Data Science for Economists
Lecture 14: Google Compute Engine (Part I)

Grant R. McDermott

University of Oregon | EC 607

Contents
Requirements e e 1
Introduction L e e e 1
Install Rand RStudio Server on GCE e 3
Getting the most out of Ronyour GCEsetup i it e 8
Further resources e e 10
Bonus material e e 10

Today is the first of two lectures on Google Compute Engine. In these two lectures, I'm going to show you how to run R and
RStudio Server on virtual machines (VMs) up on the cloud. This means that you'll be able to conduct your analysis in (almost)
exactly the same user environment as you're used to, but now with the full power of cloud-based computation at your disposal.
Trust me, it will be awesome.

Requirements
Create an account on Google Cloud Platform (free)
These next instructions are important, so please read carefully.

1. Sign up for a 12-month ($300 credit) free trial with Google Cloud Platform (GCP). This requires an existing
Google/Gmail account.! During the course of sign-up, you'll be prompted to enter credit card details for billing
purposes. Don’t worry, you won't be charged unless/until you actively request continued access to GCP after your
free trial ends. But a billable project ID is required before gaining access to the platform.

2. Download and follow the installation instructions for the Google Cloud SDK command line utility, gcloud. This is
how we’ll connect to GCP from our local computers via the shell.

Introduction

To the cloud!

Thus far in the course, we've spent quite a lot of time learning how to code efficiently. We've covered topics like functional
programming, caching, parallel programming, and so on. All of these tools will help you make the most of the computa-
tional resources at your disposal. However, there’s a limit to how far they can take you. At some point, datasets become
too big, simulations become too complex, and regressions take too damn long to run to run on your laptop. The only
solution beyond this point is mere-pewer MOAR POWA.

UIf you have multiple Gmail accounts, please pick one and stick to it consistently whenever you are prompted to authenticate a new GCP service
APIL.

https://github.com/uo-ec607/lectures
https://console.cloud.google.com/freetrial
https://cloud.google.com/sdk/
https://raw.githack.com/uo-ec607/lectures/master/10-funcs-intro/10-funcs-intro.html#functional_programming
https://raw.githack.com/uo-ec607/lectures/master/10-funcs-intro/10-funcs-intro.html#functional_programming
https://raw.githack.com/uo-ec607/lectures/master/11-funcs-adv/11-funcs-adv.html#caching_(memoisation)
https://raw.githack.com/uo-ec607/lectures/master/12-parallel/12-parallel.html

LECR e ESC O

The easiest and cheapest way to access more computational power these days is through the cloud.” While there are a
number of excellent cloud service providers, I'm going to focus on Google Cloud Platform (GCP).> GCP offers a range
of incredibly useful services — some of which we’ll cover in later lectures — and the 12-month free trial makes an ideal
entry point for learning about cloud computation.

The particular GCP product that we're going to use today is Google Compute Engine (GCE). GCE is a service that allows
users to launch so-called virtual machines on demand in the cloud (i.e. on Google’s data centers). There’s a lot more that I
can say — and will say later — about the benefits can bring to us. But right now, you may well be asking yourself: “What
is a virtual machine and why do I need one anyway?”

So, let’s take a step back and quickly clear up some terminology.

Virtual machines (VMs)

A virtual machine (VM) is just an emulation of a computer running inside another (bigger) computer. It can potentially
perform all and more of the operations that your physical laptop or desktop does. It might even share many of the same
properties, from operating system to internal architecture. The key advantage of a VM from our perspective is that very
powerful machines can be “spun up” in the cloud almost effortlessly and then deployed to tackle jobs that are beyond the
capabilities of your local computer. Got a big dataset that requires too much memory to analyse on your old laptop? Load
it into a high-powered VM. Got some code that takes an age to run? Fire up a VM and let it chug away without consuming
any local resources. Or, better yet, write code that runs in parallel and then spin up a VM with lots of cores to get the
analysis done in a fraction of the time. All you need is a working internet connection and a web browser.

