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Note: This lecture will focus only on vector-based spatial analysis. We will not cover raster-based spatial analysis, although
this is an equally important subject. I’ll provide some links to further resources at the bottom of this document for those of you
who want to explore further on your own.

Requirements
External libraries (requirements vary by OS)

We’re going to be doing all our spatial analysis and plotting today in R. Behind the scenes, R provides bindings to powerful
open-source GIS libraries. These include the Geospatial Data Abstraction Library (GDAL) and Interface to Geometry
Engine Open Source (GEOS) API suite, as well as access to projection and transformation operations from the PROJ
library. You needn’t worry about all this, but for the fact that youmay need to install some of these external libraries first.
The requirements vary by OS:

• Linux: Requirements vary by distribution. See here.
• Mac: You should be fine to proceed directly to the R packages installation below. An unlikely exception is if you’ve

configured R to install packages from source; in which case see here.
• Windows: Same as Mac, you should be good to go unless you’re installing from source. In which case, see here.

R packages

• New: sf, lwgeom,maps,mapdata, spData, tigris, tidycensus, leaflet,mapview, tmap, tmaptools
• Already used: tidyverse, data.table, hrbrthemes

Truth be told, you only need a handful of the above libraries to do 95% of the spatial work that you’re likely to encounter.
But R’s spatial ecosystem and support is extremely rich, so I’ll try to walk through a number of specific use-cases in this
lecture. Run the following code chunk to install (if necessary) and load everything.
## Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(sf, tidyverse, data.table, hrbrthemes, lwgeom, rnaturalearth, maps, mapdata, spData, tigris, tidycensus, leaflet, mapview, tmap, tmaptools)
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## My preferred ggplot2 plotting theme (optional)
theme_set(hrbrthemes::theme_ipsum())

Census API key

Finally, we’ll be accessing some data from the US Census Bureau through the tidycensus package. This will require a
Census API key, which you can request here. Once that’s done, you can set it using the tidycensus::census_api_key()
function. I recommend using the “install = TRUE” option to save your key for future usage. See the function’s help file for
more information.

tidycensus::census_api_key("PLACE_YOUR_API_KEY_HERE", install = TRUE)

Introduction: CRS andmap projections
Student presentation time.

If you’re reading this after the fact, I recommend these two helpful resources. The very short version is that spatial data,
like all coordinate-based systems, only make sense relative to some fixed point. That fixed point is what the Coordinate
Reference Systems, or CRS, is trying to set. In R, we can define the CRS in one of two ways:

1. EPSG code (e.g. 3857), or

2. PROJ string (e.g. "+proj=merc").

We’ll see examples of both implementations in in this lecture. For the moment, however, just know that they are equally
valid ways of specifying CRS in R (albeit with with different strengths and weaknesses). You can search for many different
CRS definitions here.

Aside: There are some important updates happening in the world of CRS and geospatial software, which
will percolate through to the R spatial ecosystem. Thanks to the hard work of various R package developers,
these behind-the-scenes changes are unlikely to affect the way that you interact with spatial data in R. But
they are worth understanding if you plan to make geospatial work a core component of your research. More
here.

Similarly, whenever we try to plot (some part of) the earth on a map, we’re effectively trying to project a 3-D object onto
a 2-D surface. This will necessarily create some kind of distortion. Different types of map projections limit distortions for
some parts of the world at the expense of others. For example, consider how badly the standard (but infamous) Mercator
projection distorts the high latitudes in a global map (source):

## Sorry, this GIF is only available in the the HTML version of the notes.

Bottom line: You should always aim to choose a projection that best represents your specific area of study. I’ll also show
you how you can “re-orient” your projection to a specific latitude and longitude using the PROJ syntax. But first I’m
obliged to share this XKCD summary. (Do yourself a favour and click on the link.)

Simple Features and the sf package
R has long provided excellent support for spatial analysis and plotting (primarily through the sp, rgdal, rgeos, and raster
packages). However, until recently, the complex structure of spatial data necessitated a set of equally complex spatial
objects in R. I won’t go into details, but a spatial object (say, a SpatialPolygonsDataFrame) was typically comprised of
several “layers” — much like a list — with each layer containing a variety of “slots”. While this approach did (and still does)
work perfectly well, the convoluted structure provided some barriers to entry for newcomers. It alsomade it very difficult
to incorporate spatial data into the tidyverse ecosystem that we’re familiar with. Luckily, all this has changed thanks to
the advent of the sf package (link).

