
Problem Set 4
Topics in Advanced Econometrics (ResEcon 703)

University of Massachusetts Amherst

Solutions

Rules
Email a single .pdf file of your problem set writeup, code, and output to mwoerman@umass.edu by the
date and time above. You may work in groups of up to three and submit one writeup for the group,
and I strongly encourage you to do so. You can use any “canned” routine (e.g., lm(), glm(), and
mlogit()) for this problem set.

Data
Download the file camping_dataset.zip from the course website. This zipped file contains the dataset
camping.csv, which you will use for this problem set. This dataset contains simulated data on the
state park choice of 1000 visitors who camped at one of five Massachusetts State Parks. See the file
camping_description.txt for a description of the variables in the dataset.

### Load packages for problem set
library(tidyverse)
library(mlogit)

## Load dataset
data_camping <- read_csv('camping.csv')

## Rows: 5000 Columns: 8
## – Column specification –––––––––––––––––––––––––-
## Delimiter: ","
## chr (1): park
## dbl (7): camper_id, park_id, visit, mountain, beach, cost, time
##
## i Use ‘spec()‘ to retrieve the full column specification for this data.
## i Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.
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Problem 1: Generalized Extreme Value Models
We are studying how campers at Massachusetts State Parks choose the park where they camp, which
will assist the Massachusetts Department of Conservation and Recreation (DCR) in their planning. In
particular, they want to understand how campers value their time to travel to the park and the setting—
mountain or beach—of the park. Additionally, DCR is considering an increase to the camping fee at
Mount Greylock due to the cost of maintaining those camp sites, and they want to know how this
change would affect park visitation patterns.

a. Model the camping park choice as a multinomial logit model. Express the representative utility
of each alternative as a linear function of its cost, time, and setting—mountain or beach—with
common parameters on each variable. That is, the representative utility to camper n from park j is

Vnj = β1Cnj + β2Tnj + β3Mj

where Cnj is the cost to camper n of traveling to and camping at park j, Tnj is the time for
camper n to travel to park j, Mj is a binary indicator if park j is in the mountains, and the
β parameters are to be estimated. Importantly, do not include alternative-specific intercepts be-
cause β3 would not be identified. (Reminder: the mlogit() function from the mlogit package
estimates a multinomial logit model, but the data must first be converted to an indexed data
frame using the dfidx() function from the dfidx package. See the Week 4 slides or the mlogit
vignettes at cran.r-project.org/web/packages/mlogit/index.html for information on spec-
ifying a formula for the mlogit() function.)

## Convert dataset to dfidx format
data_dfidx <- dfidx(data = data_camping, shape = 'long',

choice = 'visit', idx = c('camper_id', 'park_id'))
# Model camping park visit as a multinomial logit
model_1a <- mlogit(formula = visit ~ cost + time + mountain | 0,

data = data_dfidx)

i. Report the estimated parameters and standard errors from this model. Briefly interpret these
results. For example, what does each parameter mean?

## Summarize model results
summary(model_1a)

##
## Call:
## mlogit(formula = visit ~ cost + time + mountain | 0, data = data_dfidx,
## method = "nr")
##
## Frequencies of alternatives:choice
## 1 2 3 4 5
## 0.274 0.202 0.209 0.167 0.148
##
## nr method
## 5 iterations, 0h:0m:0s
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## g'(-H)^-1g = 3.77E-05
## successive function values within tolerance limits
##
## Coefficients :
## Estimate Std. Error z-value Pr(>|z|)
## cost -0.01478389 0.00368970 -4.0068 6.155e-05 ***
## time -0.00163201 0.00040778 -4.0022 6.275e-05 ***
## mountain -0.33105186 0.17595101 -1.8815 0.0599 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -1524.2

The cost and time parameters—β1 and β2, respectively—are statistically significant and can be
interpreted as marginal utilities. The cost of camping at a park reduces the utility of camping
there, and the time spent traveling to the park reduces the utility of camping there. The
mountain parameter, β3, is statistically significant at the 10% level and is interpreted as the
relative utility of camping in the mountains. The campers in our dataset obtain less utility,
ceteris paribus, from camping in the mountains than from camping at the beach.

ii. Calculate the dollar value that a camper places on each hour spent traveling and the dollar
value that a camper places on camping in the mountains (relative to camping at the beach).