Now, with that background knowledge in mind, GCE delivers high-performance, rapidly scalable VMs. A new VM can
be deployed or shut down within seconds, while existing VMs can easily be ramped up or down depending on a project’s
needs (cores added, RAM added, etc.) In my experience, most people would be hard-pressed to spent more than a couple
of dollars a month using GCE once their free trial is over. This is especially true for researchers or data scientists who only
need to fire up a VM, or VM cluster, occasionally for the most computationally-intensive part of a project, and then can
easily switch it off when it is not being used.

2While the cloud is not the only game in town, it offers a variety benefits that, in my view, make it a no-brainer for most people: economies of scale
make it much cheaper; maintenance and depreciation worries are taken care of; access does not hinge on institutional affiliation or faculty status; cloud
providers offer a host of other useful services; etc.

3 Alternatives to GCP include AWS and Digital Ocean. RStudio recently launched its own cloud service too: RStudio Cloud is more narrowly focused,
but is great for teaching and is (currently) free to use. The good news is that these are all great options and the general principles of cloud computing
carry over very easily. So use whatever you feel comfortable with.

https://console.cloud.google.com/
https://cloud.google.com/compute/
https://en.wikipedia.org/wiki/Virtual_machine
https://raw.githack.com/uo-ec607/lectures/master/12-parallel/12-parallel.html
https://aws.amazon.com/
https://www.digitalocean.com/
https://rstudio.cloud/

Disclaimer: While I very much stand by the above paragraph, it is ultimately your responsibility to keep track of your
billing and utilisation rates. Take a look at GCP’s Pricing Calculator to see how much you can expect to be charged for a
particular machine and level of usage. You can even set a budget and create usage alerts if you want to be extra cautious.

Roadmap

Our goal for the next two lectures is to set up a VM (or cluster of VMs) on GCE. What’s more, we want to install R and
RStudio (Server) on these VMs, so that we can interact with them in exactly the same way that we're used to on our own
computers. I'm going to show you two approaches:

1. Manually configure GCE with RStudio Server (today)
2. Automate with googleComputeEngineR and friends (next lecture)

Both approaches have their merits, but I think it's important to start with the manual configuration so that you get a good
understanding of what’s happening underneath the hood. Let’s get started.

Install R and RStudio Server on GCE

Note: It’s possible to complete nearly all of the steps in this section via the GCE browser console. However, we'll stick to using the
shell, because that will make it easier to document our steps.

Windows users: You will need to run any multi-line commands (i.e. those that are chained with the backslash character) as single
line commands. Basically, delete the trailing “\” characters at the end of any sub-lines and run it as one long command on a
single line.

Confirm that you have installed gcloud correctly

You'll need to choose an operating system (OS) for your VM, as well as its designated zone. Let’s quickly look at the
available options, since this will also be a good time to confirm that you correctly installed the gcloud command-line
interface. Open up your shell and enter:

user@localhost:~$

gcloud compute images list
gcloud compute zones list

Tip: If you get an error message with the above commands, try re-running them with sudo at the beginning.
If this works for you, then you will need to append “sudo” to the other shell commands in this lecture.

You'll know that everything is working properly if these these commands return a large range of options. If you get an
error, please try reinstalling gcloud again before continuing.

Createa VM

The key shell command for creating your VM is gcloud compute instances create. You can specify the type of
machine that you want and a range of other options by using the appropriate flags. Let me first show you an example of
the command and then walk through my (somewhat arbitrary) choices in more detail. Note that I am going to call my VM
instance “my-vm’, but you can call it whatever you want.

user@localhost:~$

gcloud compute instances create my-vm \
ubuntu-2004-1ts ubuntu-os-cloud \
nl-standard-8 \
us-westl-a

Tip: Windows users, remember that you can’t execute multi-line shell commands. Delete the trailing “\”
characters above and run it as one long command on a single line.

https://cloud.google.com/products/calculator/
https://support.google.com/cloud/answer/6293540?hl=en
https://console.cloud.google.com/compute/instances
https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html
https://www.gnu.org/software/bash/manual/html_node/Escape-Character.html#Escape-Character
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/
https://en.wikipedia.org/wiki/Sudo
https://cloud.google.com/sdk/
https://cloud.google.com/sdk/gcloud/reference/compute/instances/create

Here is a breakdown of the command and a quick explanation of my choices.

