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Agenda

Last two weeks
Logit model

This week’s topics

Maximum likelihood overview
Maximum likelihood estimator
Maximum likelihood examples
Properties of the maximum
likelihood estimator

MLE variance estimator
Model fit and tests
Numerical optimization
Maximum likelihood estimation
R example

This week’s reading
Maximum likelihood estimation supplement
Train textbook, chapter 8
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Maximum Likelihood Overview
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Recap and Looking Ahead

Last three weeks
Discrete choice framework
Random utility model
Logit model

But we still do not know how to estimate the logit model!

Next two weeks
Maximum likelihood estimation
Numerical optimization
Estimating the logit model
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Maximum Likelihood Estimation
Maximum likelihood (ML) estimation is one of the most common
estimation methods in structural econometrics

ML is more flexible than OLS regression
I ML can accommodate nonlinear models
I OLS is a special case of ML

ML requires stronger distributional assumptions than OLS
I When these assumptions hold, the maximum likelihood estimator

(MLE) is consistent and efficient
I But if these assumptions are invalid, the interpretation is less clear

Overview of maximum likelihood estimation
ML requires distributional assumptions about the data-generating
process you observe
MLE are the parameters that make it most likely to generate the
observed data
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Maximum Likelihood Intuition
Suppose we have five random draws from a normal distribution, but we do
not know which normal distribution, N (µ, σ2)

y = {48.7, 50.9, 48.8, 50.6, 48.8}

Consider two candidate distributions

N (0, 1) or N (50, 1)

What is the likelihood of generating y from N (0, 1)?
I Practically zero

What is the likelihood of generating y from N (50, 1)?
I Much greater!

Given these data, y , µ = 50 has a greater likelihood than µ = 0

This is a simple example of the intuition of maximum likelihood estimation
Find the parameters that maximize the likelihood of generating the
data you observe
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Probability Density Function
The probability density function, f (y | θ), gives us the relative likelihood
that a random variable would take a particular value

The probability density function of the normal distribution is

f (y | µ, σ2) = 1√
2πσ2

e
−(y−µ)2

2σ2
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Likelihood

But what if the opposite is true—we know the outcome of the random
variable draw, but we do not know the parameters that generated it?

We can use the same mathematical expression to give us the
likelihood that a particular set of parameter values would have
generated that sample
We call this the likelihood function and denote it as L(θ | y)

The likelihood function for a single known random draw, y , from the
normal distribution is

L(µ, σ2 | y) = 1√
2πσ2

e
−(y−µ)2

2σ2
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Maximum Likelihood Estimator
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Maximum Likelihood Estimation Assumption

The probability density function for a random variable, y , conditioned on a
set of parameters, θ, is

f (y | θ)

This function identifies the data-generating process that underlies an
observed sample of data and provides a mathematical description of
the data that the process will produce
We are making an assumption about the density of y , not just its
expectation and variance

We could generalize to a random vector, y , with joint density f (y | θ)
But the random variable assumption will be sufficient for this course
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Likelihood Function
The joint density of n independent and identically distributed (i.i.d.)
random variables, each with density f (y | θ), is

f (y1, . . . , yn | θ) =
n∏

i=1
f (yi | θ)

This representation suggests that the parameters are known and the data
are unknown, but usually the opposite is true

We have data and want to know the parameters of the
data-generating process

We simply switch the conditioning and define the likelihood function as a
function of the unknown parameters, θ, conditioned on the data we
observe, y

L(θ | y) =
n∏

i=1
f (yi | θ)
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Log-Likelihood Function

The likelihood function of unknown parameters θ conditioned on the data
y is

L(θ | y) =
n∏

i=1
f (yi | θ)

It is usually easier to work with the log of this likelihood function, or the
log-likelihood function, so we have a sum instead of a product on the
right-hand side

ln L(θ | y) =
n∑

i=1
ln f (yi | θ)

Log is a monotonic transformation, so finding the greatest log-likelihood
will get us the same result as finding the greatest likelihood
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Maximum Likelihood Estimator

The maximum likelihood estimator, θ̂, is the set of parameters that
maximizes the likelihood function and log-likelihood function

