
Data Science for Economists
Lecture 13: Docker

Grant McDermott
University of Oregon | EC 607

https://github.com/uo-ec607

Table of contents
�. Prologue

�. Docker 101

�. Examples

Base R
R-dev
RStudio+

�. Write your own Docker�les & images

�. Sharing �les with a container

�. Cleaning up

�. Conclusions

2 / 57

Prologue

3 / 57

Install Docker
Linux

Mac

Windows (install varies by version)

Windows 10 Pro / Education / Enterprise
Windows 10 Home
Windows 7 / 8

4 / 57

https://docs.docker.com/engine/install
https://docs.docker.com/docker-for-mac/install/
https://docs.docker.com/docker-for-windows/install/
https://docs.docker.com/docker-for-windows/install-windows-home/
https://docs.docker.com/toolbox/toolbox_install_windows/

Docker 101

5 / 57

Motivation
Have you ever...

6 / 57

Motivation
Have you ever...

tried to install a program or run someone else's code, only to be confronted by a bunch of
error messages (missing packages, dependencies, etc.)?

6 / 57

Motivation
Have you ever...

tried to install a program or run someone else's code, only to be confronted by a bunch of
error messages (missing packages, dependencies, etc.)?

shared your code and data with someone else, only for them to be confronted by a bunch
of error messages (missing packages, dependencies, etc.)?

6 / 57

Motivation
Have you ever...

tried to install a program or run someone else's code, only to be confronted by a bunch of
error messages (missing packages, dependencies, etc.)?

shared your code and data with someone else, only for them to be confronted by a bunch
of error messages (missing packages, dependencies, etc.)?

re-run your own code after updating some packages, only to �nd that it no longer works
or the results have changed?

6 / 57

Motivation
Have you ever...

tried to install a program or run someone else's code, only to be confronted by a bunch of
error messages (missing packages, dependencies, etc.)?

shared your code and data with someone else, only for them to be confronted by a bunch
of error messages (missing packages, dependencies, etc.)?

re-run your own code after updating some packages, only to �nd that it no longer works
or the results have changed?

Containers are way to solve these and other common software problems.

6 / 57

Motivation
Have you ever...

tried to install a program or run someone else's code, only to be confronted by a bunch of
error messages (missing packages, dependencies, etc.)?

shared your code and data with someone else, only for them to be confronted by a bunch
of error messages (missing packages, dependencies, etc.)?

re-run your own code after updating some packages, only to �nd that it no longer works
or the results have changed?

Containers are way to solve these and other common software problems.

Docker
By far the most widely used and best supported container technology. While there are other
container platforms around, when I talk about "containers" in this lecture, I'm really talking
about Docker.

6 / 57

https://www.docker.com/

The "container" analogy
You know those big shipping containers used to transport physical goods?

They provide a standard format for transporting all kinds of goods (TVs, fresh produce,
whatever). Moreover, they are stackable and can easily be switched between different transport
modes (ship, road, rail).

7 / 57

The "container" analogy
You know those big shipping containers used to transport physical goods?

They provide a standard format for transporting all kinds of goods (TVs, fresh produce,
whatever). Moreover, they are stackable and can easily be switched between different transport
modes (ship, road, rail).

Docker containers are the software equivalent.

physical goods <-> software
transport modes <-> operating systems

7 / 57

✓ Standardized shape and form.

✓ Everyone can use.

✓ "If it runs on your machine, it will run on
my machine."

In even simpler terms...
A docker container is just the software equivalent of a box.†

† This description (the whole slide, really) is shamelessly stolen from Dirk Eddelbuettel.

8 / 57

https://dirk.eddelbuettel.com/papers/cologneRUG2020.pdf

✓ Standardized shape and form.

✓ Everyone can use.

✓ "If it runs on your machine, it will run on
my machine."

In even simpler terms...
A docker container is just the software equivalent of a box.†

More importantly, it allows us to always run code from a pristine, predictable state.

† This description (the whole slide, really) is shamelessly stolen from Dirk Eddelbuettel.

8 / 57

https://dirk.eddelbuettel.com/papers/cologneRUG2020.pdf

Why do we care?

1. Reproducibility
If we can bundle our code and software in a Docker container, then we don't have to worry
about it not working on someone else's system (and vice versa). Similarly, we don't have to
worry about it not working on our own systems in the future (e.g. after package or program
updates).

Examples of academic research projects using Docker for reproducibility here and here.

2. Deployment
There are many deployment scenarios (packaging, testing, etc.). Of particular interest to this
course are data science pipelines where you want to deploy software quickly and reliably. Need
to run some time-consuming code up on the cloud? Save time and installation headaches by
running it through a suitable container, which can easily be deployed to a cluster of machines
too.

9 / 57

https://github.com/grantmcdermott/sceptic-priors
https://github.com/johnjosephhorton/wages_of_paycuts

How it works
�. Start off with a stripped-down version of an operating system. Usually a Linux distro like

Ubuntu.

�. Install all of the programs and dependencies that are needed to run your code.

�. (Add any extra con�gurations you want.)

�. Package everything up as a tarball.*

* A format for storing a bunch of �les as a single object. Can also be compressed to save space.

10 / 57

https://en.wikipedia.org/wiki/Tar_%28computing%29

How it works
�. Start off with a stripped-down version of an operating system. Usually a Linux distro like

Ubuntu.

�. Install all of the programs and dependencies that are needed to run your code.

�. (Add any extra con�gurations you want.)

�. Package everything up as a tarball.*

Summary: Containers are like mini, portable operating systems that contain everything needed
to run some piece of software (but nothing more!).

* A format for storing a bunch of �les as a single object. Can also be compressed to save space.

10 / 57

https://en.wikipedia.org/wiki/Tar_%28computing%29

Credit: Julia Evans. (Buy the zine!)

The big idea

11 / 57

https://twitter.com/b0rk/status/1237464479811633154
https://wizardzines.com/zines/containers/

Quick terminology clari�cation
Docker�le ~ "The sheet music." The list of layers and instructions for building a Docker image.

