
Problem Set 3
Topics in Advanced Econometrics (ResEcon 703)

University of Massachusetts Amherst

Solutions

Rules
Email a single .pdf file of your problem set writeup, code, and output to mwoerman@umass.edu by the
date and time above. You may work in groups of up to three and submit one writeup for the group, and
I strongly encourage you to do so. This problem set requires you to code your own estimators, rather
than using R’s “canned” routines (e.g., glm() and mlogit()).

Data
Download the file commute_datasets.zip from the course website. This zipped file contains two
datasets—commute_binary.csv and commute_multinomial.csv—that you will use for this problem
set. Both datasets contain simulated data on the travel mode choice of 1000 UMass graduate students
who commute to campus from more than one mile away. The commute_binary.csv dataset corresponds
to commuting in the middle of winter when only driving a car or taking a bus are feasible options. The
commute_multinomial.csv dataset corresponds to commuting in the spring when riding a bike and
walking are feasible alternatives. See the file commute_descriptions.txt for descriptions of the
variables in each dataset.

### Load packages for problem set
library(tidyverse)
library(gmm)

Problem 1: Maximum Likelihood Estimation
We are again studying how UMass graduate students choose how to commute to campus in the spring
when riding a bike and walking are feasible alternatives—as in problem 2 of problem set 2—but we are
now estimating the model “by hand” to better understand the maximum likelihood estimation method.
Use the commute_multinomial.csv dataset for this question.

### Create functions for use with maximum likelihood
## Function to summarize MLE model results
summarize_mle <- function(model, names){

## Extract model parameter estimates

1

mailto:mwoerman@umass.edu
https://github.com/woerman/ResEcon703/blob/master/problem_sets/problem_set_3/commute_datasets.zip
https://github.com/woerman/ResEcon703


parameters <- model$par
## Calculate parameters standard errors
std_errors <- model$hessian %>%

solve() %>%
diag() %>%
sqrt()

## Calculate parameter z-stats
z_stats <- parameters / std_errors
## Calculate parameter p-values
p_values <- 2 * pnorm(-abs(z_stats))
## Summarize results in a list
model_summary <- tibble(names = names,

parameters = parameters,
std_errors = std_errors,
z_stats = z_stats,
p_values = p_values)

## Return model_summary object
return(model_summary)

}
## Function to conduct likelihood ratio test
test_likelihood_ratio <- function(model_rest, model_unrest){
## Calculate likelihood ratio test statistic
test_stat <- 2 * (model_rest$value - model_unrest$value)
## Calculate the number of restrictions
df <- length(model_unrest$par) - length(model_rest$par)
## Test if likelihood ratio test statistic is greater than critical value
test <- test_stat > qchisq(0.95, df)
## Calculate p-value of test
p_value <- 1 - pchisq(test_stat, df)
## Return test result and p-value
return(list(reject = test, p_value = p_value))

}

## Load dataset
data_multi <- read_csv('commute_multinomial.csv')

## Rows: 1000 Columns: 13
## – Column specification –––––––––––––––––––––––––-
## Delimiter: ","
## chr (2): mode, marital_status
## dbl (11): id, time.car, cost.car, time.bus, cost.bus, time.bike, cost.b...
##
## i Use ‘spec()‘ to retrieve the full column specification for this data.
## i Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.

a. Model the commute choice during spring as a multinomial logit model. Express the representative
utility of each alternative as a linear function of its cost and time with common parameters on these
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variables. That is, the representative utility to student n from alternative j is

Vnj = βCnj + γTnj

where Cnj is the cost to student n of alternative j, Tnj is the time for student n of alternative j, and
the β and γ parameters are to be estimated. Estimate the parameters of this model by maximum
likelihood estimation. The following steps can provide a rough guide to creating your own maximum
likelihood estimator:

I. Create a function that takes a set of parameters and data as inputs: function(parameters,
data).

II. Within that function, make the following calculations:
i. Calculate the representative utility of every alternative for each decision maker.
ii. Calculate the choice probability of the chosen alternative for each decision maker.
iii. Sum the log of these choice probabilities to get the log-likelihood.
iv. Return the negative of the log-likelihood.