« gcloud compute instances create my-vm: Create a new VM called “my-vm”. Yes, [am very creative.

+ ——image-family ubuntu-2004-1ts --image-project ubuntu-os-cloud: Use Ubuntu 20.04 as the underlying
operating system.

« ——machine-type nl-standard-8: I've elected to go with the “N1 Standard 8” option, which means that I'm getting
8 CPUs and 30GB RAM. However, you can choose from a range of machine/memory/pricing options. (Assuming
a monthly usage rate of 20 hours, this particular VM will only cost about $7.60 a month to maintain once our free
trial ends.) You needn’t worry too much about these initial specs now. New VMs are very easy to create and discard
once you get the hang of it. It’s also very simple to change the specs of an already-created VM. GCE will even suggest
cheaper specifications if it thinks that you aren’t using your resources efficiently down the line.

« —-zone us-westl-a: My preferred zone. The zone choice shouldn’t really matter, although you'll be prompted to
choose one if you forget to include this flag. As a general rule, I advise picking whatever’s closest to you.”

Assuming that you ran the above command (perhaps changing the zone to one nearest you), you should see something
like the following:

Created [https://ww.googleapis.com/compute/vl/projects/YOUR-PROJECT/zones/YOUR-ZONE/instances/YOUR-
VM].

NAME ZONE MACHINE_TYPE PREEMPTIBLE INTERNAL_IP EXTERNAL_IP STATUS

my-vm us-westl-a nl-standard-8 10.138.15.222 34.105.81.92 RUNNING

Write down the External IP address, as we'll need it for running RStudio Server later.”

Allow RStudio’s 8787 port via a firewall rule (only once) RStudio Server runs on port 8787 of an associated IP
address. Because Google Cloud by default blocks external traffic on GCE VMs for security reasons, we first need to
enable the 8787 port via a firewall rule. The following command creates a firewall rule (which I'm calling “rstudio”) that
does exactly this.

useralocalhost:~$

gcloud compute firewall-rules create rstudio =tcp:8787

Note that these firewall rules across every VM in a project. So you should only have to run the above command once. °

Logging in
Congratulations: Set-up for your GCE VM instance is already complete.
(Easy, wasn't it?)

The next step is to log in via SSH (i.e. Secure Shell). This is a simple matter of providing your VM’s name and zone. If you
forget to specify the zone or haven't assigned a default, you'll be prompted.

useralocalhost:~$

gcloud compute ssh my-vm us-westl-a

IMPORTANT: Upon logging into a GCE instance via SSH for the first time, you will be prompted to generate a key
passphrase. Needless to say, you should make a note of this passphrase for future long-ins. Your passphrase will be required
for all future remote log-ins to Google Cloud projects via gcloud and SSH from your local computer. This includes
additional VMs that you create under the same project account.

4You can also set the default zone so that you don’t need to specify it every time. See here.

5This IP address is “ephemeral” in the sense that it is only uniquely assigned to your VM while it is running continuously. This shouldn’t create any
significant problems, but if you prefer a static (i.e. non-ephemeral) IP address that is always going to be associated with a particular VM instance, then
this is easily done. See here.

SWhile I don’t cover it in this tutorial, anyone looking to install and run Jupyter Notebooks on their VM could simply amend the above command
to Jupyter’s default port of 8888.

https://cloud.google.com/compute/pricing
https://cloud.google.com/products/calculator/#id=efc1f1b1-175d-4860-ad99-9006ea39651b
https://cloud.google.com/vpc/docs/firewalls
https://en.wikipedia.org/wiki/Secure_Shell
https://cloud.google.com/compute/docs/gcloud-compute/#set_default_zone_and_region_in_your_local_client
https://cloud.google.com/compute/docs/configure-instance-ip-addresses#assign_new_instance
http://jupyter.org/

Passphrase successfully created and entered, you should now be connected to your VM via SSH. That is, you should see
something like the following, where “grant” and “my-vm” will obviously be replaced by your own username and VM
hostname.

grant@my-vm:~$

Next, we'll install R on our VM.