Image ~ "The MP3 �le." This is the tarball that we talked about on the previous two slides.

Container ~ "Song playing on my phone." A container is a running instance of an image.

12 / 57

Quick terminology clari�cation
Docker�le ~ "The sheet music." The list of layers and instructions for building a Docker image.

Image ~ "The MP3 �le." This is the tarball that we talked about on the previous two slides.

Container ~ "Song playing on my phone." A container is a running instance of an image.

Think of the Docker�le as a piece of sheet music, which tells us everything we need to play a
song (key, instruments, chords, tempo, etc.) The image is a recording of the music that
perfectly re�ects the sheet music (e.g. an MP3 �le). A container is a playing instance of that �le
(maybe on my phone, maybe through my home speakers, etc.)

12 / 57

Examples

13 / 57

Rocker = R + Docker
It should now be clear that Docker is targeted at (and used by) a bewildering array of software
applications.

In the realm of economics and data science, that includes every major open-source
programming language and software stack.† For example, you could download and run a Julia
container right now if you so wished.

† It's possible to build a Docker image on top of proprietary software (example). But license
restrictions make this complicated. I've rarely seen it done in practice.

14 / 57

https://hub.docker.com/_/julia/
https://github.com/mathworks-ref-arch/matlab-dockerfile

Rocker = R + Docker
It should now be clear that Docker is targeted at (and used by) a bewildering array of software
applications.

In the realm of economics and data science, that includes every major open-source
programming language and software stack.† For example, you could download and run a Julia
container right now if you so wished.

But for this course, we are primarily concerned with Docker images that bundle R applications.

The good news is that R has outstanding Docker support, primarily thanks to the Rocker
Project (website / GitHub).

For the rest of today's lecture we will be using images from Rocker (or derivatives).

† It's possible to build a Docker image on top of proprietary software (example). But license
restrictions make this complicated. I've rarely seen it done in practice.

14 / 57

https://hub.docker.com/_/julia/
https://www.rocker-project.org/
https://github.com/rocker-org/rocker
https://github.com/mathworks-ref-arch/matlab-dockerfile

Example 1: Base R

15 / 57

Example 1: Base R
For our �rst example, let's �re up a simple container that contains little more than a base R
installation.

$ docker run ��rm �it rocker/r�base

This will take a little while to download the �rst time (GIF on next slide). But the container will
be ready and waiting for immediate deployment on your system thereafter.

16 / 57

Example 1: Base R
For our �rst example, let's �re up a simple container that contains little more than a base R
installation.

$ docker run ��rm �it rocker/r�base

This will take a little while to download the �rst time (GIF on next slide). But the container will
be ready and waiting for immediate deployment on your system thereafter.

A quick note on these docker run �ags:

��rm Automatically remove the container once it exits (i.e. clean up).
�it Launch with interactive (i) shell/terminal (t).
For a full list of �ag options, see here.

16 / 57

https://docs.docker.com/engine/reference/run

Example 1: Base R (cont.)
As promised, here is a GIF of me running the command on my system. The whole thing takes
about a minute and launches directly into an R session.

17 / 57

Example 1: Base R (cont.)
To see a list of running containers on your system, in a new terminal window type:

$ docker ps

You should see something like:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
1fcdee074beb rocker/r�base "R" 35 seconds ago Up 35 seconds

18 / 57

Example 1: Base R (cont.)
To see a list of running containers on your system, in a new terminal window type:

$ docker ps

You should see something like:

The container ID (here: fcdee074beb) is probably the most important bit of information.

We'll be using container IDs later in the lecture. For now, just remember that you can grab
them with the $ docker ps command.

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS
1fcdee074beb rocker/r�base "R" 35 seconds ago Up 35 seconds

18 / 57

Example 1: Base R (cont.)
Your base R container should have launched directly into R. Feel feel to kick the tyres. Do some
addition, run a regression on the mtcars dataset, etc.

19 / 57

Example 1: Base R (cont.)
Your base R container should have launched directly into R. Feel feel to kick the tyres. Do some
addition, run a regression on the mtcars dataset, etc.

To exit the container, simply quit R.

R> q()

Check that it worked:

$ docker ps

19 / 57

Example 1: Base R (cont.)
Your base R container should have launched directly into R. Feel feel to kick the tyres. Do some
addition, run a regression on the mtcars dataset, etc.

To exit the container, simply quit R.

R> q()

Check that it worked:

$ docker ps

BTW, if you don't want to launch directly into your container's R console, you can instead start
it in the bash shell.

$ docker run ��rm �it rocker/r�base /bin/bash

This time to close and exit the container, you need to exit the shell, e.g.

root@09dda673a187�/# exit

19 / 57

Example 2: R-dev

20 / 57

Example 2: R-dev
One of Docker's exemplar uses is testing software ahead of time. For example, we can safely
test a new version of R in a Docker container before upgrading.

21 / 57

Example 2: R-dev
One of Docker's exemplar uses is testing software ahead of time. For example, we can safely
test a new version of R in a Docker container before upgrading.

In that vein, we can also test the development version of R via the rocker/drd image.

At the time of writing this slide, the release of R version 4.1.0 was just a few days away. So,
this provides a convenient way to test drive some of the new features (a native pipe,
lambda functions, etc.)

$ docker run ��rm �it rocker/drd

21 / 57

https://hub.docker.com/r/rocker/drd
https://cran.rstudio.com/

Example 3: RStudio+

22 / 57

Example 3: RStudio+
The Rocker Project works by layering Docker images on top of each other in a grouped stack.
An important group here is the versioned stack.

23 / 57

https://github.com/rocker-org/rocker#use-cases
https://github.com/rocker-org/rocker-versioned2#version-stable-rocker-images-for-r--400

Example 3: RStudio+
The Rocker Project works by layering Docker images on top of each other in a grouped stack.
An important group here is the versioned stack.