III. Maximize the log-likelihood (by minimizing its negative) using optim(). Your call of the
optim() function may look something like:

optim(par = your_starting_guesses, fn = your_function, data = your_data,
method = ‘BFGS’, hessian = TRUE)

Report your parameter estimates, standard errors, z-stats, and p-values. Briefly interpret these
results. For example, what does each parameter mean?

## Function to calculate log-likelihood for heating choice
ll_fn_1a <- function(params, data){
## Extract individual parameters with descriptive names
beta_1 <- params[1]
beta_2 <- params[2]
## Calculate representative utility for each alternative given the parameters
model_data <- data %>%

mutate(utility_bike = beta_1 * cost.bike + beta_2 * time.bike,
utility_bus = beta_1 * cost.bus + beta_2 * time.bus,
utility_car = beta_1 * cost.car + beta_2 * time.car,
utility_walk = beta_1 * cost.walk + beta_2 * time.walk)

## Calculate logit choice probability denominator given the parameters
model_data <- model_data %>%

mutate(prob_denom = exp(utility_bike) + exp(utility_bus) +
exp(utility_car) + exp(utility_walk))

## Calculate logit choice probability for each alt given the parameters
model_data <- model_data %>%

mutate(prob_bike = exp(utility_bike) / prob_denom,
prob_bus = exp(utility_bus) / prob_denom,
prob_car = exp(utility_car) / prob_denom,
prob_walk = exp(utility_walk) / prob_denom)

## Calculate logit choice probability for chosen alt given the parameters
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model_data <- model_data %>%
mutate(prob_choice = prob_bike * (mode == 'bike') +

prob_bus * (mode == 'bus') + prob_car * (mode == 'car') +
prob_walk * (mode == 'walk'))

## Calculate log of logit choice probability for chosen alt given the params
model_data <- model_data %>%

mutate(log_prob = log(prob_choice))
## Calculate the log-likelihood for these parameters
ll <- sum(model_data$log_prob)
return(-ll)

}
## Maximize the log-likelihood function
model_1a <- optim(par = rep(0, 2), fn = ll_fn_1a, data = data_multi,

method = 'BFGS', hessian = TRUE)
## Summarize model results
model_1a %>%

summarize_mle(c('cost', 'time'))

## # A tibble: 2 x 5
## names parameters std_errors z_stats p_values
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 cost -1.00 0.175 -5.72 1.07e- 8
## 2 time -0.126 0.0100 -12.6 3.31e-36

Both parameters are statistically significant and are interpreted as marginal utilities. The cost of
driving decreases the utility of driving, and the time spent commuting by a particular travel mode
decreases the utility of taking that mode. This result is intuitive since people like both money and
leisure time.

b. Again model the commute choice during spring as a multinomial logit model, but now add alternative-
specific intercepts for all but one alternative. That is, the representative utility to student n from
alternative j is

Vnj = αj + βCnj + γTnj

where Cnj is the cost to student n of alternative j, Tnj is the time for student n of alternative j,
and the α, β, and γ parameters are to be estimated. Estimate the parameters of this model by
maximum likelihood estimation. The steps to creating your own maximum likelihood estimator are
the same as in part (a), but some of the calculations will be different.

## Function to calculate log-likelihood for heating choice
ll_fn_1b <- function(params, data){
## Extract individual parameters with descriptive names
alpha_bus <- params[1]
alpha_car <- params[2]
alpha_walk <- params[3]
beta_1 <- params[4]
beta_2 <- params[5]
## Calculate representative utility for each alternative given the parameters
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model_data <- data %>%
mutate(utility_bike = beta_1 * cost.bike + beta_2 * time.bike,

utility_bus = alpha_bus + beta_1 * cost.bus + beta_2 * time.bus,
utility_car = alpha_car + beta_1 * cost.car + beta_2 * time.car,
utility_walk = alpha_walk + beta_1 * cost.walk + beta_2 * time.walk)

## Calculate logit choice probability denominator given the parameters
model_data <- model_data %>%

mutate(prob_denom = exp(utility_bike) + exp(utility_bus) +
exp(utility_car) + exp(utility_walk))

## Calculate logit choice probability for each alt given the parameters
model_data <- model_data %>%

mutate(prob_bike = exp(utility_bike) / prob_denom,
prob_bus = exp(utility_bus) / prob_denom,
prob_car = exp(utility_car) / prob_denom,
prob_walk = exp(utility_walk) / prob_denom)

