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Requirements
Create an account on Google Cloud Platform (free)

You should already have done this for the lecture on Google Compute Engine. See here if not.

R packages

• New: DBI, duckdb, bigrquery, glue
• Already used: tidyverse, hrbrthemes, nycflights13

As per usual, the code chunk below will install (if necessary) and load all of these packages for you. I’m also going to set
my preferred ggplot2 theme, but as you wish.
## Load/install packages
if (!require("pacman")) install.packages("pacman")
pacman::p_load(tidyverse, DBI, duckdb, bigrquery, hrbrthemes, nycflights13, glue)
## My preferred ggplot2 theme (optional)
theme_set(hrbrthemes::theme_ipsum())

Databases 101
Many “big data” problems could be more accurately described as “small data problems in disguise”. Which is to say, the
data that we care about is only a subset or aggregation of some larger dataset. For example, we might want to access US
Census data… but only for a handful of counties along the border of two contiguous states. Or, we might want to analyse
climate data collected from a large number of weather stations… but aggregated up to the national or monthly level. In
such cases, the underlying bottleneck is interacting with the original data, which is too big to fit into memory. How do we
store data of this magnitude and and then access it effectively? The answer is through a database.

Databases can exist either locally or remotely, as well as in-memory or on-disk. Regardless of where a database is located,
the key point is that information is stored in a way that allows for very quick extraction and/or aggregation. Think back
to our filing cabinet analogy from the data.table lecture:
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A filing cabinet arranges items by alphabetical order: Files starting “ABC” in the top drawer, “DEF” in the
second drawer, etc. To find Alice’s file, you’d only have to search the top draw. For Fred, the second draw,
and so on.

This analogy, whilst slightly imperfect, captures the essence of what makes databases so efficient.1 They can very quickly
identify the components that they need to focus on for a particular operation. Extracting the specific information that we
want is a simple matter of submitting a query to the database. The query is where we tell the database how to manipulate
or subset the data into a more manageable form, which we can then pull into our analysis environment (R, Python, etc.)

At this point, you might be tempted to think of a database as the “thing” that you interact with directly. However, it’s
important to realise that the data are actually organised in one or more tables within the database. These tables are
rectangular, consisting of rows and columns, where each row is identified by a unique key. In that sense, they are very
much like the data frames that we’re all used to working with. Continuing with the analogy, a database then is rather
like a list of data frames of R. To access information from a specific table (data frame), we first have to index it from the
database (list) and then execute our query functions. The only material difference being that databases can hold much
more information and are extremely efficient at executing queries over their vast contents.

Tip: A table in a database is like a data frame in an R list.

Databases and R
Virtually every database in existence makes use of SQL (StructuredQuery Language ). SQL is an extremely powerful tool
and has become something of prerequisite for many data science jobs. (Exhibit A.) However, it is also an archaic language
that is much less intuitive than the R tools that we have using thus far in the course. We’ll see several examples of this
shortly, but first the good news: You already have all the programming skills you need to start working with databases.
This is because the tidyverse — through dplyr — allows for direct communication with databases from your local R
environment.

What does this mean?

Simply that you can interactwith the vast datasets that are stored in relational databases using the same tidyverse verbs and
syntax that we already know. All of this is possible thanks to the dbplyr package (link), which provides a database backend
to dplyr. What’s happening even further behind the scenes is that, upon installation, dbplyr suggests the DBI package
(link) as a dependency. DBI provides a common interface that allows dplyr to work with many different databases using
exactly the same code. You don’t even need to leave your RStudio session or learn SQL!

Aside: Okay, you will probably want to learn SQL eventually. Luckily, dplyr and dbplyr come with several
features that can really help to speed up the learning and translation process. We’ll get to these later in the
lecture.

WhileDBI is automatically bundled with dbplyr, you’ll need to install a specific backend package for the type of database
that you want to connect to. You can see a list of commonly used backends here. For today, however, we’ll focus on two:

1. duckdb embeds a DuckDB database.
2. bigrquery connects to Google BigQuery.

The former is a lightweight—but extremely powerful—databasemanagement system (DBMS) that can exist on our local
computers. It thus provides the simplest way of demonstrating the key concepts of this section without the additional
overhead required by some other common other DBMSs. (No external dependencies, no need to connect to a remote
server, etc.) The latter is the one that I use most frequently in my own work and also requires minimal overhead, seeing
as we already set up a Google Cloud account in the previous lecture.

1In truth, most databases rely on binary search trees (“b-trees”). A b-tree shares the spirit of the file cabinet ordering system, but takes it step further
so that we eliminate at least half of the remaining data from our search at each step. E.g. We need to find a person’s tax records in a million-row dataset.
In the first step we immediately realise that it’s somewhere in the first 500k rows. In the next step we immediately realise that it’s somewhere in rows
250k-500k, etc.
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Getting started: DuckDB
Our goal for this section is to create a makeshift database on our local computers — using the excellent DuckDB backend
— and then connect to it from R. I’ll use this to demonstrate the ease with which we can execute queries from R, as well as
underscore some principles for working with databases in general. The lessons that we learn here will carry over to more
complicated cases and much larger datasets.

Connecting to a database

Start by opening an (empty) database connection via the DBI::dbConnect() function, which we’ll call con. Note that we
are calling the duckdb package in the background for the DuckDB backend and telling R that this is a local connection
that exists in memory.