Allows us to easily spin up different versions of R (3.6.1, 4.0.2, etc), plus extra layers.
23 / 57

https://github.com/rocker-org/rocker#use-cases
https://github.com/rocker-org/rocker-versioned2#version-stable-rocker-images-for-r--400

Example 3: RStudio+ (cont.)
Let's try the tidyverse image from this versioned stack, which layers base R + RStudio +
tidyverse. I'll specify R 4.0.0 as my base image.

Again, this next line will take a minute or three to download and extract the �rst time. But
the container will be ready for immediate deployment on your system thereafter.

24 / 57

https://hub.docker.com/r/rocker/tidyverse

Example 3: RStudio+ (cont.)
Let's try the tidyverse image from this versioned stack, which layers base R + RStudio +
tidyverse. I'll specify R 4.0.0 as my base image.

$ docker run �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

�d Detach (i.e. run as background process).
�p 8787�8787 Share a port with the host computer's browser.
�e PASSWORD=pswd123 Password for logging on to RStudio Server.
rocker/tidyverse:4.0.0 Use the tidyverse image built on top of R 4.0.0.

24 / 57

https://hub.docker.com/r/rocker/tidyverse
https://hub.docker.com/r/rocker/tidyverse

Example 3: RStudio+ (cont.)
Let's try the tidyverse image from this versioned stack, which layers base R + RStudio +
tidyverse. I'll specify R 4.0.0 as my base image.

$ docker run �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

�d Detach (i.e. run as background process).
�p 8787�8787 Share a port with the host computer's browser.
�e PASSWORD=pswd123 Password for logging on to RStudio Server.
rocker/tidyverse:4.0.0 Use the tidyverse image built on top of R 4.0.0.

If you run this... nothing seems to happen. Don't worry, I'll explain on the next slide.

Con�rm for yourself that it's actually running with $ docker ps . (Windows users should
de�nitely do this because you'll need the container ID shortly.)

24 / 57

https://hub.docker.com/r/rocker/tidyverse
https://hub.docker.com/r/rocker/tidyverse

Example 3: RStudio+ (cont.)
Let's try the tidyverse image from this versioned stack, which layers base R + RStudio +
tidyverse. I'll specify R 4.0.0 as my base image.

$ docker run �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

�d Detach (i.e. run as background process).
�p 8787�8787 Share a port with the host computer's browser.
�e PASSWORD=pswd123 Password for logging on to RStudio Server.
rocker/tidyverse:4.0.0 Use the tidyverse image built on top of R 4.0.0.

If you run this... nothing seems to happen. Don't worry, I'll explain on the next slide.

Con�rm for yourself that it's actually running with $ docker ps . (Windows users should
de�nitely do this because you'll need the container ID shortly.)

Aside. All RStudio(+) images in the Rocker stack require a password. Pretty much anything you
want except "rstudio", which is the default username. On that note, if you don't like the
default "rstudio" username, you can choose your own by adding �e USER=myusername to the
above command.

24 / 57

https://hub.docker.com/r/rocker/tidyverse
https://hub.docker.com/r/rocker/tidyverse

Example 3: RStudio+ (cont.)
Unlike, the "r-base" container, this time we aren't immediately taken to our R environment.

Reason: Our container is running RStudio Server, which needs to be opened up in a browser.

25 / 57

Example 3: RStudio+ (cont.)
Unlike, the "r-base" container, this time we aren't immediately taken to our R environment.

Reason: Our container is running RStudio Server, which needs to be opened up in a browser.

So we need to point our browsers to the relevant IP address plus the opened �8787 port:

Linux/Mac: http://localhost:8787
Windows: Type in $ docker inspect <containerid> | grep IPAddress to get your IP
address (see here). Note that this information was also displayed when you �rst launched
your Docker Quickstart Terminal. For example:

 �� .
 �� �� �� ��
 �� �� �� �� �� ���
 /"""""""""""""""""___/ ���
        ~~~ {�� ~~~~ ~~~ ~~~~ ~~~ ~ /  ���- ~~~
             \______ o           ��/
               \    \         ��/
                \____\_______/

  docker is configured to use the default machine with IP 192.168.99.100
  For help getting started, check out the docs at https:��docs.docker.com

25 / 57

http://localhost:8787/
https://stackoverflow.com/a/46310428


Example 3: RStudio+ (cont.)
Unlike, the "r-base" container, this time we aren't immediately taken to our R environment.

Reason: Our container is running RStudio Server, which needs to be opened up in a browser.

So we need to point our browsers to the relevant IP address plus the opened �8787  port:

Linux/Mac: http://localhost:8787
Windows: Type in $ docker inspect <containerid> | grep IPAddress  to get your IP
address (see here). Note that this information was also displayed when you �rst launched
your Docker Quickstart Terminal. For example:

                          ��         .
                    �� �� ��        ��
                 �� �� �� �� ��    ���
             /"""""""""""""""""\___/ ���
        ~~~ {�� ~~~~ ~~~ ~~~~ ~~~ ~ /  ���- ~~~
 ______ o ��/
 \ \ ��/
 ___________/

 docker is configured to use the default machine with IP 192.168.99.100
 For help getting started, check out the docs at https:��docs.docker.com

So this Windows user would point their browser to http://192.168.99.100:8787.
25 / 57

http://localhost:8787/
https://stackoverflow.com/a/46310428
http://192.168.99.100:8787/

Example 3: RStudio+ (cont.)
Here's the login-in screen that I see when I navigate my browser to the relevant URL.

26 / 57

Example 3: RStudio+ (cont.)
Here's the login-in screen that I see when I navigate my browser to the relevant URL.

Sign in with your "rstudio" + "pswd123" credential combination.
26 / 57

Example 3: RStudio+ (cont.)
And here I am in RStudio Server running through Docker! (Pro-tip: Hit F11 to go full-screen.)

27 / 57

Example 3: RStudio+ (cont.)
I can also load the tidyverse straight away. (We can ignore those warning messages.)

27 / 57

Example 3: RStudio+ (cont.)
To stop this container, you would grab the container ID (i.e. with $ docker ps) and then run:

$ docker stop <containerid>

Please don't do this yet, however! I want to continue using this running container in the next
section.