θ̂ = argmax
θ

L(θ | y)

θ̂ = argmax
θ

ln L(θ | y)

A necessary condition for maximizing ln L(θ | y) is

∂ ln L(θ | y)
∂θ

= 0

The maximum likelihood estimator gives the parameter values that
maximize the likelihood of having generated the data that we observe
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Conditional Likelihood
So far, we have assumed our data, y , are conditional on only parameters

But we usually model our outcome data, y , as a function of both
parameters, θ, and other data, X

When y is also a function of x, we need to define its conditional
probability density function, f (y | x,θ)

In almost all cases, we can simply use f (y | x,θ) in place of f (y | θ) in the
definition of the likelihood function and log-likelihood function

L(θ | y ,X) =
n∏

i=1
f (yi | xi ,θ)

ln L(θ | y ,X) =
n∑

i=1
ln f (yi | xi ,θ)

This is technically a conditional likelihood function, but we often drop
the “conditional” for convenience
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Maximum Likelihood Examples
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Maximum Likelihood Poisson Example
We have ten data points from a Poisson distribution, but what is the λ
parameter of the distribution?

y = {2, 0, 1, 2, 2, 2, 0, 2, 1, 1}

f (y | λ) = e−λλy

y !
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Maximum Likelihood Poisson Example
We have ten data points from a Poisson distribution, but what is the λ
parameter of the distribution?

y = {2, 0, 1, 2, 2, 2, 0, 2, 1, 1}

L(λ | y) =
n∏

i=1

e−λλyi

yi !
= e−nλλ

∑n
i=1 yi∏n

i=1 yi !

ln L(λ | y) = −nλ+ lnλ
n∑

i=1
yi −

n∑
i=1

ln(yi !)

∂ ln L(λ | y)
∂λ

= −n + 1
λ

n∑
i=1

yi

∂ ln L(λ | y)
∂λ

= 0 ⇒ λ̂ = 1
n

n∑
i=1

yi = 1.3
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Maximum Likelihood Poisson Example
We have ten data points from a Poisson distribution, but what is the λ
parameter of the distribution?

y = {2, 0, 1, 2, 2, 2, 0, 2, 1, 1}

L(λ | y) =
n∏

i=1

e−λλyi

yi !
= e−nλλ

∑n
i=1 yi∏n

i=1 yi !
= e−10λλ

∑n
i=1 13

32

ln L(λ | y) = −nλ+ lnλ
n∑

i=1
yi −

n∑
i=1

ln(yi !) = −10λ+ 13 lnλ− 3.47
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Maximum Likelihood Normal Example
We have five data points from a normal distribution, but what are the µ
and σ2 parameters of the distribution?

y = {6.08, 5.29, 2.52, 2.94, 5.36}

f (y | µ, σ2) = 1√
2πσ2

e
−(y−µ)2

2σ2

L(µ, σ2 | y) =
( 1√

2πσ2

)n
e−

1
2σ2
∑n

i=1(yi−µ)2

ln L(µ, σ2 | y) = −n
2 ln 2π − n

2 lnσ2 − 1
2σ2

n∑
i=1

(yi − µ)2

∂ ln L(µ, σ2 | y)
∂µ

= 1
σ2

n∑
i=1

(yi − µ)

∂ ln L(µ, σ2 | y)
∂σ2 = − n

2σ2 + 1
2σ4

n∑
i=1

(yi − µ)2

ResEcon 703: Advanced Econometrics Week 6: Maximum Likelihood Estimation 18



Maximum Likelihood Normal Example
We have five data points from a normal distribution, but what are the µ
and σ2 parameters of the distribution?

y = {6.08, 5.29, 2.52, 2.94, 5.36}

∂ ln L(µ, σ2 | y)
∂µ

= 1
σ2

n∑
i=1

(yi − µ)

∂ ln L(µ, σ2 | y)
∂σ2 = − n

2σ2 + 1
2σ4

n∑
i=1

(yi − µ)2

∂ ln L(µ, σ2 | y)
∂µ

= 0 ⇒ µ̂ = 1
n

n∑
i=1

yi = 4.44

∂ ln L(µ, σ2 | y)
∂σ2 = 0 ⇒ σ̂2 = 1

n

n∑
i=1

(yi − µ̂)2 = 2.04
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Maximum Likelihood OLS Regression Example