# library(DBI) ## Already loaded

con = dbConnect(duckdb::duckdb(), path = ":memory:")

The arguments to DBI::dbConnect() vary from database to database. However, the first argument is always the database
backend, i.e. duckdb::duckdb() in this case sincewe’re usingDuckDB. Again, while this differs depending on the database
type that you’re connecting with, DuckDB only needs one other argument: the path to the database. Here we use the spe-
cial string, “:memory:”, which causes DuckDB to make a temporary in-memory database. We’ll explore more complicated
connections later on that will involve things like password prompts for remote databases.

Our makeshift database connection con is currently empty. So let’s copy across the flights dataset that comes bundled
together with the nycflights13 package. There are a couple of ways to do this, but here I’ll use the dplyr::copy_to()
convenience function. Note that we are specifying the table name (“flights”) that will exist within this database. You
can also see that we’re passing a list of indexes to the copy_to() function. Indexes are what enable efficient database
performance, since they specify how the data should be laid out for very quick search and aggregation.2 At the same time,
I don’t want you to worry too much about this right now. Indexes will be set by the database host platform or maintainer
in normal applications.

# library(dplyr) ## Already loaded
# library(nycflights13) ## Already loaded

copy_to(
dest = con,
df = nycflights13::flights,
name = "flights",
temporary = FALSE,
indexes = list(
c("year", "month", "day"),
"carrier",
"tailnum",
"dest"
)

)

Now that we’ve copied over the data, we can reference it from R via the dplyr::tbl() function. This will allow us to
treat it as a normal data frame that be manipulated with dplyr commands.

## List tables in our DuckDB database connection (optional)
# dbListTables(con)

## Reference the table from R
flights_db = tbl(con, "flights")
flights_db

2Again, dDatabases rely on binary search, which is the same algorithmic approach that we used when we set keys back in the data.table lecture.
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## # Source: table<flights> [?? x 19]
## # Database: duckdb_connection
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 517 515 2 830 819
## 2 2013 1 1 533 529 4 850 830
## 3 2013 1 1 542 540 2 923 850
## 4 2013 1 1 544 545 -1 1004 1022
## 5 2013 1 1 554 600 -6 812 837
## 6 2013 1 1 554 558 -4 740 728
## 7 2013 1 1 555 600 -5 913 854
## 8 2013 1 1 557 600 -3 709 723
## 9 2013 1 1 557 600 -3 838 846
## 10 2013 1 1 558 600 -2 753 745
## # ... with more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

It worked! Everything looks pretty good, although you may notice something slightly strange about the output. We’ll get
to that in a minute.

Generating queries

Again, one of the best things about dplyr is that it automatically translates tidyverse-style code into SQL for you. In fact,
many of the key dplyr verbs are based on SQL equivalents. With that in mind, let’s try out a few queries using the typical
dplyr syntax that we already know.
## Select some columns
flights_db %>% select(year:day, dep_delay, arr_delay)

## # Source: lazy query [?? x 5]
## # Database: duckdb_connection
## year month day dep_delay arr_delay
## <int> <int> <int> <dbl> <dbl>
## 1 2013 1 1 2 11
## 2 2013 1 1 4 20
## 3 2013 1 1 2 33
## 4 2013 1 1 -1 -18
## 5 2013 1 1 -6 -25
## 6 2013 1 1 -4 12
## 7 2013 1 1 -5 19
## 8 2013 1 1 -3 -14
## 9 2013 1 1 -3 -8
## 10 2013 1 1 -2 8
## # ... with more rows
## Filter according to some condition
flights_db %>% filter(dep_delay > 240)

## # Source: lazy query [?? x 19]
## # Database: duckdb_connection
## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## <int> <int> <int> <int> <int> <dbl> <int> <int>
## 1 2013 1 1 848 1835 853 1001 1950
## 2 2013 1 1 1815 1325 290 2120 1542
## 3 2013 1 1 1842 1422 260 1958 1535
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## 4 2013 1 1 2115 1700 255 2330 1920
## 5 2013 1 1 2205 1720 285 46 2040
## 6 2013 1 1 2343 1724 379 314 1938
## 7 2013 1 2 1332 904 268 1616 1128
## 8 2013 1 2 1412 838 334 1710 1147
## 9 2013 1 2 1607 1030 337 2003 1355
## 10 2013 1 2 2131 1512 379 2340 1741
## # ... with more rows, and 11 more variables: arr_delay <dbl>, carrier <chr>,
## # flight <int>, tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>
## Get the mean delay by destination (group and then summarise)
flights_db %>%

group_by(dest) %>%
summarise(mean_dep_delay = mean(dep_delay))

## # Source: lazy query [?? x 2]
## # Database: duckdb_connection
## dest mean_dep_delay
## <chr> <dbl>
## 1 IAH 10.8
## 2 MIA 8.88
## 3 BQN 12.4
## 4 ATL 12.5
## 5 ORD 13.6
## 6 FLL 12.7
## 7 IAD 17.0
## 8 MCO 11.3
## 9 PBI 13.0
## 10 TPA 12.1
## # ... with more rows

Again, everything seems to be working great with the minor exception being that our output looks a little different to
normal. In particular, you might be wondering what # Source: lazy query means.

Laziness as a virtue

Themodus operandi of dplyr is to be as lazy as possible. What this means in practice is that your R code is translated into
SQL and executed in the database, not in R. This is a good thing, since:

• It never pulls data into R unless you explicitly ask for it.
• It delays doing any work until the last possible moment: it collects together everything you want to do and then

sends it to the database in one step.