28 / 57

Example 3: RStudio+ (cont.)
To stop this container, you would grab the container ID (i.e. with $ docker ps) and then run:

$ docker stop <containerid>

Please don't do this yet, however! I want to continue using this running container in the next
section.

Aside: Recall that we instantiated this container as a detached/background process (�d).

$ docker run �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

If you dropped the �d �ag and re-ran the above command, your terminal would stay open as
an ongoing process. (Try this for yourself later.)

Everything else would stay the same. You'd still log in at <IPADDRESS>�8787 , etc.
However, I wanted to mention this non-background process version because it offers
another way to shut down the container: Simply type CTRL+c in the (same, ongoing
process) Terminal window. Again, try this for yourself later.

28 / 57

Example 3: RStudio+ (cont.)
I'll end this example by reiterating the stacked (or layered) nature of the Docker work�ow.

To prove this, consider what happens when I instantiate the r�ver:4.0.0 image at the base of
Rocker's versioned stack.

29 / 57

https://hub.docker.com/r/rocker/r-ver

Example 3: RStudio+ (cont.)
I'll end this example by reiterating the stacked (or layered) nature of the Docker work�ow.

To prove this, consider what happens when I instantiate the r�ver:4.0.0 image at the base of
Rocker's versioned stack.

29 / 57

https://hub.docker.com/r/rocker/r-ver

Example 3: RStudio+ (cont.)
I'll end this example by reiterating the stacked (or layered) nature of the Docker work�ow.

To prove this, consider what happens when I instantiate the r�ver:4.0.0 image at the base of
Rocker's versioned stack.

TL;DR I am immediately taken into a running R 4.0.0 container.

All those messages — a4a2a29f9ba4� Already exists etc. — are Docker con�rming that
it already has the necessary layers for building this (parent) container.
No need to download or build any new layers.

30 / 57

https://hub.docker.com/r/rocker/r-ver

Example 3: RStudio+ (cont.)
I'll end this example by reiterating the stacked (or layered) nature of the Docker work�ow.

To prove this, consider what happens when I instantiate the r�ver:4.0.0 image at the base of
Rocker's versioned stack.

TL;DR I am immediately taken into a running R 4.0.0 container.

All those messages — a4a2a29f9ba4� Already exists etc. — are Docker con�rming that
it already has the necessary layers for building this (parent) container.
No need to download or build any new layers.

This layered approach is not unique to the Rocker stack. It is integral to Docker's core design.

Cache existing layers. Only (re)build what we have to do.
Modularity reduces build times, makes containers easy to share and customize.

30 / 57

https://hub.docker.com/r/rocker/r-ver

Example 3: RStudio+ (cont.)
I'll end this example by reiterating the stacked (or layered) nature of the Docker work�ow.

To prove this, consider what happens when I instantiate the r�ver:4.0.0 image at the base of
Rocker's versioned stack.

TL;DR I am immediately taken into a running R 4.0.0 container.

All those messages — a4a2a29f9ba4� Already exists etc. — are Docker con�rming that
it already has the necessary layers for building this (parent) container.
No need to download or build any new layers.

This layered approach is not unique to the Rocker stack. It is integral to Docker's core design.

Cache existing layers. Only (re)build what we have to do.
Modularity reduces build times, makes containers easy to share and customize.

All of which provides a nice segue to our next section...

30 / 57

https://hub.docker.com/r/rocker/r-ver

Write your own Docker�les & images

31 / 57

Add to an existing container
The easiest way to start writing our own Docker images is by layering on top of existing
containers.

Remember: Like ogres, Docker is all about the layers.

32 / 57

https://www.youtube.com/watch?v=aJQmVZSAqlc

Add to an existing container
The easiest way to start writing our own Docker images is by layering on top of existing
containers.

Remember: Like ogres, Docker is all about the layers.

Let's see a simple example where we add an R library to our tidyverse:4.0.0 image. First,
make sure that the container is still running. You should see something like:

$ docker ps

(If you don't see something like the above, please re-start your container and then log-in to
RStudio Server, using the same steps that we saw previously.)

CONTAINER ID IMAGE COMMAND CREATED STATUS P
802dbd3841c7 rocker/tidyverse:4.0.0 "/init" 8 minutes ago Up 8 minutes 0

32 / 57

https://www.youtube.com/watch?v=aJQmVZSAqlc

Add to an existing container
The easiest way to start writing our own Docker images is by layering on top of existing
containers.

Remember: Like ogres, Docker is all about the layers.

Let's see a simple example where we add an R library to our tidyverse:4.0.0 image. First,
make sure that the container is still running. You should see something like:

$ docker ps

(If you don't see something like the above, please re-start your container and then log-in to
RStudio Server, using the same steps that we saw previously.)

Once you are in RStudio, install data.table like you would any normal R library.

I'm not going to show this with a GIF, but either use RStudio's library installer or run
install.packages("data.table") .

CONTAINER ID IMAGE COMMAND CREATED STATUS P
802dbd3841c7 rocker/tidyverse:4.0.0 "/init" 8 minutes ago Up 8 minutes 0

32 / 57

https://www.youtube.com/watch?v=aJQmVZSAqlc

Add to an existing container (cont.)
Okay, data.table should now be installed on your running container.

Question: If you stopped your container and restarted it, would data.table still be there?

33 / 57

Add to an existing container (cont.)
Okay, data.table should now be installed on your running container.

Question: If you stopped your container and restarted it, would data.table still be there?

Answer: No!

33 / 57

Add to an existing container (cont.)
Okay, data.table should now be installed on your running container.

Question: If you stopped your container and restarted it, would data.table still be there?

Answer: No! Remember, the whole point of Docker is to always start from the same pristine
state.

33 / 57

Add to an existing container (cont.)
Okay, data.table should now be installed on your running container.

Question: If you stopped your container and restarted it, would data.table still be there?

Answer: No! Remember, the whole point of Docker is to always start from the same pristine
state.