The “sf” stands for simple features, which is a simple (ahem) standard for representing the spatial geometries of real-world
objects on a computer.1 These objects — i.e. “features” — could include a tree, a building, a country’s border, or the entire

1See the first of the excellent sf vignettes for more details.
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globe. The point is that they are characterised by a common set of rules, defining everything from how they are stored on
our computer to which geometrical operations can be applied them. Of greater importance for our purposes, however, is
the fact that sf represents these features in R as data frames. This means that all of our data wrangling skills from previous
lectures can be applied to spatial data; say nothing of the specialized spatial functions that we’ll cover next.

Reading in spatial data

Somewhat confusingly, most of the functions in the sf package start with the prefix st_. This stands for spatial and
temporal and a basic command of this package is easy enough once you remember that you’re probably looking for
st_SOMETHING().2

Let’s demonstrate by reading in the North Carolina counties shapefile that comes bundled with sf. As you might have
guessed, we’re going to use the st_read() command and sf package will handle all the heavy lifting behind the scenes.

# library(sf) ## Already loaded

## Location of our shapefile (here: bundled together with the sf package)
file_loc = system.file("shape/nc.shp", package="sf")

## Read the shapefile into R
nc = st_read(file_loc, quiet = TRUE)

Simple Features as data frames

Let’s print out the nc object that we just created and take a look at its structure.
nc

## Simple feature collection with 100 features and 14 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
## geographic CRS: NAD27
## First 10 features:
## AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74
## 1 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091 1
## 2 0.061 1.231 1827 1827 Alleghany 37005 37005 3 487 0
## 3 0.143 1.630 1828 1828 Surry 37171 37171 86 3188 5
## 4 0.070 2.968 1831 1831 Currituck 37053 37053 27 508 1
## 5 0.153 2.206 1832 1832 Northampton 37131 37131 66 1421 9
## 6 0.097 1.670 1833 1833 Hertford 37091 37091 46 1452 7
## 7 0.062 1.547 1834 1834 Camden 37029 37029 15 286 0
## 8 0.091 1.284 1835 1835 Gates 37073 37073 37 420 0
## 9 0.118 1.421 1836 1836 Warren 37185 37185 93 968 4
## 10 0.124 1.428 1837 1837 Stokes 37169 37169 85 1612 1
## NWBIR74 BIR79 SID79 NWBIR79 geometry
## 1 10 1364 0 19 MULTIPOLYGON (((-81.47276 3...
## 2 10 542 3 12 MULTIPOLYGON (((-81.23989 3...
## 3 208 3616 6 260 MULTIPOLYGON (((-80.45634 3...
## 4 123 830 2 145 MULTIPOLYGON (((-76.00897 3...
## 5 1066 1606 3 1197 MULTIPOLYGON (((-77.21767 3...
## 6 954 1838 5 1237 MULTIPOLYGON (((-76.74506 3...
## 7 115 350 2 139 MULTIPOLYGON (((-76.00897 3...
## 8 254 594 2 371 MULTIPOLYGON (((-76.56251 3...

2I rather wish they’d gonewith a sf_ prefixmyself—or at least created aliases for it—but the package developers are apparently following standard
naming conventions from PostGIS.
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## 9 748 1190 2 844 MULTIPOLYGON (((-78.30876 3...
## 10 160 2038 5 176 MULTIPOLYGON (((-80.02567 3...

Now we can see the explicit data frame structure that was I talking about earlier. The object has the familiar tibble-style
output that we’re used to (e.g. it only prints the first 10 rows of the data). However, it also has some additional information
in the header, like a description of the geometry type (“MULTIPOLYGON”) and CRS (e.g. EPSG ID 4267). One thing I
want to note in particular is the geometry column right at the end of the data frame. This geometry column is how sf
package achieves much of its magic: It stores the geometries of each row element in its own list column.3 Since all we
really care about are the key feature attributes — county name, FIPS code, population size, etc. — we can focus on those
instead of getting bogged down by hundreds (or thousands or even millions) of coordinate points. In turn, this all means
that our favourite tidyverse operations and syntax (including the pipe operator %>%) can be applied to spatial data. Let’s
review some examples, starting with plotting.