## Calculate logit choice probability for chosen alt given the parameters
model_data <- model_data %>%

mutate(prob_choice = prob_bike * (mode == 'bike') +
prob_bus * (mode == 'bus') + prob_car * (mode == 'car') +
prob_walk * (mode == 'walk'))

## Calculate log of logit choice probability for chosen alt given the params
model_data <- model_data %>%

mutate(log_prob = log(prob_choice))
## Calculate the log-likelihood for these parameters
ll <- sum(model_data$log_prob)
return(-ll)

}
## Maximize the log-likelihood function
model_1b <- optim(par = rep(0, 5), fn = ll_fn_1b, data = data_multi,

method = 'BFGS', hessian = TRUE)

i. Report your parameter estimates, standard errors, z-stats, and p-values. Briefly interpret these
results. For example, what does each parameter mean?

## Summarize model results
model_1b %>%

summarize_mle(c('bus_int', 'car_int', 'walk_int', 'cost', 'time'))

## # A tibble: 5 x 5
## names parameters std_errors z_stats p_values
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 bus_int 1.76 0.113 15.6 4.69e-55
## 2 car_int 2.92 0.200 14.6 2.39e-48
## 3 walk_int 3.17 0.306 10.4 3.46e-25
## 4 cost -6.05 0.511 -11.9 2.11e-32
## 5 time -0.296 0.0246 -12.0 2.08e-33
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As in the previous model, the cost parameter and the time parameter are both negative,
indicating that the cost and the time spent commuting by a particular travel mode decrease
the utility of taking that mode. Additionally, all three alternative-specific intercepts are positive
and significant, suggesting that, ceteris paribus, all other modes would be preferred to biking.

ii. Conduct a likelihood ratio test on this model to test the joint significance of the alternative-
specific intercepts. That is, test the null hypothesis:

H0: αbus = αcar = αwalk = 0

Your null hypothesis may be slightly different, depending on what you consider your “reference
alternative.” Do you reject this null hypothesis? What is the p-value of the test? Briefly
interpret the result of this test. (Reminder: to conduct this likelihood ratio test, you need the
log-likelihood value of the model in part (b) and the log-likelihood value of the restricted model
that is obtained when the hypothesized restrictions are imposed.)

## Conduct likelihood ratio test of models 1a and 1b
test_1b <- test_likelihood_ratio(model_1a, model_1b)
## Display test results
test_1b

## $reject
## [1] TRUE
##
## $p_value
## [1] 0

We reject this null hypothesis and conclude that the alternative-specific intercepts are jointly
significant. That is, this model provides a better fit than the model in part (a), which restricted
these parameters to all be zero.

c. Again model the commute choice during spring as a multinomial logit model, but now allow the
parameter on time to be alternative-specific. That is, the representative utility to student n from
alternative j is

Vnj = αj + βCnj + γjTnj

where Cnj is the cost to student n of alternative j, Tnj is the time for student n of alternative j,
and the α, β, and γ parameters are to be estimated. Estimate the parameters of this model by
maximum likelihood estimation. The steps to creating your own maximum likelihood estimator are
the same as in part (a), but some of the calculations will be different.

## Function to calculate log-likelihood for heating choice
ll_fn_1c <- function(params, data){
## Extract individual parameters with descriptive names
alpha_bus <- params[1]
alpha_car <- params[2]
alpha_walk <- params[3]
beta <- params[4]
gamma_bike <- params[5]
gamma_bus <- params[6]
gamma_car <- params[7]
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gamma_walk <- params[8]
## Calculate representative utility for each alternative given the parameters
model_data <- data %>%

mutate(utility_bike = beta * cost.bike + gamma_bike * time.bike,
utility_bus = alpha_bus + beta * cost.bus + gamma_bus * time.bus,
utility_car = alpha_car + beta * cost.car + gamma_car * time.car,
utility_walk = alpha_walk + beta * cost.walk +

gamma_walk * time.walk)
## Calculate logit choice probability denominator given the parameters
model_data <- model_data %>%

mutate(prob_denom = exp(utility_bike) + exp(utility_bus) +
exp(utility_car) + exp(utility_walk))

## Calculate logit choice probability for each alt given the parameters
model_data <- model_data %>%

mutate(prob_bike = exp(utility_bike) / prob_denom,
prob_bus = exp(utility_bus) / prob_denom,
prob_car = exp(utility_car) / prob_denom,
prob_walk = exp(utility_walk) / prob_denom)