For example, consider an example where we are interested in the mean departure and arrival delays for each plane (i.e. by
unique tail number). I’ll also drop observations with less than 100 flights.
tailnum_delay_db =

flights_db %>%
group_by(tailnum) %>%
summarise(
mean_dep_delay = mean(dep_delay),
mean_arr_delay = mean(arr_delay),
n = n()
) %>%

filter(n > 100) %>%
arrange(desc(mean_arr_delay))
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Surprisingly, this sequence of operations never touches the database.3 It’s not until you actually ask for the data (say, by
printing tailnum_delay_db) that dplyr generates the SQL and requests the results from the database. Even then it tries
to do as little work as possible and only pulls down a few rows.
tailnum_delay_db

## # Source: lazy query [?? x 4]
## # Database: duckdb_connection
## # Ordered by: desc(mean_arr_delay)
## tailnum mean_dep_delay mean_arr_delay n
## <chr> <dbl> <dbl> <dbl>
## 1 N11119 32.6 30.3 148
## 2 N16919 32.4 29.9 251
## 3 N14998 29.4 27.9 230
## 4 N15910 29.3 27.6 280
## 5 N13123 29.6 26.0 121
## 6 N11192 27.5 25.9 154
## 7 N14950 26.2 25.3 219
## 8 N21130 27.0 25.0 126
## 9 N24128 24.8 24.9 129
## 10 N22971 26.5 24.7 230
## # ... with more rows

Collect the data into your local R environment

Typically, you’ll iterate a few times before you figure out what data you need from the database. Once you’ve figured
it out, use collect() to pull all the data into a local data frame. I’m going to assign this collected data frame to a new
object (i.e. tailnum_delay), but only because I want to keep the queried data base object (tailnum_delay_db) separate
for demonstrating some SQL translation principles in the next section.
tailnum_delay =

tailnum_delay_db %>%
collect()

tailnum_delay

## # A tibble: 1,201 x 4
## tailnum mean_dep_delay mean_arr_delay n
## <chr> <dbl> <dbl> <dbl>
## 1 N11119 32.6 30.3 148
## 2 N16919 32.4 29.9 251
## 3 N14998 29.4 27.9 230
## 4 N15910 29.3 27.6 280
## 5 N13123 29.6 26.0 121
## 6 N11192 27.5 25.9 154
## 7 N14950 26.2 25.3 219
## 8 N21130 27.0 25.0 126
## 9 N24128 24.8 24.9 129
## 10 N22971 26.5 24.7 230
## # ... with 1,191 more rows

Super. We have successfully pulled the queried database into our local R environment as a data frame. You can now
proceed to use it in exactly the same way as you would any other data frame. For example, we could plot the data to see
i) whether there is a relationship between mean departure and arrival delays (there is), and ii) whether planes manage to
make up some time if they depart late (they do).

3It’s a little hard to tell from this simple example, but an additional clue is that fact that this sequence of commands would execute instantaneously
even it it was applied on a massive remote database.
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tailnum_delay %>%
ggplot(aes(x=mean_dep_delay, y=mean_arr_delay, size=n)) +
geom_point(alpha=0.3) +
geom_abline(intercept = 0, slope = 1, col="orange") +
coord_fixed()

## Warning: Removed 1 rows containing missing values (geom_point).
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Joins

One of the things that databases excel at are joins. At interesting touchpoint here is that dplyr’s collection of joining
functions are based on their SQL equivalents (including names). You’ll hence be relieved to know that the translation
carries over rather nicely for joins too. Here is a simple example, using the exact same left join that we saw back in the
tidyverse lecture. Note that I’m copying over the planes data frame to the same DuckDB connection that is housing the
flights table. Again, I want to emphasise that databases are like lists, in the sense that they can hold multiple datasets
(i.e. tables).
## Copy over the "planes" dataset to the same "con" DuckDB connection.
copy_to(

dest = con,
df = nycflights13::planes,
name = "planes",
temporary = FALSE,
indexes = "tailnum"
)

## List tables in our "con" database connection (i.e. now "flights" and "planes")
dbListTables(con)

## [1] "flights" "planes"

7

https://raw.githack.com/uo-ec607/lectures/master/05-tidyverse/05-tidyverse.html#joins


## Reference from dplyr
planes_db = tbl(con, 'planes')

## Run the equivalent left join that we saw back in the tidyverse lecture
left_join(

flights_db,
planes_db %>% rename(year_built = year),
by = "tailnum" ## Important: Be specific about the joining column

) %>%
select(year, month, day, dep_time, arr_time, carrier, flight, tailnum,

year_built, type, model)

## # Source: lazy query [?? x 11]
## # Database: duckdb_connection
## year month day dep_time arr_time carrier flight tailnum year_built type
## <int> <int> <int> <int> <int> <chr> <int> <chr> <int> <chr>
## 1 2013 1 1 517 830 UA 1545 N14228 1999 Fixed ~
## 2 2013 1 1 533 850 UA 1714 N24211 1998 Fixed ~
## 3 2013 1 1 542 923 AA 1141 N619AA 1990 Fixed ~
## 4 2013 1 1 544 1004 B6 725 N804JB 2012 Fixed ~
## 5 2013 1 1 554 812 DL 461 N668DN 1991 Fixed ~
## 6 2013 1 1 554 740 UA 1696 N39463 2012 Fixed ~
## 7 2013 1 1 555 913 B6 507 N516JB 2000 Fixed ~
## 8 2013 1 1 557 709 EV 5708 N829AS 1998 Fixed ~
## 9 2013 1 1 557 838 B6 79 N593JB 2004 Fixed ~
## 10 2013 1 1 558 849 B6 49 N793JB 2011 Fixed ~
## # ... with more rows, and 1 more variable: model <chr>

Assuming that we’re finished querying our DuckDB database at this point, we’d normally disconnect from it by calling
DBI::dbDisconnect(con). However, I want to keep the connection open a bit longer, so that I can demonstrate how to
execute raw (i.e. untranslated) SQL queries on a database from within R.