So, we have to commit these changes as part of a new (different) pristine state. The good news
is that this is going to look very similar to our Git work�ow.

I'm going to show you how on the next slide to keep everything in one place...

33 / 57

Add to an existing container (cont.)
Step 1: Run docker ps to ID the running container. We've already done this, but still...

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS P
802dbd3841c7 rocker/tidyverse:4.0.0 "/init" 8 minutes ago Up 8 minutes 0

34 / 57

Add to an existing container (cont.)
Step 1: Run docker ps to ID the running container. We've already done this, but still...

$ docker ps

Step 2. Grab the container ID (in my case: 802dbd3841c7). We're going to use this to commit
our changes and create a new Docker image, which I'll call tidyverse_dt .

$ docker commit �m "tidverse + data.table" 802dbd3841c7 tidyverse_dt:4.0.0

Again, this should feel very familiar to our Git work�ow. We even wrote ourselves a helpful
commit message. Note that I added a version tag (i.e. �4.0.0). This is optional, but good
practice. Here, I'm reminding myself that I've built on top of the R 4.0.0 versioned stack.

CONTAINER ID IMAGE COMMAND CREATED STATUS P
802dbd3841c7 rocker/tidyverse:4.0.0 "/init" 8 minutes ago Up 8 minutes 0

34 / 57

Add to an existing container (cont.)
Step 1: Run docker ps to ID the running container. We've already done this, but still...

$ docker ps

Step 2. Grab the container ID (in my case: 802dbd3841c7). We're going to use this to commit
our changes and create a new Docker image, which I'll call tidyverse_dt .

$ docker commit �m "tidverse + data.table" 802dbd3841c7 tidyverse_dt:4.0.0

Again, this should feel very familiar to our Git work�ow. We even wrote ourselves a helpful
commit message. Note that I added a version tag (i.e. �4.0.0). This is optional, but good
practice. Here, I'm reminding myself that I've built on top of the R 4.0.0 versioned stack.

Step 3. Pro�t. (There's no step 3. Just con�rm for yourself that your image has been created.)

$ docker images

CONTAINER ID IMAGE COMMAND CREATED STATUS P
802dbd3841c7 rocker/tidyverse:4.0.0 "/init" 8 minutes ago Up 8 minutes 0

34 / 57

Adding things outside of R?
For the simple example on the previous slide, we installed a single R package. But the process
would work exactly the same if we did any other operations from within R(studio).

Install multiple packages
Save datasets, scripts, �gures, etc.

35 / 57

Adding things outside of R?
For the simple example on the previous slide, we installed a single R package. But the process
would work exactly the same if we did any other operations from within R(studio).

Install multiple packages
Save datasets, scripts, �gures, etc.

Question: What happens if we want to install/update something outside of R(Studio)? Say,
Ubuntu system libraries or another program like Python?

35 / 57

Adding things outside of R?
For the simple example on the previous slide, we installed a single R package. But the process
would work exactly the same if we did any other operations from within R(studio).

Install multiple packages
Save datasets, scripts, �gures, etc.

Question: What happens if we want to install/update something outside of R(Studio)? Say,
Ubuntu system libraries or another program like Python?

Answer: It still works exactly the same. You just have to add things through your container's
bash shell. Either:

Launch directly into the shell to start with (remember: here). Or,

Use docker exec to open the shell of a running container. For example:

$ docker exec �it 802dbd3841c7 bash
root@802dbd3841c7�/# apt update �y �� apt install htop
root@802dbd3841c7�/# htop �� Show all available CPU cores. Press 'q' to quit.

35 / 57

https://docs.docker.com/engine/reference/commandline/exec/

Adding things outside of R?
For the simple example on the previous slide, we installed a single R package. But the process
would work exactly the same if we did any other operations from within R(studio).

Install multiple packages
Save datasets, scripts, �gures, etc.

Question: What happens if we want to install/update something outside of R(Studio)? Say,
Ubuntu system libraries or another program like Python?

Answer: It still works exactly the same. You just have to add things through your container's
bash shell. Either:

Launch directly into the shell to start with (remember: here). Or,

Use docker exec to open the shell of a running container. For example:

$ docker exec �it 802dbd3841c7 bash
root@802dbd3841c7�/# apt update �y �� apt install htop
root@802dbd3841c7�/# htop �� Show all available CPU cores. Press 'q' to quit.

(Obviously, you'd now have to commit this change to add htop to your image.) 35 / 57

https://docs.docker.com/engine/reference/commandline/exec/

Aside: Stop your container(s)
Okay, now is a good time to stop your container if you haven't done so already. Grab your
container ID and run:

$ docker stop <container�id>

Alternatively, you can stop all running containers with the following command:

$ docker stop $(docker ps �q)

36 / 57

Write your own Docker�le
The interactive approach to building Docker images — i.e. committing changes to a running
container — is a convenient way to get up and running quickly. However, at some point you'll
probably want to start writing your own Dockerfiles .

Remember: Dockerfiles are the "sheet music" of the whole operation. These are simple
text �les that provide the full set of (shell) instructions for building our Docker images.

37 / 57

Write your own Docker�le
The interactive approach to building Docker images — i.e. committing changes to a running
container — is a convenient way to get up and running quickly. However, at some point you'll
probably want to start writing your own Dockerfiles .

Remember: Dockerfiles are the "sheet music" of the whole operation. These are simple
text �les that provide the full set of (shell) instructions for building our Docker images.

There is a whole host of commands and considerations for writing Dockerfiles — all of
which I am going to skip for this lecture. (We simply don't have the time.)

37 / 57

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/

Write your own Docker�le
The interactive approach to building Docker images — i.e. committing changes to a running
container — is a convenient way to get up and running quickly. However, at some point you'll
probably want to start writing your own Dockerfiles .

Remember: Dockerfiles are the "sheet music" of the whole operation. These are simple
text �les that provide the full set of (shell) instructions for building our Docker images.

There is a whole host of commands and considerations for writing Dockerfiles — all of
which I am going to skip for this lecture. (We simply don't have the time.)