Plotting and projection with ggplot2

Plotting sf objects is incredibly easy thanks to the package’s integration with both base R plot() and ggplot2. I’m going
to focus on the latter here, but feel free to experiment.4 The key geom to remember is geom_sf(). For example:

# library(tidyverse) ## Already loaded

nc_plot =
ggplot(nc) +
geom_sf(aes(fill = AREA), alpha=0.8, col="white") +
scale_fill_viridis_c(name = "Area") +
ggtitle("Counties of North Carolina")
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To reproject an sf object to a different CRS, we can use sf::st_transform().
nc %>%

st_transform(crs = "+proj=moll") %>% ## Reprojecting to a Mollweide CRS
head(2) ## Saving vertical space

## Simple feature collection with 2 features and 14 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -7160486 ymin: 4364317 xmax: -7077213 ymax: 4404770
## CRS: +proj=moll

3For example, we could print out the coordinates needed to plot the first element in our data frame, Ashe county, by typing nc$geometry[[1]]. In
contrast, I invite you to see how complicated the structure of a traditional spatial object is by running, say, str(as(nc, "Spatial")).

4Plotting sf objects with the base plot function is generally faster. However, I feel that you give up a lot of control and intuition by moving away
from the layered, “graphics of grammar” approach of ggplot2.
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## AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74
## 1 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091 1
## 2 0.061 1.231 1827 1827 Alleghany 37005 37005 3 487 0
## NWBIR74 BIR79 SID79 NWBIR79 geometry
## 1 10 1364 0 19 MULTIPOLYGON (((-7145980 43...
## 2 10 542 3 12 MULTIPOLYGON (((-7118089 43...

Or, we can specify a common projection directly in the ggplot call using coord_sf(). This is often the most convenient
approach when you are combining multiple sf data frames in the same plot.
nc_plot +

coord_sf(crs = "+proj=moll") +
labs(subtitle = "Mollweide projection")
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Note that we used a PROJ string to define the CRS reprojection above. But we could easily use an EPSG code instead. For
example, here’s the NC state plane projection.
nc_plot +

coord_sf(crs = 32119) +
labs(subtitle = "NC state plane")
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Data wrangling with dplyr and tidyr

As I keep saying, the tidyverse approach to data wrangling carries over very smoothly to sf objects. For example, the
standard dplyr verbs like filter(), mutate() and select() all work:
nc %>%

filter(NAME %in% c("Camden", "Durham", "Northampton")) %>%
mutate(AREA_1000 = AREA*1000) %>%
select(NAME, contains("AREA"), everything())

## Simple feature collection with 3 features and 15 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -79.01814 ymin: 35.85786 xmax: -75.95718 ymax: 36.55629
## geographic CRS: NAD27
## NAME AREA AREA_1000 PERIMETER CNTY_ CNTY_ID FIPS FIPSNO CRESS_ID
## 1 Northampton 0.153 153 2.206 1832 1832 37131 37131 66
## 2 Camden 0.062 62 1.547 1834 1834 37029 37029 15
## 3 Durham 0.077 77 1.271 1908 1908 37063 37063 32
## BIR74 SID74 NWBIR74 BIR79 SID79 NWBIR79 geometry
## 1 1421 9 1066 1606 3 1197 MULTIPOLYGON (((-77.21767 3...
## 2 286 0 115 350 2 139 MULTIPOLYGON (((-76.00897 3...
## 3 7970 16 3732 10432 22 4948 MULTIPOLYGON (((-79.01814 3...

You can also perform group_by() and summarise() operations as per normal (see here for a nice example). Furthermore,
the dplyr family of join functions also work, which can be especially handy when combining different datasets by (say)
FIPS code or some other attribute. However, this presumes that only one of the objects has a specialized geometry column.
In other words, it works when you are joining an sf object with a normal data frame. In cases where you want to join two
sf objects based on their geometries, there’s a specialized st_join() function. I provide an example of this latter operation
in the section on geometric operations below.

And, just to show that we’ve got the bases covered, you can also implement your favourite tidyr verbs. For example, we
can tidyr::gather() the data to long format, which is useful for facetted plotting.5 Here I demonstrate using the “BIR74”
and “BIR79” columns (i.e. the number of births in each county in 1974 and 1979, respectively).
nc %>%

select(county = NAME, BIR74, BIR79, -geometry) %>%
gather(year, births, BIR74, BIR79) %>%
mutate(year = gsub("BIR", "19", year)) %>%
ggplot() +
geom_sf(aes(fill = births), alpha=0.8, col="white") +
scale_fill_viridis_c(name = "Births", labels = scales::comma) +
facet_wrap(~year, ncol = 1) +
labs(title = "Births by North Carolina county")

5In case you’re wondering: the newer tidyr::pivot_* functions do not yet work with sf objects.
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Specialized geometric operations