Using SQL directly in R
Translate with dplyr::show_query()

Behind the scenes, dplyr is translating your R code into SQL. You can use the show_query() function to display the SQL
code that was used to generate a queried table.

tailnum_delay_db %>% show_query()

## <SQL>
## SELECT *
## FROM (SELECT "tailnum", AVG("dep_delay") AS "mean_dep_delay", AVG("arr_delay") AS "mean_arr_delay", COUNT(*) AS "n"
## FROM "flights"
## GROUP BY "tailnum") "q01"
## WHERE ("n" > 100.0)
## ORDER BY "mean_arr_delay" DESC

Note that the SQL call is much less appealing/intuitive our piped dplyr code. In part, this is an artefact of the translation
steps involved. The dplyr translation engine includes various safeguards that are designed to ensure that the resulting
SQL code works. But this comes at the expense of code concision (e.g. those repeated SELECT commands at the top of
the SQL string are redundant). However, it also reflects the simple fact that SQL is not an elegant language to work with.
In particular, SQL imposes a lexical order of operations that doesn’t necessarily preserve the logical order of operations.4

4Which stands in direct contrast to our piped dplyr code, i.e. “take this object, do this, then do this”, etc. I even made a meme about it for you:
https://www.captiongenerator.com/1325222/Dimitri-doesnt-need-SQL
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This lexical ordering is also known as “order of execution” and is strict in the sense that every SQL query must follow the
same hierarchy of commands. Here is how Julia Evans lays it out in her wonderful zine, Become A Select Star (which you
should totally buy).

## Sorry, this image is only available in the the HTML version of the notes.
## You can see the original here:
## https://wizardzines.com/zines/sql/samples/from.png.

I don’t really want to get into all of this now. But I dowant to make you aware of the fact that SQL queries are not written
in a way that you would think about them logically. Still, while it can take a while to wrap your head around, the good
news is that SQL’s lexical ordering is certainly learnable. Again, I recommend Julia’s zine as a great starting point.5

Now, at this point, you may be wondering: Do we even need to learn SQL, given that it’s a pain and that the dplyr
translation works so well?

That’s a fair question. The short answer is that, “yes”, at some point you will probably find yourself needing to write raw
SQL code. Luckily, writing and submitting SQL queries directly from R and RStudio is easily done, thanks to the DBI
package. In fact, I’m about to walk you through two different ways of doing so. But first, let’s generate (translate) a simple
SQL query that we can use as an orientating example.
## Show the equivalent SQL query for these dplyr commands
flights_db %>%

select(month, day, dep_time, sched_dep_time, dep_delay) %>%
filter(dep_delay > 240) %>%
head(5) %>%
show_query()

## <SQL>
## SELECT *
## FROM (SELECT "month", "day", "dep_time", "sched_dep_time", "dep_delay"
## FROM "flights") "q01"
## WHERE ("dep_delay" > 240.0)
## LIMIT 5

Note: In the SQL code chunks that follow, I’m going to simplify my queries quite a lot relative to the suggested translation
above. Again, dplyr adds in various safeguards to ensure that its translation works across various edge cases and potential
SQL backends. While these translations should always work — confirm for yourself by running the suggested translation
above — they typically carry quite a bit excess verbiage and syntax. My goal here is to give you a sense of how we can
“trim the fat”, while still using dplyr’s suggestion as a good starting point.

Option 1: Use RMarkdown sql chunks

If you’re writing up a report or paper in R Markdown, then you can include SQL chunks directly in your .Rmd file. All you
need to do is specify your code chunk type as sql and R Markdown (via knitr) will automatically call theDBI package to
execute the query. The R Markdown book provides a more detailed discussion of the different chunk options that power
the sql engine output. However, to execute our simple query example from earlier (including specifying the connection),
the following would suffice.

```{sql, connection=con}
SELECT month, day, dep_time, sched_dep_time, dep_delay, origin, dest
FROM flights
WHERE dep_delay > 240
LIMIT 5
```

And, just to prove it, here’s the same query / code chunk evaluated directly in these lecture notes.
5More good resources here and here.
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SELECT month, day, dep_time, sched_dep_time, dep_delay, origin, dest
FROM flights
WHERE dep_delay > 240
LIMIT 5

Table 1: 5 records

month day dep_time sched_dep_time dep_delay origin dest

1 1 848 1835 853 JFK BWI

1 1 1815 1325 290 EWR OMA

1 1 1842 1422 260 EWR BTV

1 1 2115 1700 255 JFK CVG

1 1 2205 1720 285 EWR MIA

Option 2: Use DBI:dbGetQuery()

Of course, we don’t want to be limited to running SQL queries from within R Markdown documents. To run SQL queries
in regular R scripts, we can use the DBI::dbGetQuery() function. For no particular reason except to keep the SQL string
short enough to fit on a single line, this time I’ll return all the variables from the dataset via SELECT *.
## Run the query using SQL directly on the connection.
dbGetQuery(con, "SELECT * FROM flights WHERE dep_delay > 240.0 LIMIT 5")

## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## 1 2013 1 1 848 1835 853 1001 1950
## 2 2013 1 1 1815 1325 290 2120 1542
## 3 2013 1 1 1842 1422 260 1958 1535
## 4 2013 1 1 2115 1700 255 2330 1920
## 5 2013 1 1 2205 1720 285 46 2040
## arr_delay carrier flight tailnum origin dest air_time distance hour minute
## 1 851 MQ 3944 N942MQ JFK BWI 41 184 18 35
## 2 338 EV 4417 N17185 EWR OMA 213 1134 13 25
## 3 263 EV 4633 N18120 EWR BTV 46 266 14 22
## 4 250 9E 3347 N924XJ JFK CVG 115 589 17 0
## 5 246 AA 1999 N5DNAA EWR MIA 146 1085 17 20
## time_hour
## 1 2013-01-01 23:00:00
## 2 2013-01-01 18:00:00
## 3 2013-01-01 19:00:00
## 4 2013-01-01 22:00:00
## 5 2013-01-01 22:00:00

Recommendation: Use glue::glue_sql()

While the above approach works perfectly fine — i.e. just write out the full SQL query string in quotation marks inside
dbGetQuery()— I’m going to recommend that you consider the glue_sql() function from the glue package (link). This
provides a more integrated approach that allows you to 1) use local R variables in your SQL queries, and 2) divide long
queries into sub-queries. Here’s a simple example of the former.