BUT... I will brie�y say that the Rocker Project again has our backs with a bunch of ready-made
scripts for building on and extending their Docker images.

37 / 57

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://github.com/rocker-org/rocker-versioned2#modifying-and-extending-images-in-the-new-architecture

(Continues on next slide.)

Write your own Docker�le
The interactive approach to building Docker images — i.e. committing changes to a running
container — is a convenient way to get up and running quickly. However, at some point you'll
probably want to start writing your own Dockerfiles .

Remember: Dockerfiles are the "sheet music" of the whole operation. These are simple
text �les that provide the full set of (shell) instructions for building our Docker images.

There is a whole host of commands and considerations for writing Dockerfiles — all of
which I am going to skip for this lecture. (We simply don't have the time.)

BUT... I will brie�y say that the Rocker Project again has our backs with a bunch of ready-made
scripts for building on and extending their Docker images.

For example, if we wanted to modify the r�ver4.0.0 image so that it also included Python,
our Docker�le would be as simple as the following two lines:

FROM rocker/r�ver:4.0.0
RUN /rocker_scripts/install_python.sh

37 / 57

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://github.com/rocker-org/rocker-versioned2#modifying-and-extending-images-in-the-new-architecture

Write your own Docker�le (cont.)
FROM rocker/r�ver:4.0.0
RUN /rocker_scripts/install_python.sh

38 / 57

Write your own Docker�le (cont.)
FROM rocker/r�ver:4.0.0
RUN /rocker_scripts/install_python.sh

Try this yourself by creating a �le called Dockerfile † comprising the above lines.

†Every Dockerfile is called exactly that. Only one Dockerfile is allowed per (sub) directory.

38 / 57

Write your own Docker�le (cont.)
FROM rocker/r�ver:4.0.0
RUN /rocker_scripts/install_python.sh

Try this yourself by creating a �le called Dockerfile † comprising the above lines.

Next, build your Docker image from this Dockerfile using the following shell command. I'm
going to call my image r_py and give it the "4.0.0" version stamp (both choices being
optional). Important: Make sure that your shell/terminal is in the same directory as the
Dockerfile when you run this command.

$ # docker build ��tag <name>:<version> <directory>
$ docker build ��tag r_py:4.0.0 .

†Every Dockerfile is called exactly that. Only one Dockerfile is allowed per (sub) directory.

38 / 57

Write your own Docker�le (cont.)
FROM rocker/r�ver:4.0.0
RUN /rocker_scripts/install_python.sh

Try this yourself by creating a �le called Dockerfile † comprising the above lines.

Next, build your Docker image from this Dockerfile using the following shell command. I'm
going to call my image r_py and give it the "4.0.0" version stamp (both choices being
optional). Important: Make sure that your shell/terminal is in the same directory as the
Dockerfile when you run this command.

$ # docker build ��tag <name>:<version> <directory>
$ docker build ��tag r_py:4.0.0 .

This will take a minute to pull everything in. But your r_py image with be ready for immediate
deployment thereafter, and now includes Python and reticulate.

$ docker run �it ��rm r_py:4.0.0

†Every Dockerfile is called exactly that. Only one Dockerfile is allowed per (sub) directory.

38 / 57

https://rstudio.github.io/reticulate/

Write your own Docker�le (cont.)
Okay, one last tip about writing your own Docker�les. Let's say we wanted to add an R
package (e.g. data.table) to our r_py image at build time. How could we do this?

39 / 57

Write your own Docker�le (cont.)
Okay, one last tip about writing your own Docker�les. Let's say we wanted to add an R
package (e.g. data.table) to our r_py image at build time. How could we do this?

Well, remember that Docker�les are (basically) just a set of shell instructions. So we can tell
our Docker�le to install an R package via an appropriate bash command like Rscript .†

We also need to pre-pend any bash command with the special Docker verb RUN .

† We covered Rscript back in the shell lecture.

39 / 57

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#rscript

Write your own Docker�le (cont.)
Okay, one last tip about writing your own Docker�les. Let's say we wanted to add an R
package (e.g. data.table) to our r_py image at build time. How could we do this?

Well, remember that Docker�les are (basically) just a set of shell instructions. So we can tell
our Docker�le to install an R package via an appropriate bash command like Rscript .†

We also need to pre-pend any bash command with the special Docker verb RUN .

Our Docker�le thus becomes:

FROM rocker/r�ver:4.0.0
RUN /rocker_scripts/install_python.sh
RUN R �e "install.packages('data.table')"

† We covered Rscript back in the shell lecture.

39 / 57

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#rscript

Write your own Docker�le (cont.)
Okay, one last tip about writing your own Docker�les. Let's say we wanted to add an R
package (e.g. data.table) to our r_py image at build time. How could we do this?

Well, remember that Docker�les are (basically) just a set of shell instructions. So we can tell
our Docker�le to install an R package via an appropriate bash command like Rscript .†

We also need to pre-pend any bash command with the special Docker verb RUN .

Our Docker�le thus becomes:

FROM rocker/r�ver:4.0.0
RUN /rocker_scripts/install_python.sh
RUN R �e "install.packages('data.table')"

If you build this image you'll see that it completes almost instantly... because the �rst two
lines (i.e. layers) have already been cached. Clever!

† We covered Rscript back in the shell lecture.

39 / 57

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#rscript

Automated Docker�les
Say that you have an existing research project or repo. Is there an easy way to write a
Docker�le / Docker image based on the contents?

Answer: Yes!

I don't have time to go into details, but automated Docker tools include:

containerit

repo2docker

Check them out. (I have a small containerit demo here.)

40 / 57

https://o2r.info/containerit/
https://repo2docker.readthedocs.io/en/latest/
https://github.com/grantmcdermott/containerit-demo

Docker Hub: Share your Docker images
So, you've written a cool Docker�le that you want to share with world. What next?

41 / 57

Docker Hub: Share your Docker images
So, you've written a cool Docker�le that you want to share with world. What next?

You can share your Docker�les and images in various ways.