In the previous two examples, we have estimated the parameters that
maximize the likelihood of generating the data that we observe

But in most econometric applications, we really want to estimate the
parameters that maximize the likelihood of generating our outcome data
(or dependent variable) conditional on the other data (or independent
variables) that we observe

A basic example is a simple OLS regression
yi = β0 + β1xi + εi

If we make a distributional assumption about εi , then we can estimate the
parameters of this model using maximum likelihood

εi ∼ N (0, σ2)
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Maximum Likelihood OLS Regression Example
Combining our simple OLS regression equation

yi = β0 + β1xi + εi

with the distributional assumption about the error term

εi ∼ N (0, σ2)

gives us a conditional distribution of yi

yi | xi ∼ N (β0 + β1xi , σ
2)

Then the conditional probability density function of yi is

f (yi | xi , β0, β1, σ
2) = 1√

2πσ2
e

−(yi −β0−β1xi )2

2σ2
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Maximum Likelihood OLS Regression Example

The (conditional) log-likelihood function is

ln L(β0, β1, σ
2 | y , x) = −n

2 ln 2π − n
2 lnσ2 − 1

2σ2

n∑
i=1

(yi − β0 − β1xi )2

Taking the derivative with respect to each parameter—β0, β1, and
σ2—and setting them equal to zero yields the OLS estimators

β̂1 =
∑n

i=1(xi − x̄)(yi − ȳ)∑n
i=1(xi − x̄)2

β̂0 = ȳ − β̂1x̄

σ̂2 = 1
n

n∑
i=1

(yi − β̂0 − β̂1xi )2
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Properties of the Maximum Likelihood Estimator
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Asymptotic Properties of MLE

Under certain regularity conditions, the maximum likelihood estimator
(MLE) has these properties

1 Consistency
2 Asymptotic normality
3 Asymptotic efficiency
4 Invariance
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Regularity Conditions for MLE

The following properties are true only if these regularity conditions are met
1 The first three derivatives of ln f (yi | θ) with respect to θ are

continuous and finite for almost all yi and for all θ

2 The conditions necessary to obtain the expectations of the first and
second derivatives of ln f (yi | θ) are met

3 For all values of θ,
∣∣∣∂3 ln f (yi |θ)
∂θj∂θk∂θl

∣∣∣ is less than a function that has a finite
expectation
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Consistency of MLE

The MLE, θ̂, converges in probability to the true parameter value(s), θ0

θ̂
p→ θ0

As our sample size grows (to infinity), the MLE becomes vanishingly
close to the true parameter value(s)
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Asymptotic Normality of MLE
The asymptotic distribution of the MLE, θ̂, is normal with mean at the
true parameter value(s), θ0, and known variance

θ̂
a∼ N

(
θ0, I(θ0)−1

)
where

I(θ0) = −E0

[
∂2 ln L(θ0)
∂θ0∂θ′0

]

The asymptotic variance-covariance matrix of the MLE is

Var(θ̂) =
{
−E0

[
∂2 ln L(θ0)
∂θ0∂θ′0

]}−1

We are more certain of the MLE when the likelihood function has
more curvature
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Asymptotic Efficiency of MLE

The MLE, θ̂, is asymptotically efficient and achieves the Cramér-Rao lower
bound

Var(θ̂) = I(θ0)−1

No consistent estimator has lower asymptotic variance than the MLE
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Invariance of MLE

The MLE of γ0 = c(θ0) is c(θ̂) if c(θ0) is continuous and continuously
differentiable, where θ̂ is the MLE of true parameter(s) θ0

The MLE of a function of some parameter(s) is the function applied
to the MLE of the parameter(s)
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MLE Variance Estimator
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Variance of the Maximum Likelihood Estimator

From the asymptotic normality of MLE, the variance-covariance matrix of
the MLE is