# library(glue) ## Already loaded

## Some local R variables
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tbl = "flights"
d_var = "dep_delay"
d_thresh = 240

## The "glued" SQL query string
sql_query =

glue_sql("
SELECT *
FROM {`tbl`}
WHERE ({`d_var`} > {d_thresh})
LIMIT 5
",
.con = con
)

## Run the query
dbGetQuery(con, sql_query)

## year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time
## 1 2013 1 1 848 1835 853 1001 1950
## 2 2013 1 1 1815 1325 290 2120 1542
## 3 2013 1 1 1842 1422 260 1958 1535
## 4 2013 1 1 2115 1700 255 2330 1920
## 5 2013 1 1 2205 1720 285 46 2040
## arr_delay carrier flight tailnum origin dest air_time distance hour minute
## 1 851 MQ 3944 N942MQ JFK BWI 41 184 18 35
## 2 338 EV 4417 N17185 EWR OMA 213 1134 13 25
## 3 263 EV 4633 N18120 EWR BTV 46 266 14 22
## 4 250 9E 3347 N924XJ JFK CVG 115 589 17 0
## 5 246 AA 1999 N5DNAA EWR MIA 146 1085 17 20
## time_hour
## 1 2013-01-01 23:00:00
## 2 2013-01-01 18:00:00
## 3 2013-01-01 19:00:00
## 4 2013-01-01 22:00:00
## 5 2013-01-01 22:00:00

I know this seems like more work (undeniably so for this simple example). However, the glue::glue_sql() approach
really pays off when you start working with bigger, nested queries. See the documentation for more examples and func-
tionality, including how to match on or iterate over or multiple input values.

Common Table Expressions

There’s a lot more to say about writing direct SQL queries. But I’m going to limit myself to one last topic, i.e. Common
Table Expressions (CTEs). These are a popular way to write complex queries — typically involving various subqueries —
since they allow you to name each component. We do this by using the WITH keyword and chain multiple subqueries with
commas. An example may help to illustrate.

Suppose that we are interested in redoing (a slightly modified version of) our left join operation from earlier in pure SQL.
One way to start thinking about this is that we are really joining two subqueries. I’ll use the glue_sql() function to write
and assign these two subqueries, since that will prove convenient for the comparison that I want to make below.6

The first subquery (the “left-hand” table) is really simple. It’s just selecting all of the variables from the flights table.
6CTEs have nothing to do with glue_sql() in particular — the latter being an R-based construct — but they do combine really nicely as we’re

about to see.
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flights_subquery =
glue_sql(
"
SELECT *
FROM flights
",
.con = con)

The second query (the “right-hand” table) is only slightly more nuanced. This time we want to select only a few columns
and rename one of them in the process to avoid duplicate column names (i.e. year AS year_built).7

planes_subquery =
glue_sql(
"
SELECT tailnum, year AS year_built, model
FROM planes
",
.con = con
)

With our subqueries in hand, let’s compare two equally valid approaches to joining the resulting tables. I’ll let you decide
which of the two you prefer and find more readable.

Here is the regular, non-CTE syntax for a SQL join.
join_string =

glue_sql(
"
SELECT year, dep_time,
a.tailnum AS tailnum,
year_built, model

FROM ({flights_subquery}) AS a
LEFT JOIN ({planes_subquery}) AS b
ON a.tailnum = b.tailnum
LIMIT 4
",
.con = con

)

dbGetQuery(con, join_string)
## year dep_time tailnum year_built model
## 1 2013 517 N14228 1999 737-824
## 2 2013 533 N24211 1998 737-824
## 3 2013 542 N619AA 1990 757-223
## 4 2013 544 N804JB 2012 A320-232

And here is the CTE equivalent.
cte_join_string =

glue_sql(
"
WITH
a AS ({flights_subquery}),
b AS ({planes_subquery})
SELECT year, dep_time,

a.tailnum AS tailnum,
year_built, model

FROM a
LEFT JOIN b
ON a.tailnum = b.tailnum
LIMIT 4
",
.con = con

)

dbGetQuery(con, cte_join_string)
## year dep_time tailnum year_built model
## 1 2013 517 N14228 1999 737-824
## 2 2013 533 N24211 1998 737-824
## 3 2013 542 N619AA 1990 757-223
## 4 2013 544 N804JB 2012 A320-232

Before closing up this section, there are a couple of other things to note. The first is that, regardless of which approach we
use, SQL joins work best if we name the intermediate tables. Here I have called them a and b, but you can use whatever
you like. The reason is that we need to be explicit about which table a particular set of variables is coming from. For
example, we have to specify ON a.tailnum = b.tailnum as the joining variables, even though they are called exactly the

7Note that the renaming is not strictly necessary, since we have to specify the join columns in SQL. SQL will automatically prefix any duplicate
columns with a table identifier, but we’re getting ahead of ourselves here. I also think it’s just good practice to avoid duplicate names that don’t refer to
the same things.
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same thing.8 Similarly, note that in selecting the final set of return variables — which, again, comes first because of SQL’s
confusing lexical ordering — I actually have to specify which of the two identical joining columns I want (i.e. a.tailnum
or b.tailnum).9 Here I have gone with the former and renamed it by dropping the now superfluous “a.” prefix.