Install R

You can find the full set of instructions and recommendations for installing R on Ubuntu here. Or you can just follow my
choices below, which should cover everything that you need. Note that you should be running these commands directly
in the shell that is connected to your VM.

grantamy-vm:~$

sudo sh 'echo "deb https://cloud.r-project.org/bin/linux/ubuntu focal-cran4@/" >> \
/etc/apt/sources.list'
sudo apt-key adv keyserver.ubuntu.com \

E298A3A825C0OD65DFD57CBB651716619E084DAB9
sudo apt update & sudo apt upgrade
sudo apt install r-base r-base-dev

Aside: Those apt commands are referring to the Aptitude package management system. Think of it like of Homebrew
for Ubuntu (and other Debian-based Linux distributions).

Base R is now installed and ready to go on your VM. However, I'm going to walk you through a two extra steps, since this
will avoid some common headaches down the road.

First, we're going to change where we get our R libraries from:

grantamy-vm:~$

sudo sh 'echo "options(repos = c(RSPM = \"https://packagemanager.rstudio.com/all/__linux__/focal/latest\"))"
>> "R RHOME /etc/Rprofile.site'’

The above command sets our default library source to RStudio Package Manager (RSPM), instead of the usual CRAN
mirror(s). Why would we do this? Well, because RSPM provides precompiled R package binaries for Linux, whereas
CRAN requires us to install and build from source. I don’t want you to worry too much about this.” Just trust me that the
above command will allow us to install R packages much faster and with fewer hiccups.

Second, let’s install some additional system libraries on our VM:

#H grantamy-vm:~$

sudo apt install libudunits2-dev libgdal-dev gdal-bin libgeos-dev libproj-dev \
libcairo2-dev

The above system libraries are needed to power some common R packages under the hood. For example, we've just
installed the underlying geospatial libraries that support the sf package.
Install and configure RStudio Server

If you followed my steps above, then you could already launch directly into R from the shell.® However, we'd obviously
prefer to use the awesome IDE interface provided by RStudio (Server). So that’s what we’ll install and configure next,

7If you really want to know more about the difference between “binary” vs “compiled from source’, here’s a simple analogy. A package binary is like
a cake that we bought from the supermarket, while compiling a package from source is like us baking the cake at home. Why would you want to buy
the cake from a supermarket? Well, it’s quicker and you might not have all the ingredients at home. Why would you make the cake yourself? Well, you
might have better quality ingredients and know slightly better recipe.

8Enter “R” into your shell window to confirm for yourself. If you do, make sure to quit afterwards by typing in “q()".

https://cran.r-project.org/bin/linux/ubuntu/README.html
https://wiki.debian.org/Aptitude
https://brew.sh/
https://packagemanager.rstudio.com/client/#/repos/1/overview

making sure that we can run RStudio Server on our VM via a web browser from our local computer.

Download RStudio Server on your VM You should check what the latest available version of Rstudio Server is here.
At the time of writing, the following is what you need:

grantamy-vm:~$

sudo apt install gdebi-core
wget https://download2.rstudio.org/server/bionic/amd64/rstudio-server-1.4.1106-amd64.deb
sudo gdebi rstudio-server-1.4.1106-amd64.deb ## Hit "y" when prompted

Add a user Now that you're connected to your VM, you might notice that you never actually logged in as a specific
user. (More discussion here.) This doesn’t matter for most applications, but RStudio Server specifically requires a user-
name/password combination. So we must first create a new user and give them a password before continuing. For exam-
ple, we can create a new user called “elvis” like so:

#H grantamy-vm:~$

sudo adduser elvis

You will then be prompted to specify a user password (and confirm various bits of biographical information which you
can ignore). An optional, but recommended step is to add your new user to the sudo group. We'll cover this in more depth
later in the tutorial, but being part of the sudo group will allow Elvis to temporarily invoke superuser priviledges when
needed.