## Calculate value of time and mountain park
coef(model_1a)[2:3] / coef(model_1a)[1] * c(60, -1)

## time mountain
## 6.623449 -22.392742

These campers value their time spent traveling to the park at $6.62 per hour, and they value
camping in the mountains at $22.39 less than camping at the beach.

iii. Calculate the elasticity of choosing each park with respect to the cost of camping at Mount
Greylock (park_id == 1) for each camper; that is, 5 alternatives × 1000 campers = 5000
elasticities. For each park, report the mean of its elasticity with respect to the cost of camping
at Mount Greylock. Describe how these elasticities and substitution patterns relate to an
important property of the logit model. (Reminder: the fitted() function with argument type
= ‘probabilities’ calculates the choice probabilities of each alternative for each decision
maker.)

## Calculate mean elasticities with respect to the cost of alternative 1
data_camping %>%

filter(park_id == 1) %>%
mutate(prob = fitted(model_1a, type = 'probabilities')[, 1],

own_elas = coef(model_1a)[1] * cost * (1 - prob),
cross_elas = -coef(model_1a)[1] * cost * prob) %>%

summarize(own_elas = mean(own_elas),
cross_elas = mean(cross_elas))

## # A tibble: 1 x 2
## own_elas cross_elas
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## <dbl> <dbl>
## 1 -0.676 0.223

The mean elasticity of camping at Mount Greylock with respect to its cost is -0.676, and the
mean elasticity of camping at any of the other four parks with respect to the cost of camping
at Mount Greylock is 0.223. This model implies that campers will substitute to the other park
in proportion to their observed visits. In other words, campers will substitute to other parks
with no consideration for whether those parks share attributes with Mount Greylock. This
proportional substitution is an example of the rigid substitution patterns imposed by the logit
model.

b. The multinomial logit model of part (a) is not the best model for this setting if a camper’s unobserved
(and random) utility includes an individual preference for the mountains or the beach, which would
create correlations among parks with the same setting. Model the camping park choice as a nested
logit model with two nests, one for each park setting: mountains and beach. As in part (a), model
the representative utility for park j as

Vnj = β1Cnj + β2Tnj + β3Mj

where Cnj is the cost to camper n of traveling to and camping at park j, Tnj is the time for camper
n to travel to park j, Mj is a binary indicator if park j is in the mountains, and the β parameters are
to be estimated. (Reminder: the mlogit() function from the mlogit package estimates a nested
logit model if you use the nests argument to specify nests as a named list.)

## Model camping park visit as a nested logit
model_1b <- mlogit(formula = visit ~ cost + time + mountain | 0,

data = data_dfidx,
nests = list(mountain = 1:2, beach = 3:5))

i. Report the estimated parameters and standard errors from this model. Briefly interpret these
results. For example, what does each parameter mean?

## Summarize model results
summary(model_1b)

##
## Call:
## mlogit(formula = visit ~ cost + time + mountain | 0, data = data_dfidx,
## nests = list(mountain = 1:2, beach = 3:5))
##
## Frequencies of alternatives:choice
## 1 2 3 4 5
## 0.274 0.202 0.209 0.167 0.148
##
## bfgs method
## 12 iterations, 0h:0m:0s
## g'(-H)^-1g = 1.65E-07
## gradient close to zero
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##
## Coefficients :
## Estimate Std. Error z-value Pr(>|z|)
## cost -0.00607442 0.00151849 -4.0003 6.326e-05 ***
## time -0.00146685 0.00024578 -5.9681 2.400e-09 ***
## mountain -0.19944206 0.09847759 -2.0253 0.04284 *
## iv:mountain 0.27206879 0.05790001 4.6989 2.615e-06 ***
## iv:beach 0.31647461 0.06018706 5.2582 1.455e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -1500.9