If this all sounds quite finicky and arcane… that’s because it is. All ofwhich is to say that you should be patientwith yourself
when learning SQL. It’s an extremely powerful tool, but has some design features that have rightly been superseded or
tweaked in modern data wrangling libraries.

Disconnect

Finally, disconnect from the connection using the DBI::dbDisconnect() function.

dbDisconnect(con)

Scaling up: Google BigQuery
Now that you’ve hopefully absorbed the key principles of database interaction from our demonstration example, let’s
move on to a more realistic use-case. In particular, the database service that I rely on most during my own daily workflow
is Google BigQuery. The advertising tagline is that BigQuery is a “serverless, highly scalable, enterprise data warehouse
designed to make all your data analysts productive at an unmatched price-performance.” Technical and marketing jargon
notwithstanding, I think it’s fair to say that BigQuery is a fantastic product. The salient features from our perspective are:

• Accessibility. BigQuery is part of the Google Cloud Platform (GCP) that we signed up for in the cloud computing
lecture. So you should already have gratis access to it. Sign up for a GCP 12-month free trial now if you haven’t
done so yet.

• Economy. It is extremely fast and economical to use. (See: Pricing.) Even disregarding our free trial period, you
are allowed to query 1 TB of data for free each month.10 Each additional TB beyond that will only cost you $5
once your free trial ends. Storage is also very cheap, although you already have access to an array of public datasets.
Speaking of which…

• Data availability. BigQuery hosts several sample tables to get you started. Beyond that, however, there are some
incredible public datasets available on the platform. You can find everything from NOAA’s worldwide weather
records… to Wikipedia data… to Facebook comments… to liquor sales in Iowa… to real estate transactions across
Latin America. I daresay you could generate an effective research program simply by staring at these public datasets.

Most heavy BigQuery users tend to interact with the platform directly in the web UI. This has a bunch of nice features
like automatic SQL query formatting and table previewing. I recommend you try the BigQuery web UI out after going
through these lecture notes.11 For now, however, I’ll focus on interactingwith BigQuery databases fromR, with help from
the very useful bigrquery package (link).

The starting point for using the bigrquery package is to provide your GCP project billing ID. It’s easy enough to specify
this as a string directly in your R script. However, you may recall that we already stored our GCP credentials during the
cloud computing lecture. In particular, your project ID should be saved as an environment variable in the .Renviron file
in your home directory.12 In that case, we can just call it by using the Sys.getenv() command. I’m going to use this latter
approach, since it provides a safe and convenient way for me to share these lecture notes without compromising security.
But as you wish.

# library(bigrquery) ## Already loaded

billing_id = Sys.getenv("GCE_DEFAULT_PROJECT_ID") ## Replace with your project ID if this doesn't work

8In contrast, both dplyr and data.table allow us to merge data frames by specifying a common joining variable once. E.g. left_join(d1, d2, by
= "id") or merge(DT1, DT2, by = "id").

9Actually, that’s note quite true. I’d automatically get a duplicate “tailnum” column if I instead used, say, SELECT *. But that’s not desirable either.
10That’s “T” as in terabytes.
11Here’s a neat example showing how to find the most popular “Alan” according to Wikipedia page views.
12We did this as part of the authentication process of the googleComputeEngineR package. If you aren’t sure, you can confirm for yourself by

running usethis::edit_r_environ() in your R console. If you don’t see a variable called GCE_DEFAULT_PROJECT_ID, then you should rather specify
your project ID directly.
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Having set our project IDs, we are now ready to run queries and download BigQuery data into our R environment. I’ll
demonstrate using two examples: 1)US birth data from the samples data, and 2) Fishing effort data from theGlobal Fishing
Watch project.

Example 1) US birth data

Thebigquerypackage supports variousways—or “abstraction levels”—of running queries fromR, including interacting
directly with the low-level API. In the interests of brevity, I’m only going to focus on the dplyr approach here.13 As with
the theDuckDB example fromearlier, we start by establishing a connection using DBI::dbConnect(). The only difference
this time is that we need to specify that are using the BigQuery backend (via bigrquery::bigquery()) and provide our
credentials (via our project billing ID). Let’s proceed by connecting to the “publicdata.samples” dataset.

# library(DBI) ## Already loaded
# library(dplyr) ## Already loaded

bq_con =
dbConnect(
bigrquery::bigquery(),
project = "publicdata",
dataset = "samples",
billing = billing_id
)

One neat thing about this setup is that the connection holds for any tables within the specified database. We just need to
specify the desired table using dplyr::tbl() and then execute our query as per usual. You can see a list of available tables
within your connection by using DBI::dbListTables().