#H grantamy-v m:~$

sudo usermod sudo elvis
grant@my-vm:~$ su - elvis ## Log in as elvis on SSH (optional)

Tip: Once created, you can now log into a user’s account on the VM directly via SSH, e.g. gcloud compute
ssh elvisamy-vm --zone us-westl-a

Navigate to the RStudio Server instance in your browser You are now ready to open up RStudio Server by navi-
gating to the default 8787 port of your VM’s External IP address. (You remember writing this down earlier, right?) If you
forgot to write the IP address down, don’t worry: You can find it by logging into your Google Cloud console and looking
at your VM instances, or by opening up a new shell window (not the one currently connected to your VM) and typing:

user@localhost:~$

gcloud compute instances describe my-vm | grep 'natIP'

Either way, once you have the address, open up your preferred web browser and navigate to:
http://EXTERNAL-IP-ADDRESS:8787

You will be presented with the following web page. Log in using the username/password that you created earlier.

https://rstudio.com/products/rstudio/download-server/debian-ubuntu/
https://groups.google.com/forum/#!msg/gce-discussion/DYfDOndtRTU/u_3kzNPqDAAJ
https://console.cloud.google.com/compute/instances
http://EXTERNAL-IP-ADDRESS:8787

q @ [0 A Notsecure | 34.105.81.92:8787/auth-sign-in o al@ A @ €05 =

Studio

Sign in to RStudio

Username:
elvis a
Password:

Stay signed in

And we're all set. Here is RStudio Server running on my laptop via Google Chrome.

q (e} 0 @ Notsecure | 34105.81.92:8787 al@ A @ ¢ =
File Edit Code View Plots Session Build Debug Profile Tools Help elvis

Q -0r| e~ Go to file/function - Addins ~ &) Project: (None) ~

Console ~ Terminal Jobs (5] Environment History Connections I

g # Import Dataset + | 3 List + -

7k Global Environment ~
R version 4.0.0 (2020-04-24) -- "Arbor Day"
Copyright (C) 2020 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit) N . .

vironment is empty

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or bl | G55 || GEEEEE || GEID || LT =0
'help.start()' for an HTML browser interface to help. ©) NewFolder | & Upload ' © Delete - Rename = {Jk More ~
Type 'q()' to quit R. 4 Home
I A Name Size Modified
i I R

Tip: Hit F11 to go full screen in your browser. The server version of RStudio is then virtually indistinguish-
able from the desktop version.
Stopping and (re)starting your VM instance

Stopping and (re)starting your VM instance is a highly advisable, since you don’t want to get billed for times when you
aren’t using it. In a new shell window (not the one currently synced to your VM instance):

user@localhost:~$

gcloud compute instances stop my-vm
gcloud compute instances start my-vm

Summary

Contratulations! You now have a fully-integrated VM running R and RStudio whenever you need it. Assuming that you
have gone through the initial setup, here’s the tl;dr summary of how to deploy an existing VM with RStudio Server:

1) Start up your VM instance.

gcloud compute instances start YOUR-VM-INSTANCE-NAME

2) Take note of the External IP address for step 3 below.
gcloud compute instances describe YOUR-VM-INSTANCE-NAME | grep 'natIP’

3) Open up a web browser and navigate to RStudio Server on your VM. Enter your username and password as needed.
http://EXTERNAL-IP-ADDRESS:8787

4) Log-in via SSH. (Optional)

gcloud compute ssh YOUR-VM-INSTANCE-NAME

5) Stop your VM.
gcloud compute instances stop YOUR-VM-INSTANCE-NAME

And, remember, if you really want to avoid the command line, then you can always go through the GCE browser console.