## Calculate logit choice probability for chosen alt given the parameters
model_data <- model_data %>%

mutate(prob_choice = prob_bike * (mode == 'bike') +
prob_bus * (mode == 'bus') + prob_car * (mode == 'car') +
prob_walk * (mode == 'walk'))

## Calculate log of logit choice probability for chosen alt given the params
model_data <- model_data %>%

mutate(log_prob = log(prob_choice))
## Calculate the log-likelihood for these parameters
ll <- sum(model_data$log_prob)
return(-ll)

}
## Maximize the log-likelihood function
model_1c <- optim(par = rep(0, 8), fn = ll_fn_1c, data = data_multi,

method = 'BFGS', hessian = TRUE)

i. Report your parameter estimates, standard errors, z-stats, and p-values. Briefly interpret these
results. For example, what does each parameter mean?

## Summarize model results
model_1c %>%

summarize_mle(c('bus_int', 'car_int', 'walk_int', 'cost',
'time_bike', 'time_bus', 'time_car', 'time_walk'))

## # A tibble: 8 x 5
## names parameters std_errors z_stats p_values
## <chr> <dbl> <dbl> <dbl> <dbl>
## 1 bus_int -0.219 0.386 -0.568 5.70e- 1
## 2 car_int 2.75 0.443 6.20 5.52e-10
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## 3 walk_int 2.98 0.783 3.80 1.44e- 4
## 4 cost -2.60 0.824 -3.16 1.56e- 3
## 5 time_bike -0.289 0.0386 -7.51 6.12e-14
## 6 time_bus -0.143 0.0351 -4.08 4.53e- 5
## 7 time_car -0.405 0.0464 -8.73 2.63e-18
## 8 time_walk -0.297 0.0384 -7.72 1.14e-14

As in the previous models, the cost parameter is negative, indicating that the cost of driving
decreases the utility of driving. The alternative-specific parameters on time are all negative
but tend to be different from one another—the bike and walk parameters are not statistically
different from one another, but all other pairwise combinations of parameters are. These
parameters indicate that the time spent commuting by a particular travel mode always decreases
the utility of taking that mode, but that these marginal utilities of time differ by travel mode.
Additionally, the car and walk intercepts are positive and significant, while the bus intercept
is not statistically significant. These results suggest that, ceteris paribus, driving or walking
would be preferred to taking the bus or biking.

ii. Conduct a likelihood ratio test on this model to test if the alternative-specific parameters on
time are equal to one another. That is, test the null hypothesis:

H0: γbike = γbus = γcar = γwalk

Do you reject this null hypothesis? What is the p-value of the test? Briefly interpret the result
of this test.

## Conduct likelihood ratio test of models 1a and 1b
test_1c <- test_likelihood_ratio(model_1b, model_1c)
## Display test results
test_1c

## $reject
## [1] TRUE
##
## $p_value
## [1] 5.179395e-10

We reject this null hypothesis and conclude that the alternative-specific marginal utilities of
time are not all equal to one another. That is, this model provides a better fit than the model
in part (b), which restricted these parameters to be equal.

Problem 2: Generalized Method of Moments
We are again studying how UMass graduate students choose how to commute to campus in the winter
when riding a bike and walking are infeasible—as in problem 1 of problem set 2—but we are now
estimating the model “by hand” to better understand the generalized method of moments estimation
method. Use the commute_binary.csv dataset for this question.

## Load dataset
data_binary <- read_csv('commute_binary.csv')
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## Rows: 1000 Columns: 13
## – Column specification –––––––––––––––––––––––––-
## Delimiter: ","
## chr (2): mode, marital_status
## dbl (11): id, time.car, cost.car, time.bus, cost.bus, price_gas, snowfa...
##
## i Use ‘spec()‘ to retrieve the full column specification for this data.
## i Specify the column types or set ‘show_col_types = FALSE‘ to quiet this message.

a. Model the choice to drive to campus during winter as a binary logit model. Express the representative
utility of each alternative as a linear function of its cost and time. Include an alternative-specific
intercept and allow the parameter on time to be alternative-specific. That is, the representative
utility to student n from driving and taking the bus, respectively, are