The cost, time, and mountain parameters—β1, β2, and β3, respectively—are interpreted as
they were in part (a), although the mountain parameter is now statistically significant at the
5% level. This model contains two additional parameters, the coefficients on the inclusive value
for each nest, which are statistically significant. These parameters represent the independence
of random utility within each nest, with a value of 1 indicating full independence and a value
close to 0 indicating high dependence. Thus, we conclude there is some dependence within
each of the nests. That is, the random utility that a camper obtains from camping at each of
the parks in the mountains is correlated, as is the random utility from camping at each of the
parks at the beach. This result is consistent with each camper having an individual preference
for the mountains or the beach beyond the average preference represented by β3, the common
mountain parameter.

ii. The model in part (a) is effectively imposing a restriction on the model in part (b). Write the
null hypothesis that is imposed by the model in part (a) and describe this hypothesis in words.
Conduct a likelihood ratio test to test this null hypothesis. Do you reject this null hypothesis?
What is the p-value of the test? Briefly interpret the result of this test. (Reminder: the
lrtest() function performs a likelihood ratio test.)

## Conduct likelihood ratio test of the models in parts b and d
lrtest(model_1a, model_1b)

## Likelihood ratio test
##
## Model 1: visit ~ cost + time + mountain | 0
## Model 2: visit ~ cost + time + mountain | 0
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 3 -1524.2
## 2 5 -1500.9 2 46.564 7.739e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The null hypothesis is that the inclusive value coefficients equal 1 for both nests:

H0: λmountain = λbeach = 1

In words, this null hypothesis imposes that there is no correlation among the random utility
terms, or that the random utility of every alternative is i.i.d. But if a camper has an individ-
ual preference for camping in the mountains or at the beach beyond the average preference
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represented by β3, this hypothesis would not hold. We reject this hypothesis with a p-value
of approximately 0, indicating that we have strong statistical evidence to conclude there are
correlations among the random utility terms within each nest.

iii. Calculate the dollar value that a camper places on each hour spent traveling and the dollar
value that a camper places on camping in the mountains (relative to camping at the beach).

## Calculate value of time and mountain park
coef(model_1b)[2:3] / coef(model_1b)[1] * c(60, -1)

## time mountain
## 14.4888 -32.8331

These campers value their time spent traveling to the park at $14.49 per hour, and they value
camping in the mountains at $32.83 less than camping at the beach.

iv. Calculate the elasticity of choosing each park with respect to the cost of camping at Mount
Greylock (park_id == 1) for each camper; that is, 5 alternatives × 1000 campers = 5000
elasticities. For each park, report the mean of its elasticity with respect to the cost of camping
at Mount Greylock. Compare these elasticities to those you found in part (a) and describe any
important differences.

## Calculate choice probabilities for every alternative
probs_1b <- fitted(model_1b, type = 'probabilities')
## Calculate mean elasticities with respect to the cost of alternative 1
data_camping %>%

filter(park_id == 1) %>%
mutate(prob = probs_1b[, 1],

prob_nest = rowSums(probs_1b[, 1:2]),
prob_cond = prob / prob_nest,
own_elas = coef(model_1b)[1] * cost *

((1 / coef(model_1b)[4]) -
((1 - coef(model_1b)[4]) /

coef(model_1b)[4] * prob_cond) -
prob),

cross_elas_mountain = -coef(model_1b)[1] * cost * prob *
(1 + ((1 - coef(model_1b)[4]) /

(coef(model_1b)[4] * prob_nest))),
cross_elas_beach = -coef(model_1b)[1] * cost * prob) %>%

summarize(own_elas = mean(own_elas),
cross_elas_mountain = mean(cross_elas_mountain),
cross_elas_beach = mean(cross_elas_beach))

## # A tibble: 1 x 3
## own_elas cross_elas_mountain cross_elas_beach
## <dbl> <dbl> <dbl>
## 1 -0.709 0.649 0.0952

The mean elasticity of camping at Mount Greylock with respect to its cost is -0.709; the
mean elasticity of camping at October Mountain with respect to the cost of camping at Mount
Greylock is 0.649; and the mean elasticity of camping at any of beach parks with respect to the
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cost of camping at Mount Greylock is 0.095. This model implies that campers will substitute
to October Mountain in much greater proportion than to the beach parks. These elasticities
are more intuitive than the elasticities in part (a)—which imposed proportional substitution—if
campers have individual preferences for camping in the mountains.