Getting the most out of R on your GCE setup

You have already completed all of the steps that you'll need for high-performance computing in the cloud. Any VM that
you create on GCE using the above methods will be ready to go with RStudio Server whenever you want it. However, there
are still a few more tweaks and tips that we can use to really improve our user experience and reduce complications when
interacting with these VMs from our local computers. The rest of this tutorial covers my main tips and recommendations.

Keep your system up to date

First things first: Remember to keep your VM up to date, just like you would a normal computer. [recommend that you
run the following command (really: two commands) regularly:

#Ht grantamy-vm:~$
sudo apt update & sudo apt upgrade

You can also update the gcloud utility components on your local computer (i.e. not your VM) with the following command:

user@localhost:~

gcloud components update

Transfer and sync files between your VM and your local computer

You have three main options.

1. Manually transfer files directly from RStudio Server RStudio’s “Files” pane (at the bottom-right) provides vari-
ous options for moving files and directories around. This includes uploading from your local computer to VM, or exporting

http://EXTERNAL-IP-ADDRESS:8787
https://console.cloud.google.com/home/dashboard

the other way around — see the screenshot below. This is arguably the simplest option and works especially well for quick
or small jobs.

Files Plots Packages Help Viewer

Y | New Folder = @& | Upload @€ Delete . |Rename \q’} More ~
/.\ Home > coolproject Copy...
: = NENNG Copy To...
= Move...
v amazing-results.csv Copy Folder Path to Clipboard)21, 3:52 PM
omg.csv 021, 3:52 PM
Export...

LEIW-SAWelx] Export selected files or folders

Go To Working Directory

Open New Terminal Here

Show Hidden Files

2. Manually transfer files and folders using the command line or SCP Manually transferring files or folders across
systems is done fairly easily using the command line. Note that this next code chunk would be run in a new shell instance
(i.e. not the one connected to your VM via SSH).

user@localhost:~

gcloud compute scp \
my-vm:/home/elvis/amazingresults.csv \
~/locdir/amazingresults-copy.csv \
us-westl-a

It’s also possible to transfer files using your regular desktop file browser thanks to SCP. (On Linux and Mac OSX at least.
Windows users first need to install a program call WinSCP.) See here.

Tip: The file browser-based SCP solution is much more efficient when you have assigned a static IP address to
your VM instance — otherwise you have to set it up each time you restart your VM instance and are assigned
anew ephemeral IP address — so I'd advise doing that first.

3. Sync with GitHub or other cloud service This is my own preferred option. Ubuntuy, like all virtually Linux distros,
comes with Git preinstalled. You should thus be able to sync your results across systems using Git(Hub) in the usual fashion.
I tend to use the command line for all my Git operations (committing, pulling, pushing, etc.) and this works exactly as
expected once you've SSH'd into your VM. However, Rstudio Server’s built-in Git UI also works well and comes with
some nice added functionality (highlighted diff. sections and so forth).

While [haven't tried it myself, you should also be able to install Box, Dropbox or Google Drive on your VM and sync across

)« J

systems that way. If you go this route, then I'd advise installing these programs as sub-directories of the user’s “home’
directory. Even then you may run into problems related to user permissions. However, just follow the instructions for
linking to the hypothetical “TeamProject” folder that I describe below (except that you must obviously point towards the
relevant Box/Dropbox/GDrive folder location instead) and you should be fine.

Tip: Remember that your VM lives on a server and doesn’t have the usual graphical interface — including
installation utilities — of a normal desktop. You'll thus need to follow command line installation instructions
for these programs. Make sure you scroll down to the relevant sections of the links that I have provided above.

https://cloud.google.com/compute/docs/instances/transfer-files
https://cloud.google.com/compute/docs/configure-instance-ip-addresses#assign_new_instance
http://happygitwithr.com/
http://xmodulo.com/how-to-mount-box-com-cloud-storage-on-linux.html
https://www.linuxbabe.com/ubuntu/install-dropbox-ubuntu-20-04
http://www.techrepublic.com/article/how-to-mount-your-google-drive-on-linux-with-google-drive-ocamlfuse/

Last, but not least, Google themselves encourage data synchronisation on GCE VMs using another product within their
Cloud Platform, i.e. Google Storage. This is especially useful for really big data files and folders, but beyond the scope of
this lecture. (If you're interested in learning more, see here and here.)