For my research projects, I add a Docker�le to the companion GitHub repo. This provides a
convenient way for others to reproduce the (potentially complex) computing environment
that I used for conducting my analysis. (Example here.)

The most popular way to share Docker images is by hosting them on Docker Hub.

I'm not going to show you how to do that here. But the good news is that it's very
straightforward. See here for a quick walkthrough.

41 / 57

https://github.com/grantmcdermott/sceptic-priors#docker
https://hub.docker.com/
https://jsta.github.io/r-docker-tutorial/04-Dockerhub.html

Sharing �les with a container

42 / 57

Prep: Stop all running containers
This next section is all about sharing �les and folders between your computer and a
container. To avoid unexpected behaviour, it would be best to stop all running containers
before proceeding.

$ docker stop $(docker ps �q)

43 / 57

Prep: Stop all running containers
This next section is all about sharing �les and folders between your computer and a
container. To avoid unexpected behaviour, it would be best to stop all running containers
before proceeding.

$ docker stop $(docker ps �q)

You should be good to continue now...

43 / 57

Share �les by mounting volumes
Each container runs in a sandboxed environment and cannot access other �les and directories
on your computer unless you give it explicit permission.

44 / 57

Share �les by mounting volumes
Each container runs in a sandboxed environment and cannot access other �les and directories
on your computer unless you give it explicit permission.

To share �les with a container, the �v (mount volume) �ag is your friend.

Adopts a LHS:RHS convention, where LHS = path/on/your/computer/ and RHS =
path/on/the/container .

44 / 57

Share �les by mounting volumes
Each container runs in a sandboxed environment and cannot access other �les and directories
on your computer unless you give it explicit permission.

To share �les with a container, the �v (mount volume) �ag is your friend.

Adopts a LHS:RHS convention, where LHS = path/on/your/computer/ and RHS =
path/on/the/container .

For example, say I have a folder on my computer located at /home/grant/coolproject . I can
make this available to my "tidyverse" container by running:

$ docker run �v /home/grant/coolproject:/home/rstudio/coolproject \
$ �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

44 / 57

Share �les by mounting volumes
Each container runs in a sandboxed environment and cannot access other �les and directories
on your computer unless you give it explicit permission.

To share �les with a container, the �v (mount volume) �ag is your friend.

Adopts a LHS:RHS convention, where LHS = path/on/your/computer/ and RHS =
path/on/the/container .

For example, say I have a folder on my computer located at /home/grant/coolproject . I can
make this available to my "tidyverse" container by running:

$ docker run �v /home/grant/coolproject:/home/rstudio/coolproject \
$ �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

PS — I'll get back to specifying the correct RHS path in a couple of slides.

44 / 57

coolproject
The coolproject directory is now available from RStudio running on the container.

45 / 57

pwd
In the previous example, I provided the absolute LHS path to /home/grant/coolproject .

The reason is that Docker doesn't understand relative paths for mounting external volumes.

E.g. I couldn't use �v .:/home/rstudio or �v coolproject:home/rstudio .

46 / 57

pwd
In the previous example, I provided the absolute LHS path to /home/grant/coolproject .

The reason is that Docker doesn't understand relative paths for mounting external volumes.

E.g. I couldn't use �v .:/home/rstudio or �v coolproject:home/rstudio .

But there is a convenient shortcut for mounting the host computer's present working directory:
Use `pwd` (including the backticks).

$ docker run �v `pwd`:/home/rstudio/coolproject \
$ �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

46 / 57

pwd
In the previous example, I provided the absolute LHS path to /home/grant/coolproject .

The reason is that Docker doesn't understand relative paths for mounting external volumes.

E.g. I couldn't use �v .:/home/rstudio or �v coolproject:home/rstudio .

But there is a convenient shortcut for mounting the host computer's present working directory:
Use `pwd` (including the backticks).

$ docker run �v `pwd`:/home/rstudio/coolproject \
$ �d �p 8787�8787 �e PASSWORD=pswd123 rocker/tidyverse:4.0.0

This shortcut effectively covers the most common relative path case (i.e. linking a container to
our present working directory). You can also specify sub-directories.

E.g. �v `pwd`/pics:/home/rstudio

46 / 57

Choosing the RHS mount point
In the previous example, I speci�ed the RHS mount point as /home/rstudio/coolproject .
How did I know this would work?

47 / 57

Choosing the RHS mount point
In the previous example, I speci�ed the RHS mount point as /home/rstudio/coolproject .
How did I know this would work?

The short answer is that /home/rstudio is the default user's home directory for images in the
RStudio+ stack. If you're running a container from this stack, you should almost always start
your RHS with this path root.†

† Exception: If you assigned a different default user than "rstudio" (back here).

47 / 57

Choosing the RHS mount point
In the previous example, I speci�ed the RHS mount point as /home/rstudio/coolproject .
How did I know this would work?

The short answer is that /home/rstudio is the default user's home directory for images in the
RStudio+ stack. If you're running a container from this stack, you should almost always start
your RHS with this path root.†

We have to be be speci�c about mounting under the user's home directory, because RStudio
Server limits how and where users can access �les. (This is a security feature that we'll revisit
in the next lecture on cloud computing.)

† Exception: If you assigned a different default user than "rstudio" (back here).

47 / 57

Choosing the RHS mount point
In the previous example, I speci�ed the RHS mount point as /home/rstudio/coolproject .
How did I know this would work?

The short answer is that /home/rstudio is the default user's home directory for images in the
RStudio+ stack. If you're running a container from this stack, you should almost always start
your RHS with this path root.†

We have to be be speci�c about mounting under the user's home directory, because RStudio
Server limits how and where users can access �les. (This is a security feature that we'll revisit
in the next lecture on cloud computing.)

OTOH the /coolproject directory name is entirely optional. Call it whatever you want...
though using the same name as the linked computer directory obviously avoids confusion.

Similarly, you're free to add a couple of parent directories. I could have used �v
/home/grant/coolproject:/home/rstudio/parentdir1/parentdir2/coolproject and it
would have worked �ne.