Vnc = α+ βCnc + γcarTnc

Vnb = γbusTnb

where Cnj is the cost to student n of alternative j, Tnj is the time for student n of alternative
j, and the α, β, and γ parameters are to be estimated. We exclude a bus-specific intercept term
because only one intercept term is identified in this model, and we exclude the bus cost because it is
free for all students. It may be easier to think about the difference in representative utility between
driving and taking the bus for student n:

Vnc − Vnb = α+ βCnc + γcarTnc − γbusTnb

Because this is a binary logit model, we can express the choice probability of driving as a function
of Vnc − Vnb:

Pnc = 1
1 + e−(Vnc−Vnb)

Estimate the parameters of this model by method of moments. The following steps can provide a
rough guide to creating your own method of moments estimator:

I. Write down moment conditions for this model. You should have four moment conditions for
this model.

II. Create a function that takes a set of parameters and a matrix of data as inputs:
function(parameters, data_matrix).

III. Within that function, make the following calculations:
i. Calculate the difference in representative utility for each decision maker.
ii. Calculate the choice probability of driving for each decision maker.
iii. Calculate the econometric residual, or the difference between the outcome and the prob-

ability, for each decision maker.
iv. Calculate each of the L moments for each decision maker.
v. Return the N × L matrix of individual moments.

IV. Find the MM estimator using gmm(). Your call of the gmm() function may look something like:

gmm(g = your_function, x = your_data_matrix, t0 = your_starting_guesses,
vcov = ‘iid’, method = ‘Nelder-Mead’
control = list(reltol = 1e-25, maxit = 10000))
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Report your parameter estimates, standard errors, t-stats, and p-values. Briefly interpret these
results. For example, what does each parameter mean?

## Create dataset for use in MM moment function
data_2a <- data_binary %>%

mutate(choice = 1 * (mode == 'car'),
constant = 1,
time.bus = -time.bus) %>%

select(choice, constant, cost.car, time.car, time.bus) %>%
as.matrix()

## Function to calculate moments for commute choice
mm_fn_2a <- function(params, data){
## Select data for X [N x K]
X <- data[, -1]
## Select data for y [N x 1]
y <- data[, 1]
## Calculate representative utility of driving [N x 1]
utility <- X %*% params
## Calculate logit choice probability of driving [N x 1]
prob <- 1 / (1 + exp(-utility))
## Calculate econometric residuals [N x 1]
residuals <- y - prob
## Create moment matrix [N x K]
moments <- c(residuals) * X
return(moments)

}
## Use GMM to estimate model
model_2a <- gmm(g = mm_fn_2a, x = data_2a, t0 = rep(0, 4),

vcov = 'iid', method = 'Nelder-Mead',
control = list(reltol = 1e-25, maxit = 10000))

## Summarize model results
summary(model_2a)

##
## Call:
## gmm(g = mm_fn_2a, x = data_2a, t0 = rep(0, 4), vcov = "iid",
## method = "Nelder-Mead", control = list(reltol = 1e-25, maxit = 10000))
##
##
## Method: twoStep
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Theta[1] 2.2333e+00 3.7522e-01 5.9518e+00 2.6516e-09
## Theta[2] -2.0772e+00 7.1798e-01 -2.8930e+00 3.8153e-03
## Theta[3] -3.3222e-01 3.7929e-02 -8.7590e+00 1.9707e-18
## Theta[4] -1.3257e-01 3.1928e-02 -4.1523e+00 3.2919e-05
##
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## J-Test: degrees of freedom is 0
## J-test P-value
## Test E(g)=0: 9.48387867832971e-23 *******
##
## #############
## Information related to the numerical optimization
## Convergence code = 0
## Function eval. = 1703
## Gradian eval. = NA

The parameters on cost and time are statistically significant and are interpreted as marginal utilities.
The cost of driving decreases the utility of driving, and the time spent commuting by a particular
travel mode decreases the utility of taking that mode. This result is intuitive since people like both
money and leisure time. Notably, the marginal utility of time spent driving and the marginal utility
of time spent on the bus are different, indicating that time on the bus is preferred to time driving.

