
optim(par, fn, gr, ..., method, lower, upper, control, hessian)

optim() requires that you create a function, fn, that
1 Takes a set of parameters and other arguments as inputs
2 Calculates your objective function given those parameters
3 Returns this value of the objective function

Some control arguments may be useful when doing optimization that
takes longer to converge

trace: 1 will report progress of convergence
REPORT: How often (number of iterations) to report on convergence
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Step 2.2–2.3: Choice Probabilities and Log-Likelihood

To estimate a multinomial logit model using ML, we created a single
function that calculated choice probabilities and then used them to
calculate the log-likelihood

To estimate a mixed logit model using MSL, we will create two separate
functions

Function 1: simulate choice probabilities for a single decision maker
(household)
Function 2: use simulated choice probabilities to calculate simulated
log-likelihood

We do not have to split this process into two functions, but it makes the
code more transparent (and probably slower. . . )
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Simulate Choice Probabilities for One Household
## Function to simulate choice probabilities for an individual household
sim_probs_ind <- function(params, draws_ind, data_ind){

## Select relevant variables and convert into a matrix [J x K]
data_matrix <- data_ind %>%

select(ac, ic, oc) %>%
as.matrix()

## Transform random coefficients based on parameters [R x K]
coef_matrix <- draws_ind %>%

mutate(ac_coef = params[1] + params[4] * ac_draw,
ic_coef = params[2] + params[5] * ic_draw,
oc_coef = params[3] + params[6] * oc_draw) %>%

select(ac_coef, ic_coef, oc_coef) %>%
as.matrix()

## Calculate representative utility for each alternative in each draw [R x J]
utility <- (coef_matrix %*% t(data_matrix)) %>%

pmin(700) %>%
pmax(-700)

## Sum the exponential of utility over alternatives [R x 1]
prob_denom <- utility %>%

exp() %>%
rowSums()

## Calculate the conditional probability for each alternative and draw [R x J]
cond_prob <- exp(utility) / prob_denom
## Calculate simulated choice probabilities as means over all draws [1 x J]
sim_prob <- colMeans(cond_prob)
## Add simulated probability to initial dataset
data_ind_out <- data_ind %>%

mutate(prob = sim_prob)
## Return initial dataset with simulated probability variable
return(data_ind_out)

}
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Calculate Simulated Log-Likelihood
## Function to calculate simulated log-likelihood
sim_ll_fn <- function(params, draws_list, data_list){

## Simulate probabilities for each individual household
data_sim_ind <- map2(.x = draws_list, .y = data_list,

.f = ~ sim_probs_ind(params = params,
draws_ind = .x,
data_ind = .y))

## Combine individual datasets into one
data_sim <- data_sim_ind %>%

bind_rows()
## Calculate log of simulated probability for the chosen alternative
data_sim <- data_sim %>%

filter(choice == TRUE) %>%
mutate(log_prob = log(prob))

## Calculate the simulated log-likelihood
sim_ll <- sum(data_sim$log_prob)
## Return the negative of simulated log-likelihood
return(-sim_ll)

}
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Maximize Simulated Log-Likelihood

## Maximize the log-likelihood function
model <- optim(par = c(6.53, -0.17, -1.04, 0, 0, 0), fn = sim_ll_fn,

draws_list = draws_hh, data_list = data_hh,
method = 'BFGS', hessian = TRUE,
control = list(trace = 1, REPORT = 5))

## initial value 330.051626
## iter 5 value 329.842440
## iter 10 value 329.559384
## iter 15 value 326.652634
## iter 20 value 325.961965
## iter 25 value 325.960937
## final value 325.959722
## converged
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MSL Optimization Results

## Report model results
model
## $par
## [1] 11.0917037025 -0.2164020694 -1.1278947803 4.5934515313 0.0002048493 0.0057092340
##
## $value
## [1] 325.9597
##
## $counts
## function gradient
## 94 28
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 4.0451882 95.551233 3.536574 -4.1442779 3.285546 0.2552387
## [2,] 95.5512329 4130.546546 -215.794416 -92.6246226 122.374461 9.2682826
## [3,] 3.5365739 -215.794416 144.136869 -3.9213534 -5.159820 1.3656793
## [4,] -4.1442779 -92.624623 -3.921353 4.4151970 -7.345430 -0.2337583
## [5,] 3.2855456 122.374461 -5.159820 -7.3454298 2686.692261 -15.9361930
## [6,] 0.2552387 9.268283 1.365679 -0.2337583 -15.936193 42.8194368
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MSL Parameters and Standard Errors

## Show MSL parameters
model$par
## [1] 11.0917037025 -0.2164020694 -1.1278947803 4.5934515313 0.0002048493 0.0057092340

## Calculate MSL standard errors
model_se <- model$hessian %>%

solve() %>%
diag() %>%
sqrt()

model_se
## [1] 3.06288544 0.03011049 0.10472838 2.62472527 0.01974123 0.15308970

## Calculate parameter z-stats
model_zstat <- model$par / model_se
model_zstat
## [1] 3.62132503 -7.18693314 -10.76971448 1.75006946 0.01037672 0.03729339

## Calculate parameter p-values
model_pvalue <- 2 * pnorm(q = -abs(model_zstat))
model_pvalue
## [1] 2.930980e-04 6.626284e-13 4.784827e-27 8.010633e-02 9.917207e-01 9.702511e-01
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Mixed Logit Elasticities
The public utility commission is considering a subsidy on the installation
cost (ic) of heat pump (hpc) systems to incentivize households to switch
to this most efficient HVAC system

What is the elasticity of each HVAC system with respect to the
installation cost of a heat pump?