Tip: Make sure that you run the next line interactively if this is the first time you’re ever connecting to
BigQuery from R. You will be prompted to choose whether you want to cache credentials between R sessions
(I recommend “Yes”) and then to authorise access in your browser.

dbListTables(bq_con)

## [1] "github_nested" "github_timeline" "gsod" "natality"
## [5] "shakespeare" "trigrams" "wikipedia"

For this example, we’ll go with the natality table, which contains registered birth records for all 50 US states (1969–2008).

natality = tbl(bq_con, "natality")

As a reference point, the raw natality data on BigQuery is about 22 GB. Not gigantic, but enough to overwhelm most
people’s RAM. Here’s a simple exercise where we collapse the data down to yearly means.
bw =

natality %>%
filter(!is.na(state)) %>% ## optional to remove some outliers
group_by(year) %>%
summarise(weight_pounds = mean(weight_pounds, na.rm=TRUE)) %>%
collect()

Plot it.
bw %>%

ggplot(aes(year, weight_pounds)) +
geom_line()

13I encourage you to read the package documentation to see these other methods for yourself.
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For the record, I don’t know why birth weights have been falling recently, and whether that is a good (e.g. declining mater-
nal obesity rates) or bad (e.g.maternalmalutrition) thing.14 One thingwe can do, however, is provide amore disaggregated
look at the data. This time, I’ll query the natality table in a way that summarises mean bith weight by US state and gender.
## Get mean yearly birth weight by state and gender
bw_st =

natality %>%
filter(!is.na(state)) %>%
group_by(year, state, is_male) %>%
summarise(weight_pounds = mean(weight_pounds, na.rm=TRUE)) %>%
mutate(gender = ifelse(is_male, "Male", "Female")) %>%
collect()

Now let’s plot it. I’ll highlight a few (arbitrary) states just for interest’s sake. I’ll also add a few more bells and whistles to
the resulting plot.
## Select arbitrary states to highlight
states = c("CA","DC","OR","TX","VT")
## Rearranging the data will help with the legend ordering
bw_st = bw_st %>% arrange(gender, year)

## Plot it
bw_st %>%

ggplot(aes(year, weight_pounds, group=state)) +
geom_line(col="grey75", lwd = 0.25) +
geom_line(
data = bw_st %>% filter(state %in% states),
aes(col=fct_reorder2(state, year, weight_pounds)),
lwd=0.75
) +

facet_wrap(~gender) +

14See here for more discussion and help from some epidemiologists on Twitter.
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scale_color_brewer(palette = "Set1", name=element_blank()) +
labs(
title = "Mean birth weight, by US state over time",
subtitle = "Selected states highlighted",
x = NULL, y = "Pounds",
caption = "Data sourced from Google BigQuery"
) +

theme_ipsum(grid=FALSE)
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Again, this is notmy field of specialization and I don’t want to take too strong of a stance on the observed trends. However,
a clearer picture is beginning to emerge with the disaggregated data. I’ll let you dig more into this with your own queries,
which hopefully you’ve seen is very quick and easy to do.

As before, its best practice to disconnect from the server once you are finished.

dbDisconnect(bq_con)

Example 2) Global FishingWatch

I know that this lecture is running long now, but I wanted to show you one final example that is closest tomy own research.
Global FishingWatch is an incredible initiative that aims to bring transparency to the world’s oceans. I’ve presented on
GFW in various forums and I highly encourage you to play around with their interactive map if you get a spare moment.
For the moment, though we’ll simply look at how to connect to the public GFW data on BigQuery and then extract some
summary information about global fishing activity.
gfw_con =

dbConnect(
bigrquery::bigquery(),
project = "global-fishing-watch",
dataset = "global_footprint_of_fisheries",
billing = billing_id
)
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Again, we can look at the available tables within this connection using DBI::dbListTables().
dbListTables(gfw_con)

## [1] "fishing_effort" "fishing_effort_byvessel"
## [3] "fishing_vessels" "vessels"

All of these tables are interesting in their own right, but we’re going to be querying the “fishing_effort” table. Let’s link it
to a local (lazy) data frame that we’ll call effort.
effort = tbl(gfw_con, "fishing_effort")
effort

## # Source: table<fishing_effort> [?? x 8]
## # Database: BigQueryConnection
## date lat_bin lon_bin flag geartype vessel_hours fishing_hours mmsi_present
## <chr> <int> <int> <chr> <chr> <dbl> <dbl> <int>
## 1 2012-~ -879 1324 AGO purse_s~ 5.76 0 1
## 2 2012-~ -5120 -6859 ARG trawlers 1.57 1.57 1
## 3 2012-~ -5120 -6854 ARG purse_s~ 3.05 3.05 1
## 4 2012-~ -5119 -6858 ARG purse_s~ 2.40 2.40 1
## 5 2012-~ -5119 -6854 ARG trawlers 1.52 1.52 1
## 6 2012-~ -5119 -6855 ARG purse_s~ 0.786 0.786 1
## 7 2012-~ -5119 -6853 ARG trawlers 4.60 4.60 1
## 8 2012-~ -5118 -6852 ARG trawlers 1.56 1.56 1
## 9 2012-~ -5118 -6850 ARG trawlers 1.61 1.61 1
## 10 2012-~ -5117 -6849 ARG trawlers 0.797 0.797 1
## # ... with more rows

Now, we can do things like find out who are the top fishing nations by total number of hours fished. As we can see, China
is by far the dominant player on the world stage:
effort %>%

group_by(flag) %>%
summarise(total_fishing_hours = sum(fishing_hours, na.rm=T)) %>%
arrange(desc(total_fishing_hours)) %>%
collect()

## # A tibble: 126 x 2
## flag total_fishing_hours
## <chr> <dbl>
## 1 CHN 57711389.
## 2 ESP 8806223.
## 3 ITA 6790417.
## 4 FRA 6122613.
## 5 RUS 5660001.
## 6 KOR 5585248.
## 7 TWN 5337054.
## 8 GBR 4383738.
## 9 JPN 4347252.
## 10 NOR 4128516.
## # ... with 116 more rows