Problem 2: Mixed Logit Model
The models in problem 1 have common parameters for all campers in the dataset. In reality, however,
some or all of these parameters are likely to vary by camper for unobserved reasons. DCR is interested
in understanding this heterogeneity and how it could affect park visitation patterns.

a. Model the camping park choice as a mixed logit model. Express the representative utility of each
alternative as a linear function of its cost, time, and setting—mountain or beach—with random
coefficients on each variable. That is, the representative utility to camper n from park j is

Vnj = β1nCnj + β2nTnj + β3nMj

where Cnj is the cost to camper n of traveling to and camping at park j, Tnj is the time for camper
n to travel to park j, Mj is a binary indicator if park j is in the mountains. Model all three β
coefficients as random with a normal distribution:

β1 ∼ N (µ1, σ
2
1)

β2 ∼ N (µ2, σ
2
2)

β3 ∼ N (µ3, σ
2
3)

Estimate this model using 100 draws for simulation (R = 100) and set a seed of 703 for replication
(seed = 703). (Reminder: the mlogit() function from the mlogit package estimates a mixed
logit model if you use the rpar argument to specify the random coefficients as a named vector.)

## Model camping park visit as a mixed logit
model_2a <- mlogit(formula = visit ~ cost + time + mountain | 0,

data = data_dfidx,
rpar = c(cost = 'n', time = 'n', mountain = 'n'),
R = 100, seed = 703)

i. Report the estimated parameters and standard errors from this model. Briefly interpret these
results. For example, what does each parameter mean?

## Summarize model results
summary(model_2a)

##
## Call:
## mlogit(formula = visit ~ cost + time + mountain | 0, data = data_dfidx,
## rpar = c(cost = "n", time = "n", mountain = "n"), R = 100,
## seed = 703)
##
## Frequencies of alternatives:choice
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## 1 2 3 4 5
## 0.274 0.202 0.209 0.167 0.148
##
## bfgs method
## 17 iterations, 0h:0m:11s
## g'(-H)^-1g = 3.19E-07
## gradient close to zero
##
## Coefficients :
## Estimate Std. Error z-value Pr(>|z|)
## cost -0.0214846 0.0042303 -5.0788 3.799e-07 ***
## time -0.0061720 0.0010827 -5.7007 1.193e-08 ***
## mountain -0.8444033 0.3083382 -2.7386 0.006171 **
## sd.cost 0.0126612 0.0166059 0.7624 0.445791
## sd.time 0.0036772 0.0015353 2.3951 0.016616 *
## sd.mountain -5.6000997 1.1536954 -4.8541 1.210e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -1504.5
##
## random coefficients
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## cost -Inf -0.030024408 -0.021484581 -0.021484581 -0.012944754 Inf
## time -Inf -0.008652227 -0.006171992 -0.006171992 -0.003691758 Inf
## mountain -Inf -4.621613130 -0.844403300 -0.844403300 2.932806531 Inf

The cost coefficient, β1, is interpreted as the marginal utility of the cost of the camping trip,
or the negative of the marginal utility of money. We model this coefficient as being random
with a normal distribution, meaning that different campers can have a different marginal utility
of money. We estimate that this coefficient has a mean of -0.021 and a standard deviation of
0.013. The standard deviation parameter is not statistically significant, however, so we cannot
conclude that this coefficient has any variance, suggesting it may be better to model it as a
fixed coefficient. The other parameters have similar interpretations, and all other parameters
are statistically significant. The time coefficient parameters, µ2 and σ2

2, indicate that the
marginal utility of time traveling to camp is normally distributed with a mean of -0.0062 and a
standard deviation of 0.0037. The mountain coefficient parameters, µ3 and σ2

3, indicate that
the utility obtained by camping in the mountains, relative to camping at the beach and ceteris
paribus, is normally distributed with a mean of -0.84 and a standard deviation of 5.6.