Further resources

In the next lecture, I'll build on today’s material by showing you how to automate a lot of steps with the googleCom-
puteEngineR package and related tools. In the meantime, here are some further resources that you might find useful.

+ I recommend consulting the official GCE documentation if you ever get stuck. There’s loads of useful advice and
extra tips for getting the most out of your VM setup, including ways to integrate your system with other GCP
products like Storage, BigQuery, etc.

+ Other useful links include the RStudio Server documentation, and the Linux Journey guide for anyone who wants
to learn more about Linux (yes, you!).

Bonus material
Install the Intel Math Kernel Library (MKL) or OpenBLAS/LAPACK

As we discussed in the previous lecture on parallel programming, R ships with its own BLAS/LAPACK libraries by default.
While this default works well enough, you can get significant speedups by switching to more optimized libraries such as
the Intel Math Kernel Library (MKL) or OpenBLAS. The former is slightly faster according to the benchmark tests that
I've seen, but was historically harder to install. However, thanks to Dirk Eddelbuettel, this is now very easily done:

#H grantamy-vm:~$

git clone https://github.com/eddelbuettel/mkl4deb.git
sudo bash mkl4deb/script.sh

Wait for the script to finish running. Once it’s done, your R session should automatically be configured to use MKL by
default. You can check yourself by opening up R and checking the sessionInfo() output, which should return something
like:

Matrix products: default
BLAS/LAPACK: /opt/intel/compilers_and_libraries_2018.2.199/1inux/mkl/1ib/intel64_1in/1libmkl_rt.so

(Note: Dirk’s script only works for Ubuntu and other Debian-based Linux distros. If you decided to spin up a different
OS for your VM than we did in this tutorial, then you are probably better off installing OpenBLAS.)

Share files and libraries between multiple users on the same VM

The default configuration that I have described above works perfectly well in cases where you are a single user and don’t
venture outside of your home directory (and its sub directories). Indeed, you can just add new folders within this user’s
home directory using standard Linux commands and you will be able to access these from within RStudio Server when
you log in as that user.

However, there’s a slight wrinkle in cases where you want to share information between multiple users on the same VM.
(Which may well be necessary on a big group project.) In particular, RStudio Server is only going to be able to look for
files in each individual user’s home directory (e.g. /home/elvis.) Similarly, by default on Linux, the R libraries that one
user installs won’t necessarily be available to other users.

The reason has to do with user permissions; since Elvis is not an automatic “superuser”, RStudio Server doesn’t know
that he is allowed to access other users’ files and packages in our VM, and vice versa. Thankfully, there’s a fairly easy
workaround, involving standard Linux commands for adding user and group privileges (see these slides from our shell
lecture). Here’s an example solution that should cover most cases:

10

https://cloud.google.com/storage/
https://cloud.google.com/solutions/filers-on-compute-engine
https://cloud.google.com/compute/docs/disks/gcs-buckets
https://cloud.google.com/compute/docs/
https://support.rstudio.com/hc/en-us/articles/234653607-Getting-Started-with-RStudio-Server
https://linuxjourney.com/
https://raw.githack.com/uo-ec607/lectures/master/12-parallel/12-parallel.html
https://software.intel.com/en-us/mkl
https://www.openblas.net/
https://github.com/eddelbuettel/mkl4deb
https://github.com/xianyi/OpenBLAS/wiki/Precompiled-installation-packages
https://linuxjourney.com/lesson/make-directory-mkdir-command
https://stackoverflow.com/a/44903158
https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#permissions

Share files across users Let’s say that Elvis is working on a joint project together with a colleague called Priscilla.
(Although, some say they are more than colleagues...) They have decided to keep all of their shared analysis in a new
directory called TeamProject, located within Elvis’s home directory. Start by creating this new shared directory:

#H grantamy-vm:~$
sudo mkdir /home/elvis/TeamProject

Presumably, a real-life Priscilla would already have a user profile at this point. But let’s quickly create one too for our
fictional version.

tHt grantamy-vm:~$
sudo adduser priscilla

Next, we create a user group. I'm going to call it “projectgrp”, but as you wish. The group setup is useful because once we
assign a set of permissions to a group, any members of that group will automatically receive those permissions too. With
that in mind, we should add Elvis and Priscilla to “projectgrp” once it is created:

grantamy-vm:~$

sudo groupadd projectgrp
sudo gpasswd elvis projectgrp
sudo gpasswd priscilla projectgrp

Now we can set the necessary ownership permissions to the shared TeamProject directory. First, we use the chown
command to assign ownership of this directory to a default user (in this case, “elvis”) and the other “projectgrp” members.
Second, we use the chmod 770 command to grant them all read, write and execute access to the directory. In both both
cases, we'll use the -R flag to recursively set permissions to all children directories of TeamProject/ too.

#Htgrantamy-vm: ~$

sudo chown elvis:projectgrp /home/elvis/TeamProject
sudo chmod 770 /home/elvis/TeamProject

The next two commands are optional, but advised if Priscilla is only going to be working on this VM through the TeamPro-

ject directory. First, you can change her primary group ID to “projectgrp’, so that all the files she creates are automatically
assigned to that group:

#H grantamy-vm:~$
sudo usermod projectgrp priscilla

Second, you can add a symbolic link to the TeamProject directory in Priscilla’s home directory, so that it is immediately
visible when she logs into RStudio Server. (Making sure that you switch to her account before running this command):

#Ht grantamy-vm:~$
sudo su priscilla
priscillagmy-vm:~$

in /home/elvis/TeamProject /home/priscilla/TeamProject
exit

#H grantamy-vm:~$

11

Share R libraries (packages) across users By default, each R package that a user installs will only be available to her.
Now, sharing R libraries across users is less critical than being able to share files. However, it’s still potentially annoying
having to install, say, rstan when your colleague has already installed it under her user account. Luckily, the solution
here very closely mimics the solution to file sharing that we’ve just seen above: We're going to set a default system-wide
R library path and give all of our users access to that library via a group. For convenience I'm just going to continue with
the “projectgrp” group that we created above. However, you could also create a new group (say, “rusers”), add individual
users to it, and proceed that way if you wanted to.

The first thing to do is change the permission on our system-wide R library (i.e. what you get if you type R RHOME in the
shell). We're going to assign read, write, and execute permissions to all of the members of our group. I'll use the -R flag to
do so recursively.

#Ht grantamy-vm:~$

sudo chown elvis:projectgrp "R RHOME"®
sudo chmod 775 "R RHOME"

Once that’s done, tell R to make this shared library path the default for your user, by adding it to their ~/.Renviron file.
For example, here’s how I'd do it for “elvis”.

grantamy-vm:~$

su - elvis

elvisamy-vm:~$

"R RHOME/library ## Check library path. Should be /usr/1lib/R/library
echo 'export PATH="R_LIBS_USER=/usr/lib/R/library"' >> ~/.Renviron

The R packages that Elvis installs should now be immediately available to Priscilla and vice versa.

Tip: If you've already installed some packages in a local (i.e. this-user-only) library path before creating
the system-wide setup, you can just move them across with the ‘mv’ command. Something like the fol-
lowing should work, but you'll need to check the appropriate paths yourself: elvisamy-vm:~$ sudo mv
"/home/elvis/R/x86_64-pc-linux-gnu-library/3.5/" /usr/1lib/R/library.

12

https://linuxjourney.com/lesson/move-mv-command

	Requirements
	Introduction
	Install R and RStudio Server on GCE
	Getting the most out of R on your GCE setup
	Further resources
	Bonus material