Var(θ̂) =
{
−E0

[
∂2 ln L(θ0)
∂θ0∂θ′0

]}−1

The inner-most term (inside the [ ]) is the Hessian of the
log-likelihood function with respect to the parameters
The term that is inverted (the −E0[ ] term) is equivalent to the
Fisher information matrix
The variance of the MLE is evaluated at θ0, the true parameter
value(s), and requires taking an expectation
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Hessian of the Log-Likelihood Function

The Hessian of the log-likelihood function with respect to the parameters is
the square matrix that contains the second derivative of the log-likelihood
function with respect to all pairwise combinations of parameters

∂2 ln L(θ0)
∂θ0∂θ′0

=



∂2 ln L(θ0)
∂2θ1

∂2 ln L(θ0)
∂θ1∂θ2

· · · ∂2 ln L(θ0)
∂θ1∂θk

∂2 ln L(θ0)
∂θ1∂θ2

∂2 ln L(θ0)
∂2θ2

· · · ∂2 ln L(θ0)
∂θ2∂θk...

... . . . ...
∂2 ln L(θ0)
∂θ1∂θk

∂2 ln L(θ0)
∂θ2∂θk

· · · ∂2 ln L(θ0)
∂2θk



This matrix describes the local curvature of the log-likelihood function
around the true parameter values, θ0
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Information Matrix Equality

The Fisher information matrix measures the amount of information that
our data, y and X , contains about the unknown parameters, θ

I(θ0) = E0

[
∂ ln L(θ0)
∂θ0

∂ ln L(θ0)
∂θ′0

]

The information matrix equality gives that the Fisher information matrix
equals the negative of the expectation of the Hessian of the log-likelihood
function

E0

[
∂ ln L(θ0)
∂θ0

∂ ln L(θ0)
∂θ′0

]
= −E0

[
∂2 ln L(θ0)
∂θ0∂θ′0

]
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MLE Variance Estimator

The true variance-covariance matrix of the MLE is evaluated at the true
parameter values, θ, and requires taking an expectation

Var(θ̂) =
{
−E0

[
∂2 ln L(θ0)
∂θ0∂θ′0

]}−1

We can estimate this variance by evaluating the actual Hessian (not its
expectation) at the MLE, θ̂

The estimator of the MLE variance-covariance matrix is

V̂ar(θ̂) =
{
−∂

2 ln L(θ)
∂θ∂θ′

∣∣∣∣∣
θ=θ̂

}−1

More robust variance estimators exist, but we will use this most basic one
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Model Fit and Tests
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Likelihood Ratio Index

One measure of how well a MLE fits the data is the likelihood ratio index

ρ = 1− ln L(θ̂)
ln L(0)

where L(0) measures the fit of a model with only a constant term (all
other parameters equal to 0)

This index looks like R2 and is sometimes called a “pseudo R2”
But this name is misleading because this metric is nothing like R2

other than having the same range of [0, 1]

Larger values of ρ imply a better model fit, but this is no different from
saying larger values of the likelihood and log-likelihood functions are better
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Hypothesis Tests
Suppose we want to test hypotheses about the parameters of our model

H0 : h(θ0) = 0

where h(θ0) is any set of J parameter restrictions

This specification of hypotheses is fully general
We can test if parameters are equal to zero

h(θ0) =
(
θ1
θ2

)
=
(
0
0

)

We can test if parameters are equal to each other

h(θ0) =
(
θ1 − θ3
θ2 − θ3

)
=
(
0
0

)
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Likelihood Ratio Test
The likelihood ratio test compares the log-likelihood values of the
unrestricted model and the restricted model

If the hypotheses are true, then these values should be close

The likelihood ratio test statistic is

−2 lnλ = 2
(

ln L(θ̂U)− ln L(θ̂R)
)

θ̂U is the MLE of the unrestricted model
θ̂R is the MLE of the restricted model
λ is the likelihood ratio, λ = L(θ̂R)/L(θ̂U)

This test statistic is distributed χ2 with degrees of freedom equal to the
number of model restrictions

−2 lnλ ∼ χ2(J)
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Wald and Lagrange Multiplier Tests

Two other common tests for MLE parameters are the Wald test and the
Lagrange multiplier test