Alongside all the tidyverse functionality, the sf package comes with a full suite of geometrical operations. You should take
a look at at the third sf vignette or the Geocomputation with R book to get a complete overview. However, here are a few
examples to get you started:

Unary operations So-called unary operations are applied to a single object. For instance, you can “melt” sub-elements
of an sf object (e.g. counties) into larger elements (e.g. states) using sf::st_union():
nc %>%

st_union() %>%
ggplot() +
geom_sf(fill=NA, col="black") +
labs(title = "Outline of North Carolina")

## although coordinates are longitude/latitude, st_union assumes that they are planar
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Or, you can get the st_area(), st_centroid(), st_boundary(), st_buffer(), etc. of an object using the appropriate
command. For example:

nc %>% st_area() %>% head(5) ## Only show the area of the first five counties to save space.

## Units: [m^2]
## [1] 1137388604 611077263 1423489919 694546292 1520740530

And:

nc_centroid = st_centroid(nc)

ggplot(nc) +
geom_sf(fill = "black", alpha = 0.8, col = "white") +
geom_sf(data = nc_centroid, col = "red") + ## Notice how easy it is to combine different sf objects
labs(
title = "Counties of North Carolina",
subtitle = "Centroids in red"
)
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Binary operations Another set of so-called binary operations can be applied to multiple objects. So, we can get things
like the distance between two spatial objects using sf::st_distance(). In the below example, I’m going to get the dis-
tance from Ashe county to Brunswich county, as well as itself. The latter is just a silly addition to show that we can easily
make multiple pairwise comparisons, even when the distance from one element to another is zero.

ashe_brunswick = nc %>% filter(NAME %in% c("Ashe", "Brunswick"))
brunswick = nc %>% filter(NAME %in% c("Brunswick"))

## Use "by_element = TRUE" to give a vector instead of the default pairwise matrix
ab_dist = st_distance(ashe_brunswick, brunswick, by_element = TRUE)
# Units: [m]
# [1] 347930.7 0.0

## We can use the `units` package (already installed as sf dependency) to convert to kilometres
ab_dist = ab_dist %>% units::set_units(km) %>% round()
# Units: [km]
# [1] 348 0
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ggplot(nc) +
geom_sf(fill = "black", alpha = 0.8, col = "white") +
geom_sf(data = nc %>% filter(NAME %in% c("Ashe", "Brunswick")), aes(fill = NAME), col = "white") +
labs(
title = "Calculating distances",
subtitle = paste0("The distance between Ashe and Brunswick is ", ab_dist[1], " km")
) +

theme(legend.title = element_blank())
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Binary logical operations A sub-genre of binary geometric operations falls into the category of logic rules— typically
characterising the way that geometries relate in space. (Do they overlap, etc.)

For example, we can calculate the intersection of different spatial objects using sf::st_intersection(). For this next
example, I’m going to use two new spatial objects: 1) A regional map of France from themaps package and 2) part of the
Seine river network (including its Marne and Yonne tributaries) from the spData package. Don’t worry too much about
the process used for loading these datasets; I’ll cover that in more depth shortly. For the moment, just focus on the idea
that we want to see which adminstrative regions are intersected by the river network. Start by plotting all of the data to
get a visual sense of the overlap:
## Get the data
france = st_as_sf(map('france', plot = FALSE, fill = TRUE))
data("seine", package = "spData")

## Make sure they have the same projection
seine = st_transform(seine, crs = st_crs(france))

ggplot() +
geom_sf(data = france, alpha = 0.8, fill = "black", col = "gray50") +
geom_sf(data = seine, col = "#05E9FF", lwd = 1) +
labs(
title = "Administrative regions of France",
subtitle = "Also showing the Seine, Marne and Yonne rivers"
)
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Now let’s limit it to the intersected regions:

seine = st_transform(seine, crs = st_crs(france))
france_intersected = st_intersection(france, seine)
france_intersected

## Simple feature collection with 22 features and 2 fields
## geometry type: GEOMETRY
## dimension: XY
## bbox: xmin: 0.4931747 ymin: 47.04007 xmax: 5.407725 ymax: 49.52717
## geographic CRS: WGS 84
## First 10 features:
## ID name geom
## 6 Aisne Marne LINESTRING (3.608053 49.089...
## 14 Marne Marne LINESTRING (4.872966 48.637...
## 17 Seine-et-Marne Marne LINESTRING (3.254238 48.977...
## 19 Seine-Saint-Denis Marne LINESTRING (2.595133 48.876...
## 25 Val-de-Marne Marne LINESTRING (2.53346 48.8581...
## 30 Haute-Marne Marne LINESTRING (5.407725 47.877...
## 5 Seine-Maritime Seine LINESTRING (1.071621 49.309...
## 12 Eure Seine LINESTRING (1.514229 49.077...
## 14.1 Marne Seine LINESTRING (3.868337 48.522...
## 15 Val-Doise Seine LINESTRING (2.286567 48.954...