† Exception: If you assigned a different default user than "rstudio" (back here).

47 / 57

Choosing the RHS mount point (cont.)
Choosing a speci�c RHS mount point is less important for non-RStudio+ containers.

Still, be aware that the /home/rstudio path won't work for our r-base container from earlier.

Reason: There's no "rstudio" user. (Fun fact: When you run an r-base container you are
actually logged in as root.)

48 / 57

Choosing the RHS mount point (cont.)
Choosing a speci�c RHS mount point is less important for non-RStudio+ containers.

Still, be aware that the /home/rstudio path won't work for our r-base container from earlier.

Reason: There's no "rstudio" user. (Fun fact: When you run an r-base container you are
actually logged in as root.)

For non-Rstudio+ containers, I recommend a general strategy of mounting external volumes on
the dedicated /mnt directory that is standard on Linux. For example:

$ docker run �it ��rm �v /home/grant/coolproject:/mnt/coolproject r�base /bin/bash
root@958d28472eb0�/# cd /mnt/coolproject/
root@958d28472eb0�/mnt/coolproject# R

48 / 57

Cleaning up

49 / 57

Docker images
As I keep emphasizing, Docker is fantastic. It allows us to very quickly share and access
different software environments, with all the reproducibility and deployment bene�ts that this
entails.

50 / 57

Docker images
As I keep emphasizing, Docker is fantastic. It allows us to very quickly share and access
different software environments, with all the reproducibility and deployment bene�ts that this
entails.

The "downside" of this convenience is that Docker images require disk space.

For example, the tidyverse image that we spun up earlier takes up 2.6 GB.
Not huge given then size of modern hard drives... but you can quickly eat up a good
chunk of disk space once you start building Docker images regularly.

50 / 57

Docker images
As I keep emphasizing, Docker is fantastic. It allows us to very quickly share and access
different software environments, with all the reproducibility and deployment bene�ts that this
entails.

The "downside" of this convenience is that Docker images require disk space.

For example, the tidyverse image that we spun up earlier takes up 2.6 GB.
Not huge given then size of modern hard drives... but you can quickly eat up a good
chunk of disk space once you start building Docker images regularly.

To see a list of the images1 on your system, simply type:

$ docker images

1 Remember: Images are distinct from containers.

50 / 57

Removing images
Running the previous command on my system, here's part of what I see.

51 / 57

Removing images
Running the previous command on my system, here's part of what I see.

To remove a particular image (or set of images), we use the docker rmi <imageid> command.
For example, I could remove both the "rocker/tidyverse" and "rocker/r-ver" images above with:

$ docker rmi 6b67807352ea daceaa48a457

(Feel free to try this yourself. But don't worry if you'd like to keep the equivalent images on
your machine for now.)

51 / 57

Pruning
Recall that Docker makes heavy used of cached layers to speed up build times.

I mention this because, while the docker rmi command normally works great, it doesn't
necessarily handle "dangling" images or build caches.

Basically, intermediate objects that are no longer being used.

This should not matter much for the examples that we've seen today. But these dangling
images can waste quite a bit of disk space once you've been building your own Docker�les for
a while.

52 / 57

Pruning
Recall that Docker makes heavy used of cached layers to speed up build times.

I mention this because, while the docker rmi command normally works great, it doesn't
necessarily handle "dangling" images or build caches.

Basically, intermediate objects that are no longer being used.

This should not matter much for the examples that we've seen today. But these dangling
images can waste quite a bit of disk space once you've been building your own Docker�les for
a while.

To �x this, we use the more aggressive $ docker <object> prune command, where <object>
could be an image, etc. There's also a convenient shorthand for cleaning multiple objects at
once:

$ docker system prune

I frequently use this on my own system. (More on pruning here.)

52 / 57

https://docs.docker.com/config/pruning/

Conclusions

53 / 57

Conclusions
Docker makes it easy to con�gure and share software environments.

A self-contained "box" with everything needed to run a project or application.
If it runs on your machine, it will run on my machine.
Great for reproducibility, testing, and deployment.

Terminology analogy

Docker�le = sheet music
Docker image = MP3 recording
Container = MP3 being played on my phone, etc.

R users are spoilt, thanks to the Rocker Project. Easy to build our own Docker�les on top of
this, or from scratch if we want.

Example (interactive terminal running base R 4.0.0)

$ docker run �it ��rm rocker/r�ver:4.0.0

(See next slide for a list of key commands.)
54 / 57

Key commands
docker help list of available commands

docker run downloads (if needed) and runs an image. Useful �ags include:

��rm remove after run
�it interactive terminal
�v host/path:container/path share (mount) a directory - �p 8787�8787 share a
browser port: here 8787

docker ps list of currently running containers

docker stop <container�ids> stop one or more running containers

docker images list all installed images

docker rmi <imageids> remove one or more images

docker system prune catch all clean-up (stop any running containers, remove any
dangling images, etc.)

55 / 57

Further reading

Documentation
Rocker website
R Journal article (Nüst et. al., 2020)
Docker documentation

Tutorials
Using R via Rocker (Excellent overview and slidedeck from Dirk Eddelbuettel, one of the
originators of the Rocker Project.)
Using Docker for Data Science (Very thorough walkthrough, with a focus on composing
your own Docker�les from scratch.)
ROpenSci Docker Tutorial (Another detailed and popular tutorial, albeit outdated in parts.)

56 / 57

https://www.rocker-project.org/
https://journal.r-project.org/archive/2020/RJ-2020-007/index.html
https://docs.docker.com/
https://dirk.eddelbuettel.com/papers/cologneRUG2020.pdf
https://www.robertmylesmcdonnell.com/content/posts/docker/
http://ropenscilabs.github.io/r-docker-tutorial

Table of contents
�. Prologue

�. Docker 101

�. Examples

Base R
R-dev
RStudio+

�. Write your own Docker�les & images

�. Sharing �les with a container

�. Cleaning up

�. Conclusions

57 / 57