The elasticities from the mixed logit model are

Own: Eizni = zni
Pni

∫
βzLni (β)[1− Lni (β)]f (β | θ)dβ

Cross: Eiznj = − znj
Pni

∫
βzLni (β)Lnj(β)f (β | θ)dβ

These integrals do not have closed-form expressions, so we will have to
simulate them
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Steps to Simulate Mixed Logit Elasticities

Own: Eizni = zni
Pni

∫
βzLni (β)[1− Lni (β)]f (β | θ)dβ

Cross: Eiznj = − znj
Pni

∫
βzLni (β)Lnj(β)f (β | θ)dβ

To simulate these elasticities at our MSL estimator, θ̂, for one household
1 Draw R sets of coefficients, βr , from the density f (β | θ̂)

I Or use our existing standard normal draws and transform them using θ̂
2 Calculate the representative utility for every alternative for each draw
3 Calculate the conditional choice probability, Lni (βr ), for every

alternative for each draw
4 Calculate the simulated choice probability, P̌ni , for every alternative as

the mean over all draws
5 Calculate the integrand for every alternative for each draw
6 Simulate the integral for every alternative
7 Calculate the elasticities using the simulated integrals
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Simulate Elasticities for One Household
Own: Eizni = zni

Pni

∫
βzLni (β)[1− Lni (β)]f (β | θ)dβ

Cross: Eiznj = − znj
Pni

∫
βzLni (β)Lnj(β)f (β | θ)dβ

## Function to simulate elasticities for one household
sim_elas_ind <- function(params, draws_ind, data_ind){

## Select relevant variables and convert into a matrix [J x K]
data_matrix <- data_ind %>%

select(ac, ic, oc) %>%
as.matrix()

## Transform random coefficients based on parameters [R x K]
coef_matrix <- draws_ind %>%

mutate(ac_coef = params[1] + params[4] * ac_draw,
ic_coef = params[2] + params[5] * ic_draw,
oc_coef = params[3] + params[6] * oc_draw) %>%

select(ac_coef, ic_coef, oc_coef) %>%
as.matrix()

## Calculate representative utility for each alternative in each draw [R x J]
utility <- (coef_matrix %*% t(data_matrix)) %>%

pmin(700) %>%
pmax(-700)

## Sum the exponential of utility over alternatives [R x 1]
prob_denom <- utility %>%

exp() %>%
rowSums()

## Calculate the conditional probability for each alternative and draw [R x J]
cond_prob <- exp(utility) / prob_denom
## Calculate simulated choice probabilities as means over all draws [1 x J]
sim_prob <- colMeans(cond_prob)
## Calculate simulated integral for own elasticity [1 x 1]
sim_int_own_elas <- mean(coef_matrix[, 2] *

cond_prob[, 7] * (1 - cond_prob[, 7]))
## Calculate simulated integral for cross elasticities [1 x (J - 1)]
sim_int_cross_elas <- colMeans(coef_matrix[, 2] *

cond_prob[, 7] * cond_prob[, -7])
## Combine elasticity simulated integrals into one vector [1 x J]
sim_int_elas <- c(sim_int_cross_elas, sim_int_own_elas)
## Calculate cross-price and own-price simulated elasticities [1 x J]
sim_elas <- c(rep(-1, 6), 1) * data_ind$ic[7] / sim_prob * sim_int_elas
## Add simulated elasticities to initial dataset
data_ind_out <- data_ind %>%

mutate(elasticity = sim_elas)
## Return initial dataset with simulated elasticity variable
return(data_ind_out)

}
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Simulate Elasticities for One Household

Own: Eizni = zni
Pni

∫
βzLni (β)[1− Lni (β)]f (β | θ)dβ

Cross: Eiznj = − znj
Pni

∫
βzLni (β)Lnj(β)f (β | θ)dβ

## Calculate the conditional probability for each alternative and draw [R x J]
cond_prob <- exp(utility) / prob_denom
## Calculate simulated choice probabilities as means over all draws [1 x J]
sim_prob <- colMeans(cond_prob)
## Calculate simulated integral for own elasticity [1 x 1]
sim_int_own_elas <- mean(coef_matrix[, 2] *

cond_prob[, 7] * (1 - cond_prob[, 7]))
## Calculate simulated integral for cross elasticities [1 x (J - 1)]
sim_int_cross_elas <- colMeans(coef_matrix[, 2] *

cond_prob[, 7] * cond_prob[, -7])
## Combine elasticity simulated integrals into one vector [1 x J]
sim_int_elas <- c(sim_int_cross_elas, sim_int_own_elas)
## Calculate cross-price and own-price simulated elasticities [1 x J]
sim_elas <- c(rep(-1, 6), 1) * data_ind$ic[7] / sim_prob * sim_int_elas
## Add simulated elasticities to initial dataset
data_ind_out <- data_ind %>%

mutate(elasticity = sim_elas)
## Return initial dataset with simulated elasticity variable
return(data_ind_out)

}
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Simulated Elasticities
## Simulate elasticities for each household
data_ind <- map2(.x = draws_hh, .y = data_hh,

.f = ~ sim_elas_ind(params = model$par,
draws_ind = .x,
data_ind = .y))

## Combine list of data into one tibble
data <- data_ind %>%

bind_rows()
## Calculate average elasticity with respect to ic of hpc
data %>%

group_by(alt) %>%
summarize(elasticity = mean(elasticity), .groups = 'drop')

## # A tibble: 7 x 2
## alt elasticity
## <chr> <dbl>
## 1 ec 1.30
## 2 ecc 3.66
## 3 er 1.30
## 4 erc 3.66
## 5 gc 1.30
## 6 gcc 3.66
## 7 hpc -4.12
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