b. It is easier to calculate how campers value their time to travel to the park and the setting—mountain
or beach—of the park when cost has a fixed (not-random) coefficient. Model the camping park
choice as a mixed logit model with a fixed coefficient on cost. Express the representative utility of
each alternative as a linear function of its cost, time, and setting—mountain or beach—with random
coefficients on time and mountain. That is, the representative utility to camper n from park j is

Vnj = β1Cnj + β2nTnj + β3nMj

where Cnj is the cost to camper n of traveling to and camping at park j, Tnj is the time for camper
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n to travel to park j, Mj is a binary indicator if park j is in the mountains. Model β1 as a fixed
coefficient and β2 and β3 as random with a normal distribution:

β2 ∼ N (µ2, σ
2
2)

β3 ∼ N (µ3, σ
2
3)

Estimate this model using 100 draws for simulation (R = 100) and set a seed of 703 for replication
(seed = 703).

## Model camping park visit as a mixed logit with fixed cost coefficient
model_2b <- mlogit(formula = visit ~ cost + time + mountain | 0,

data = data_dfidx,
rpar = c(time = 'n', mountain = 'n'),
R = 100, seed = 703)

i. Report the estimated parameters and standard errors from this model. Briefly interpret these
results. For example, what does each parameter mean?

## Summarize model results
summary(model_2b)

##
## Call:
## mlogit(formula = visit ~ cost + time + mountain | 0, data = data_dfidx,
## rpar = c(time = "n", mountain = "n"), R = 100, seed = 703)
##
## Frequencies of alternatives:choice
## 1 2 3 4 5
## 0.274 0.202 0.209 0.167 0.148
##
## bfgs method
## 16 iterations, 0h:0m:21s
## g'(-H)^-1g = 0.00651
## successive function values within tolerance limits
##
## Coefficients :
## Estimate Std. Error z-value Pr(>|z|)
## cost -0.01872287 0.00410751 -4.5582 5.159e-06 ***
## time -0.00487803 0.00089451 -5.4533 4.945e-08 ***
## mountain -0.82439901 0.28712024 -2.8713 0.004088 **
## sd.time 0.00194078 0.00100759 1.9262 0.054084 .
## sd.mountain 4.67359368 1.00229284 4.6629 3.118e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -1503.2
##
## random coefficients
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## Min. 1st Qu. Median Mean 3rd Qu. Max.
## time -Inf -0.006187071 -0.004878034 -0.004878034 -0.003568997 Inf
## mountain -Inf -3.976690042 -0.824399010 -0.824399010 2.327892022 Inf

The cost coefficient, β1, is now fixed at a value of -0.019, indicating this value is the marginal
utility of cost for all campers. The interpretation of the other parameters is similar to that in
part (a). The time coefficient parameters, µ2 and σ2

2, indicate that the marginal utility of time
traveling to camp is normally distributed with a mean of -0.0049 and a standard deviation of
0.0019. The mountain coefficient parameters, µ3 and σ2

3, indicate that the utility obtained by
camping in the mountains, relative to camping at the beach and ceteris paribus, is normally
distributed with a mean of -0.82 and a standard deviation of 4.7.

ii. We can test if β1 is a fixed or random coefficient. Write the null hypothesis of your test and
describe this hypothesis in words. Conduct a likelihood ratio test to test this null hypothesis.
Do you reject this null hypothesis? What is the p-value of the test? Briefly interpret the result
of this test.

## Conduct likelihood ratio test of the models in parts a and b
lrtest(model_2a, model_2b)

## Likelihood ratio test
##
## Model 1: visit ~ cost + time + mountain | 0
## Model 2: visit ~ cost + time + mountain | 0
## #Df LogLik Df Chisq Pr(>Chisq)
## 1 6 -1504.5
## 2 5 -1503.2 -1 2.5395 0.111

The null hypothesis is that the variance of the random β1 coefficient equals 0:

H0: σ2
1 = 0

In words, this null hypothesis imposes that there is no heterogeneity in this cost coefficient, so
all campers have the same marginal utility of cost or income. We fail to reject this hypothesis
with a p-value of 0.11, so we conclude that the cost coefficient, β1, is fixed for all campers.

iii. Calculate the dollar value that a camper places on each hour spent traveling and the dollar
value that a camper places on camping in the mountains (relative to camping at the beach).
Because we have distributions for β2 and β3, these dollar values will also be distributions.
Report the mean and standard deviation of each of these dollar value distributions. Briefly
interpret these results.

