In this report we take cursory look at slot-level COVID appointment availability data as gathered by USDR’s UNIVAF project. The main question we’re looking at is whether this kind of data can be used to identify issues in vaccine access by different demographics. Another question is whether this can help us understand the role of barriers to access, as opposed to more ideological barriers, can help us understand trailing vaccination rates.

Number of slots per state per day

Slot stats

by state

Visualization of range of checked_at time

Availability by vulnerability (national, by zip)

We can compare appointment availability by the demographics of the area that the distribution location is in. The most granual level is the zip-code. Of course, people can travel to locations outside of their zip-code, and so a better analysis would, for every zip code, take an average of the nearby locations weighted by their distance.

We do univariate correlations between vulnerability indices like SVI and availability statistics. In this plot, the points represent individual zip-codes. The red line is a linear fit of the relationship between the vulnerability statistic and the availbility statistic.

Note that for ‘last available’ (min lead time), less is better. For some indices, we see a slight negative correlation between vulnerability and availability.

Note: because we don’t have vaccination data on the zip-code level, we can’t (unlike below for counties) adjust slots/person by coverage, nor can we plot the SVI statistics against vaccination rates on a zip-code level.

We can combine these factors by running linear regressions for the outcome variable we’ve looked at so far (fixed effects for state not shown):

## 
## ================================================================
##                                Dependent variable:              
##                  -----------------------------------------------
##                  slots_per_person hours_available last_available
##                        (1)              (2)            (3)      
## ----------------------------------------------------------------
## Population (log)    -0.097***        1.389***        0.653***   
##                      (0.003)          (0.506)        (0.132)    
## Share Black           0.001          20.953***      -2.326***   
##                      (0.014)          (2.319)        (0.606)    
## Socioeonomic SVI      0.007           -3.608          0.050     
##                      (0.016)          (2.613)        (0.683)    
## Household SVI       -0.061***       -15.185***      -6.483***   
##                      (0.013)          (2.181)        (0.570)    
## Minority SVI         0.071***          1.860        10.699***   
##                      (0.013)          (2.122)        (0.555)    
## Housing SVI          -0.029**       -10.248***        -0.419    
##                      (0.013)          (2.148)        (0.561)    
## Intercept            1.062***        97.463***        -3.438    
##                      (0.054)          (8.774)        (2.293)    
## ----------------------------------------------------------------
## Observations          8,027            8,027          8,027     
## Adjusted R2           0.135            0.133          0.292     
## ================================================================
## Note:                                *p<0.1; **p<0.05; ***p<0.01

Does availability predict vaccinations? (national, by county)

How does appointment availability relate to vaccinations? Unfortunately we don’t have vaccination data on the zip-code level, so we’ll do this analysis on a county level. Vaccination counts by county by day are pulled from CovicActNow.org. The outcome we look at is the number of vaccinations that happened in the two weeks that we’re looking at. We run a simple linear regression with counties as units:

## 
## ============================================================================
##                                         Dependent variable:                 
##                         ----------------------------------------------------
##                           n_vax/population              log(n_vax)          
##                            (1)        (2)        (3)       (4)        (5)   
## ----------------------------------------------------------------------------
## % hesitant (CDC)                   -0.036***                         0.487  
##                                     (0.013)                         (0.432) 
## Trump vote share                   -0.024***                       -0.552***
##                                     (0.002)                         (0.064) 
## Prior vax rate                     0.0001***                       0.007*** 
##                                    (0.00003)                        (0.001) 
## Slots/Person (workday)  0.228***   0.161***              7.791***  4.993*** 
##                          (0.012)    (0.011)              (0.495)    (0.356) 
## Slots/Person (weekend)  0.195***   0.223***              4.392***  4.435*** 
##                          (0.013)    (0.014)              (0.557)    (0.462) 
## Slots/Person (evenings) -0.329***  -0.228***            -10.714*** -6.973***
##                          (0.018)    (0.018)              (0.775)    (0.574) 
## Avg range (hrs)         -0.00001  -0.00003***           -0.001***  -0.001***
##                         (0.00001)  (0.00001)             (0.0003)  (0.0002) 
## Avg lead time (hrs)     0.001***   0.0004***             0.009***  0.008*** 
##                         (0.00004)  (0.00004)             (0.002)    (0.001) 
## Population (log)                              1.165***   1.147***  1.089*** 
##                                                (0.008)   (0.008)    (0.007) 
## Intercept               0.016***   0.029***   -5.707*** -5.565***  -5.179***
##                          (0.003)    (0.008)    (0.169)   (0.156)    (0.289) 
## ----------------------------------------------------------------------------
## Observations              2,122      1,560      2,122     2,122      1,560  
## Adjusted R2               0.706      0.743      0.938     0.948      0.976  
## ============================================================================
## Note:                                            *p<0.1; **p<0.05; ***p<0.01

Week over week

Now, week over week (only two weeks since we don’t have vaccination numbers for this week until end of week):

## 
## =========================================================================================================
##                                                        Dependent variable:                               
##                          --------------------------------------------------------------------------------
##                                      n_vax/population                           log(n_vax)               
##                            (1)       (2)       (3)        (4)        (5)       (6)       (7)       (8)   
## ---------------------------------------------------------------------------------------------------------
## Slots/Person                      0.024***             0.022***             1.923***            1.788*** 
##                                    (0.001)              (0.001)              (0.098)             (0.096) 
## Average range (hrs)                0.00000            -0.00001***           -0.0004**           -0.001***
##                                   (0.00000)            (0.00000)            (0.0002)            (0.0002) 
## Average time ahead (hrs)          0.0002***            0.0002***            0.011***            0.011*** 
##                                   (0.00001)            (0.00001)             (0.001)             (0.001) 
## % hesitant (CDC survey)                     -0.046***  -0.037***                      -1.109***  -0.670* 
##                                              (0.004)    (0.004)                        (0.356)   (0.348) 
## Prior vax rate                              0.013***   0.012***                       1.465***  1.431*** 
##                                              (0.001)    (0.001)                        (0.088)   (0.086) 
## Population (log)                                                  1.170***  1.154***  1.130***  1.121*** 
##                                                                    (0.005)   (0.005)   (0.005)   (0.005) 
## Intercept                0.008*** 0.006***  0.012***   0.009***   -6.765*** -6.700*** -6.715*** -6.748***
##                          (0.002)   (0.002)   (0.002)    (0.002)    (0.181)   (0.177)   (0.210)   (0.205) 
## ---------------------------------------------------------------------------------------------------------
## Observations              9,204     9,204     9,000      9,000      9,204     9,204     9,000     9,000  
## Adjusted R2               0.299     0.363     0.328      0.379      0.912     0.917     0.917     0.921  
## =========================================================================================================
## Note:                                                                         *p<0.1; **p<0.05; ***p<0.01
  • avg range negative now
  • explained variance is 5-12% now.

Maps