Wald test
If the hypotheses are true, then h(θ̂U) ≈ 0
Test if h(θ̂U) is sufficiently close to 0

Lagrange multiplier test
If the hypotheses are true, then ∂ ln L(θ̂R)/∂θ ≈ 0
Test if ∂ ln L(θ̂R)/∂θ is sufficiently close to 0

The Wald and Lagrange multiplier test statistics tend to be more
complicated than the likelihood ratio test statistic

We will use the likelihood ratio test with MLE in this course
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Numerical Optimization
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Numerical Optimization

Most structural estimation requires maximizing or minimizing an objective
function

For ML, we want to maximize the log-likelihood function

In theory, this is a relatively simple proposition
Some optimization problems have a closed-form expression
For only one or two parameters, a grid search may suffice

In practice, finding the correct parameters in an efficient way can be
challenging

Especially when you are optimizing over a vector of many parameters
and using a complex objective function
Numerical optimization algorithms can solve this problem
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Numerical Optimization Steps

We want to find the set of K parameters, θ̂, that maximize the objective
function, `(θ)

1 Begin with some initial parameter values, θ0

2 Check if you can “walk up” to a higher value
3 If so, take a step in the right direction to θ1

4 Repeat steps (2) and (3), stepping from θs to θs+1 until you reach
the maximum

But which direction should you step and how big of a step should you take
from θs to θs+1?

If your steps are too small, optimization can take too long
If your steps are too big, you may never converge to a solution
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Gradient and Hessian

The gradient tells us which direction to step

g s = ∂`(θ)
∂θ

∣∣∣∣
θ=θs

The gradient is a vector of K elements that tells us which direction to
move each parameter to increase the objective function

The Hessian tells us how far to step

Hs = ∂2`(θ)
∂θ∂θ′

∣∣∣∣∣
θ=θs

The Hessian is a K × K matrix that gives us information about the
curvature of the objective function in all dimensions
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Numerical Optimization Algorithms

There are many numerical optimization algorithms that use the gradient
and Hessian (and sometimes other statistics or constraints) in different
ways to maximize the objective function

Newton-Raphson
BHHH (Berndt-Hall-Hall-Hausman)
BHHH-2
Steepest ascent
DFP (Davidson-Fletcher-Powell)
BFGS (Broyden-Fletcher-Goldfarb-Shanno)
Nelder-Mead
Conjugate gradients
Limited-memory BFGS
Simulated annealing
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Convergence Criterion

How do we know the model has converged and we can stop taking steps?
In theory, the gradient vector equals zero
In practice, you will never hit the precise vector of parameters (down
to the 15th decimal point) that yields a gradient of zero
So we stop taking steps when we get “close enough”

How do we know when we are “close enough?”
Calculate a statistic, ms , at every optimization step

ms = (g s)′(−Hs)−1(g s)

Stop iterating when this statistic is less than a predetermined
tolerance level, m̆

ms < m̆
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Global or Local Maximum
Global maximum

The largest value of the objective function over all possible sets of
parameter values
This is the maximum you want to converge to
When the objective function is globally concave (as in the logit model
with linear utility), you will always hit the global maximum

Local maximum
The largest value of the objective function within a range of
parameter values, but not the global maximum
Optimization algorithms will sometimes converge to a local maximum
instead of the global maximum
More complex objective functions have local maxima

Try different starting values and algorithms to ensure you have converged
to the global maximum, not a local maximum
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Maximum Likelihood Estimation R Example
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Maximum Likelihood Example of OLS Regression

Using the mtcars dataset, regress mpg on hp

mpgi = β0 + β1hpi + εi

Instead of using the “canned” lm() function or a “hand-coded” OLS
estimator—both of which we did in week 2—we will estimate the
parameters of this model using

Maximum likelihood estimation
Numerical optimization

Reminder: OLS is a special case of maximum likelihood, so we should
estimate the same parameters as in week 2, but in a very different way
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Look at the mtcars Dataset
You should always double-check the structure of your dataset
## Load tidyverse
library(tidyverse)
## Look at the mtcars data
tibble(mtcars)
## # A tibble: 32 x 11
## mpg cyl disp hp drat wt qsec vs am gear carb
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
## # ... with 22 more rows
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Summarize the mtcars Dataset
It can be helpful to generate basic summary statistics for your dataset to
get a sense for the scale and variation of each variable
## Summarize the mtcars dataset
mtcars %>%

select(mpg, disp, hp, wt, qsec) %>%
summary()