Aside on date partitioning One thing I wanted to flag quickly is that many tables and databases in BigQuery are date
partitioned, i.e. ordered according to timestamps of when the data were ingensted. The GFW data, for example, are date
partitioned since this provides a more cost-effective way to query datasets. My reason for mentioning this is because it
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requires a minor tweak to the way we’re going to query or manipulate the GFW data by date.15 The way this works in
native SQL is to reference a special _PARTITIONTIME pseudo column if you want to, say, filter according to date. (See here
for some examples.) There’s no exact dplyr translation of this _PARTITIONTIME pseudo column. Fortunately, the very
simple solution is to specify it as an SQL variable directly in our dplyr call using backticks. Here’s an example that again
identifies the world’s top fishing nations, but this time limits the analysis to data from 2016 only.
effort %>%

## Here comes the filtering on partition time
filter(
`_PARTITIONTIME` >= "2016-01-01 00:00:00",
`_PARTITIONTIME` <= "2016-12-31 00:00:00"
) %>%

## End of partition time filtering
group_by(flag) %>%
summarise(total_fishing_hours = sum(fishing_hours, na.rm=TRUE)) %>%
arrange(desc(total_fishing_hours)) %>%
collect()

## # A tibble: 121 x 2
## flag total_fishing_hours
## <chr> <dbl>
## 1 CHN 16882037.
## 2 TWN 2227341.
## 3 ESP 2133990.
## 4 ITA 2103310.
## 5 FRA 1525454.
## 6 JPN 1404751.
## 7 RUS 1313683.
## 8 GBR 1248220.
## 9 USA 1235116.
## 10 KOR 1108384.
## # ... with 111 more rows

Once again, China takes first place. There is some shuffling for the remaining places in the top 10, though.

One last query: Global fishing effort in 2016 Okay, here’s a quick final query to get global fishing effort in 2016. I’m
not going to comment my code much, but hopefully it’s clear that that I’m creating 1 × 1 degree bins and then aggregating
fishing effort up to that level.
## Define the desired bin resolution in degrees
resolution = 1

globe =
effort %>%
filter(
`_PARTITIONTIME` >= "2016-01-01 00:00:00",
`_PARTITIONTIME` <= "2016-12-31 00:00:00"
) %>%

filter(fishing_hours > 0) %>%
mutate(
lat_bin = lat_bin/100,
lon_bin = lon_bin/100
) %>%

15You may have noticed that the “date” column in the effort table above is actually a character string. So you would need to convert this column to
a date variable first, before using it to do any standard date filtering operations. Even then it’s going to be less efficient than the partitioning approach
that we’re about to see.
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mutate(
lat_bin_center = floor(lat_bin/resolution)*resolution + 0.5*resolution,
lon_bin_center = floor(lon_bin/resolution)*resolution + 0.5*resolution
) %>%

group_by(lat_bin_center, lon_bin_center) %>%
summarise(fishing_hours = sum(fishing_hours, na.rm=TRUE)) %>%
collect()

Let’s reward ourselves with a nice plot.
globe %>%

filter(fishing_hours > 1) %>%
ggplot() +
geom_tile(aes(x=lon_bin_center, y=lat_bin_center, fill=fishing_hours))+
scale_fill_viridis_c(
name = "Fishing hours (log scale)",
trans = "log",
breaks = scales::log_breaks(n = 5, base = 10),
labels = scales::comma
) +

labs(
title = "Global fishing effort in 2016",
subtitle = paste0("Effort binned at the ", resolution, "° level."),
y = NULL, x = NULL,
caption = "Data from Global Fishing Watch"
) +

theme_ipsum(grid=FALSE) +
theme(axis.text=element_blank())
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As always, remember to disconnect.
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dbDisconnect(gfw_con)

Where to next: Learning and practicing SQL
While we did cover some SQL basics and syntax, my primary goal for this lecture has been to get you up running with
databases as quickly and painlessly as possible. I really do think that you can get a great deal of mileage using the dplyr
database integration that we’ve focused on here. However, learning SQL will make a big difference to your life once you
start working with databases regularly. I expect that it will also boost your employment options significantly. The good
news is that you are already well on your way to internalising the basic commands and structure of SQL queries. We’ve
seen the show_query() function, which is a great way to get started if your coming from R and the tidyverse. Another
helpful dbplyr resource is the “sql” vignette, so take a look:

vignette('sql', package = 'dbplyr')

In my experience, though the best best way to learn SQL is simply to start writing your own queries. TheBigQuerywebUI
is especially helpful in this regard. Not only is it extremely cheap to use (free up to 1 TB), but it also comes with a bunch
of useful features like in-built query formatting and preemptive error detection. A good way to start is by copying over
someone else’s SQL code — e.g. here or here — modifying it slightly, and then see if you can run it in the BigQuery web
UI.

Further resources
You are spoilt for choice here and I’ve already hyperlinked to many resources throughout this lecture. So here are some
final suggestions to get you querying databases like a boss.

• RStudio’s Databases using R is a one-stop reference shop for much that we have covered today and more.
• Juan Mayorga has a super tutorial on “Getting Global Fishing Watch Data from Google Big Query using R”. He also

dives into some of the reasons why you might want to learn SQL (i.e. beyond just using the dplyr translation).
• If you want a dedicated resource for learning SQL, then again I’m going to stump for Julia Evans’ Become A Select
Star. It’s a great, concise introduction to the major concepts and a steal at only $12.

• On the other end of the scale, the official BigQuery documentation provides an exhaustive overview of the many
functions and syntax for so-called standard SQL (including specialised operations on say, datetime and JSON ob-
jects).

• There are also loads of online tutorials (e.g. W3Schools) and courses (e.g. Codecademy) that you can check out.
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