b. You might be concerned that the cost and time data are exogenous; for example, a student who
enjoys driving is more likely to live farther from campus because they do not mind the extra cost
and time spent driving, and a student who enjoys taking the bus is more likely to live close to a bus
stop so the bus commute time is less. The commute_binary.csv dataset includes four possible
instruments that could be correlated with the cost or time of commuting: price_gas, snowfall,
construction, and bus_detour. Again model the choice to drive to campus during winter as in
(a). That is, the representative utility to student n from driving and taking the bus, respectively,
are

Vnc = α+ βCnc + γcarTnc

Vnb = γbusTnb

where Cnj is the cost to student n of alternative j, Tnj is the time for student n of alternative j,
and the α, β, and γ parameters are to be estimated. Estimate the parameters of this model by
generalized method of moments, constructing moment conditions using the instruments described
above. Thus, you will have five instruments: constant term, price_gas, snowfall, construction,
and bus_detour. The steps to creating your own generalized method of moments estimator are
the same as in part (a), but now you have four parameters and five moment conditions. (Note:
this model may have challenges converging, but you can help it along by giving it different starting
values. I got it to converge by using t0 = c(0, 0, -0.3, -0.1).)

## Create dataset for use in MM moment function
data_2b <- data_binary %>%

mutate(choice = 1 * (mode == 'car'),
constant = 1,
time.bus = -time.bus) %>%

select(choice, constant, cost.car, time.car, time.bus,
price_gas, snowfall, construction, bus_detour) %>%

as.matrix()
## Function to calculate moments for commute choice
gmm_fn_2b <- function(params, data){
## Select data for X [N x K]
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X <- data[, 2:5]
## Select data for y [N x 1]
y <- data[, 1]
## select data for Z [N x L]
Z <- data[, c(2, 6:9)]
## Calculate representative utility of driving [N x 1]
utility <- X %*% params
## Calculate logit choice probability of driving [N x 1]
prob <- 1 / (1 + exp(-utility))
## Calculate econometric residuals [N x 1]
residuals <- y - prob
## Create moment matrix [N x K]
moments <- c(residuals) * Z
return(moments)

}
## Use GMM to estimate model
model_2b <- gmm(g = gmm_fn_2b, x = data_2b, t0 = c(0, 0, -0.3, -0.1),

vcov = 'iid', method = 'Nelder-Mead',
control = list(reltol = 1e-25, maxit = 10000))

i. Report your parameter estimates, standard errors, t-stats, and p-values. Briefly interpret these
results. For example, what does each parameter mean?

## Summarize model results
summary(model_2b)

##
## Call:
## gmm(g = gmm_fn_2b, x = data_2b, t0 = c(0, 0, -0.3, -0.1), vcov = "iid",
## method = "Nelder-Mead", control = list(reltol = 1e-25, maxit = 10000))
##
##
## Method: twoStep
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## Theta[1] 2.9119906 3.8112198 0.7640574 0.4448330
## Theta[2] -3.9860509 8.0529192 -0.4949821 0.6206128
## Theta[3] -0.3509452 0.1228629 -2.8563968 0.0042848
## Theta[4] -0.1502996 0.0525380 -2.8607774 0.0042260
##
## J-Test: degrees of freedom is 1
## J-test P-value
## Test E(g)=0: 0.0060018 0.9382488
##
## Initial values of the coefficients
## Theta[1] Theta[2] Theta[3] Theta[4]
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## 2.0681542 -2.1903611 -0.3290997 -0.1453720
##
## #############
## Information related to the numerical optimization
## Convergence code = 0
## Function eval. = 1175
## Gradian eval. = NA

The parameter estimates are roughly the same as those in the previous model. However,
the intercept and cost parameters now have much larger standard errors, rendering those
parameters not statistically significant. Using instruments can reduce the precision of our
parameter estimates, especially if they are not sufficiently correlated with the relevant variables,
which may be the case here.

ii. Test if your model is correctly specified by performing an overidentifying restrictions test.
Report the results of this test and briefly interpret these results. (Reminder: the specTest()
function from the gmm package conducts this specification test.)

## Test overidentifying restrictions
specTest(model_2b)

##
## ## J-Test: degrees of freedom is 1 ##
##
## J-test P-value
## Test E(g)=0: 0.0060018 0.9382488

The overidentifying restrictions test fails to reject the null hypothesis, so we conclude that all
empirical moments are sufficiently close to zero. This result implies that this model is correctly
specified and provides a good fit for our data.
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