## mpg disp hp wt
## Min. :10.40 Min. : 71.1 Min. : 52.0 Min. :1.513
## 1st Qu.:15.43 1st Qu.:120.8 1st Qu.: 96.5 1st Qu.:2.581
## Median :19.20 Median :196.3 Median :123.0 Median :3.325
## Mean :20.09 Mean :230.7 Mean :146.7 Mean :3.217
## 3rd Qu.:22.80 3rd Qu.:326.0 3rd Qu.:180.0 3rd Qu.:3.610
## Max. :33.90 Max. :472.0 Max. :335.0 Max. :5.424
## qsec
## Min. :14.50
## 1st Qu.:16.89
## Median :17.71
## Mean :17.85
## 3rd Qu.:18.90
## Max. :22.90
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Plot the mtcars Dataset
Plotting the data can give an idea of what to expect from your regression
## Plot the mtcars dataset
ggplot(data = mtcars, mapping = aes(x = hp, y = mpg)) +

geom_point()
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Maximum Likelihood Estimation of OLS Regression

mpgi = β0 + β1hpi + εi

How do we estimate the parameters of this model using ML?

For the general regression equation

yi = β′xi + εi

with a distributional assumption about the error term

εi ∼ N (0, σ2)

we have a conditional distribution of yi

yi | xi ∼ N (β′xi , σ
2)
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Log-Likelihood Function of OLS Regression
If each yi has a conditional distribution of

yi | xi ∼ N (β′xi , σ
2)

then the (conditional) log-likelihood function is

ln L(β, σ2 | y ,X) =
n∑

i=1
ln f (yi | xi ,β, σ

2)

For our example, we have three parameters to estimate

θ =
(
β0, β1, σ

2
)

We could take the derivative of ln L(θ | y ,X) with respect to each
parameter and solve the first-order conditions

Or we could maximize ln L(θ | y ,X) by numerical optimization!
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Numerical Optimization for MLE
We want to find the set of K parameters, θ̂, that maximize the
log-likelihood function, ln L(θ)

1 Begin with some initial parameter values, θ0

2 Check if you can “walk up” to a higher value
3 If so, take a step in the right direction to θ1

4 Repeat steps (2) and (3), stepping from θs to θs+1 until you reach
the maximum

The optim() function in R will perform this numerical optimization for us
We just have to give the optim() function two things:

I Some initial parameter values, θ0

I A function that will take those parameters as an argument and
calculate the log-likelihood, ln L(θ)

I (And sometimes additional information to fine-tune the optimization
procedure and output)
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Optimization in R
## Help file for the optimization function, optim
?optim
## Arguments for optim function
optim(par, fn, gr, ..., method, lower, upper, control, hessian)

optim() requires that you create a function, fn, that
1 Takes a set of parameters and other arguments as inputs
2 Calculates your objective function given those parameters
3 Returns this value of the objective function

You also have to give optim() arguments for
par: starting parameter values
...: dataset and other things needed by your function
method: optimization algorithm

I I recommend method = ‘BFGS’ for our estimation

optim() will find the parameters that minimize the objective function
To maximize, minimize the negative of the objective function
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Steps to Calculate the OLS Log-Likelihood

The OLS log-likelihood function is

ln L(β, σ2 | y ,X) =
n∑

i=1
ln f (yi | xi ,β, σ

2)

where the conditional distribution of each yi is

yi | xi ∼ N (β′xi , σ
2)

Steps to calculate the OLS log-likelihood conditional on θ

1 Construct matrices X and y and organize parameters β and σ2

2 Calculate fitted values of y , ŷ = β′xi , which is the mean of each yi
3 Calculate the density for each yi , f (yi | xi ,θ)
4 Calculate the log-likelihood, ln L(θ | y ,X) =