## Calculate distribution of the value of time
c(coef(model_2b)[2] / coef(model_2b)[1] * 60,

abs(coef(model_2b)[4]) / -coef(model_2b)[1] * 60) %>%
setNames(c('time', 'sd.time'))

## time sd.time
## 15.632328 6.219499

## Calculate distribution of the value of a mountain park
c(coef(model_2b)[3] / -coef(model_2b)[1],
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abs(coef(model_2b)[5]) / -coef(model_2b)[1]) %>%
setNames(c('mountain', 'sd.mountain'))

## mountain sd.mountain
## -44.03166 249.61950

These campers have a heterogeneous valuation of their time spent traveling to the park. These
time values are normally distributed with a mean of $15.63 and a standard deviation of $6.22.
Similarly, the dollar value of camping in the mountains, relative to camping at the beach and
ceteris paribus, is normally distributed with a mean of -$44.03 and a standard deviation of
$249.62.

iv. Calculate the proportion of campers who have a positive value of camping in the mountains
(relative to camping at the beach).

## Calculate proportion of visitors with a positive value of mountain parks
1 - pnorm(q = 0,

mean = coef(model_2b)[3] / -coef(model_2b)[1],
sd = abs(coef(model_2b)[5]) / -coef(model_2b)[1])

## [1] 0.4299918

Of the 1000 campers in this dataset, 43% have a positive valuation of camping in the mountains
relative to camping at the beach. That is, ceteris paribus, 43% of these campers would prefer
to camp in the mountains than at the beach.

c. DCR is considering an increase to the camping fee at Mount Greylock, which would increase the
cost by $20 for each camper in our dataset. Use your parameter estimates from part (b) to simulate
this counterfactual.

## Create counterfactual camping dataset
data_camping_counter <- data_camping %>%

mutate(cost = if_else(park_id == 1, cost + 20, cost))
## Convert dataset to dfidx format
data_counter_dfidx <- dfidx(data = data_camping_counter, shape = 'long',

choice = 'visit', idx = c('camper_id', 'park_id'))

i. How many fewer campers—of the 1000 campers in this dataset—do you expect will camp at
Mount Greylock because of this fee increase? How many more campers do you expect will
camp at each of the other four parks?

## Calculate aggregate choices using observed data
agg_choices_obs_2b <- predict(model_2b, newdata = data_dfidx)
## Calculate aggregate choices using counterfactual data
agg_choices_counter_2b <- predict(model_2b, newdata = data_counter_dfidx)
## Calculate difference between aggregate choices
colSums(agg_choices_counter_2b - agg_choices_obs_2b)

## 1 2 3 4 5
## -47.108365 32.020511 5.906957 4.544644 4.636252
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Due to this camping fee increase at Mount Greylock, we would expect 47.1 fewer campers
at that park. We would also expect an additional 32.0 campers at the other mountain park,
October Mountain, and approximately only 5 or 6 additional campers at each of the beach
parks, as reported above.

ii. How do you expect this increased camping fee at Mount Greylock will affect the economic
surplus of the 1000 campers in this dataset?

## Calculate log-sum values using observed data
logsum_obs_2b <- logsum(model_2b, data = data_dfidx)
## Calculate log-sum values using counterfactual data
logsum_counter_2b <- logsum(model_2b, data = data_counter_dfidx)
## Calculate change in consumer surplus from subsidy
sum((logsum_counter_2b - logsum_obs_2b)) / -coef(model_2b)[1]

## cost
## -4302.969

This increased camping fee is expected to reduce the economic surplus of these 1000 campers
by a total of roughly $4303.

12