∑n
i=1 ln f (yi | xi ,θ)
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Function to Calculate OLS Log-likelihood
## Create function to calculate OLS log-likelihood
ll_ols <- function(params, data, y_var, x_vars) {

## Add column of ones for the constant term
reg_data <- data %>%

mutate(constant = 1)
## Select data for X and convert to a matrix
X <- reg_data %>%

select(all_of(c('constant', x_vars))) %>%
as.matrix()

## Select data for y and convert to a matrix
y <- reg_data %>%

select(all_of(y_var)) %>%
as.matrix()

## Select coefficient parameters
beta_hat <- params[-length(params)]
## Select error variance parameters
sigma2_hat <- params[length(params)]
## Calculate fitted y values
y_hat <- X %*% beta_hat
## Calculate the pdf values of each outcome
y_pdf <- dnorm(y, mean = y_hat, sd = sqrt(sigma2_hat))
## Calculate the log-likelihood
ll <- sum(log(y_pdf))
## Return the negative of log-likelihood for minimization
return(-ll)

}

optim() will minimize our objective function
We will have optim() minimize − ln L(θ | y ,X)
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Maximize OLS Log-Likelihood

## Maximize the OLS log-likelihood function
mle_ols_1 <- optim(par = c(0, 0, 1), fn = ll_ols,

data = mtcars, y_var = 'mpg', x_vars = 'hp',
method = 'BFGS', hessian = TRUE)
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Optimization Results
## Show optimization results
mle_ols_1
## $par
## [1] 30.09908613 -0.06822967 13.99015277
##
## $value
## [1] 87.61931
##
## $counts
## function gradient
## 84 28
##
## $convergence
## [1] 0
##
## $message
## NULL
##
## $hessian
## [,1] [,2] [,3]
## [1,] 2.287323e+00 3.355217e+02 -3.520739e-06
## [2,] 3.355217e+02 5.963323e+04 5.199112e-04
## [3,] -3.520739e-06 5.199112e-04 8.174375e-02
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Maximum Likelihood Estimator and Standard Errors

## Show parameter estimates
mle_ols_1$par
## [1] 30.09908613 -0.06822967 13.99015277

V̂ar(θ̂) =
{
−∂

2 ln L(θ)
∂θ∂θ′

∣∣∣∣∣
θ=θ̂

}−1

## Calculate MLE standard errors
mle_ols_1$hessian %>%

solve() %>%
diag() %>%
sqrt()

## [1] 1.58205585 0.00979809 3.49762080
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MLE of Another OLS Regression
Now use the same optimization function for a different regression

Regress mpg on hp, disp, wt, qsec from the mtcars dataset
## Maximize the OLS log-likelihood function
mle_ols_2 <- optim(par = c(rep(0, 5), 1), fn = ll_ols,

data = mtcars, y_var = 'mpg',
x_vars = c('hp', 'disp', 'wt', 'qsec'),
method = 'BFGS', hessian = TRUE)

## Show parameter estimates
mle_ols_2$par
## [1] 29.171504479 -0.021155823 0.002340875 -4.508394892 0.447863784
## [6] 5.901025047

## Calculate MLE standard errors
mle_ols_2$hessian %>%

solve() %>%
diag() %>%
sqrt()

## [1] 8.017208039 0.014478340 0.009948106 1.173009722 0.432869462
## [6] 1.500889360
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MLE of Another OLS Regression
Try a different dataset in our optimization function

Regress Petal.Length on Petal.Width, Sepal.Length, and
Sepal.Width from the iris dataset

## Maximize the OLS log-likelihood function
mle_ols_3 <- optim(par = c(rep(0, 4), 1), fn = ll_ols,

data = iris, y_var = 'Petal.Length',
x_vars = c('Petal.Width', 'Sepal.Length',

'Sepal.Width'),
method = 'BFGS', hessian = TRUE)

## Show parameter estimates
mle_ols_3$par
## [1] -0.26270817 1.44679345 0.72913805 -0.64601245 0.09902641

## Calculate MLE standard errors
mle_ols_3$hessian %>%

solve() %>%
diag() %>%
sqrt()

## [1] 0.29342388 0.06670595 0.05753860 0.06758029 0.01143187
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