Note that st_intersection() only preserves exact points of overlap. As in, this is the exact path that the rivers follow
within these regions. We can see this more explicitly in map form:
france_intersected %>%

ggplot() +
geom_sf(alpha = 0.8, aes(fill = ID, col = ID)) +
labs(
title = "Seine, Marne and Yonne rivers",
caption = "Colours depict French administrative regions"
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) +
theme(legend.title = element_blank())
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If we instead wanted to plot the subsample of intersected provinces (i.e. keeping their full geometries), we have a couple
options. We could filter the france object by matching its region IDs with the france_intersected object. However, a
more direct option is to use the sf::st_join() function which matches objects based on overlapping (i.e. intersecting)
geometries:

st_join(france, seine) %>%
filter(!is.na(name)) %>% ## Get rid of regions with no overlap
distinct(ID, .keep_all = T) %>% ## Some regions are duplicated b/c two branches of the river network flow through them
ggplot() +
geom_sf(alpha = 0.8, fill = "black", col = "gray50") +
geom_sf(data = seine, col = "#05E9FF", lwd = 1) +
labs(title = "Intersected regions only")
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That’s about as much sf functionality as I can show you for today. The remaining part of this lecture will cover some
additional mapping considerations and some bonus spatial R “swag”. However, I’ll try to slip in a few more sf-specific
operations along the way.

Aside: sf and data.table

sf objects are designed to integrate with a tidyverse workflow. They can also be made to work a data.table workflow
too, but the integration is not as slick. This is a known issue and I’ll only just highlight a few very brief considerations.

You can convert an sf object into a data.table. But note that the key geometry column appears to lose its attributes.

# library(data.table) ## Already loaded

nc_dt = as.data.table(nc)
head(nc_dt)

## AREA PERIMETER CNTY_ CNTY_ID NAME FIPS FIPSNO CRESS_ID BIR74 SID74
## 1: 0.114 1.442 1825 1825 Ashe 37009 37009 5 1091 1
## 2: 0.061 1.231 1827 1827 Alleghany 37005 37005 3 487 0
## 3: 0.143 1.630 1828 1828 Surry 37171 37171 86 3188 5
## 4: 0.070 2.968 1831 1831 Currituck 37053 37053 27 508 1
## 5: 0.153 2.206 1832 1832 Northampton 37131 37131 66 1421 9
## 6: 0.097 1.670 1833 1833 Hertford 37091 37091 46 1452 7
## NWBIR74 BIR79 SID79 NWBIR79 geometry
## 1: 10 1364 0 19 <XY[1]>
## 2: 10 542 3 12 <XY[1]>
## 3: 208 3616 6 260 <XY[1]>
## 4: 123 830 2 145 <XY[3]>
## 5: 1066 1606 3 1197 <XY[1]>
## 6: 954 1838 5 1237 <XY[1]>

The good news is that all of this information is still there. It’s just hidden from display.
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nc_dt$geometry

## Geometry set for 100 features
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
## geographic CRS: NAD27
## First 5 geometries:

## MULTIPOLYGON (((-81.47276 36.23436, -81.54084 3...

## MULTIPOLYGON (((-81.23989 36.36536, -81.24069 3...

## MULTIPOLYGON (((-80.45634 36.24256, -80.47639 3...

## MULTIPOLYGON (((-76.00897 36.3196, -76.01735 36...

## MULTIPOLYGON (((-77.21767 36.24098, -77.23461 3...

What’s the upshot? Well, basically it means that you have to refer to this “geometry” column explicitly whenever you
implement a spatial operation. For example, here’s a repeat of the st_union() operation that we saw earlier. Note that
I explicitly refer to the “geometry” column both for the st_union() operation (which, moreover, takes place in the “j”
data.table slot) and when assigning the aesthetics for the ggplot() call.

nc_dt[, .(geometry = st_union(geometry))] %>% ## Explicitly refer to 'geometry' col
ggplot(aes(geometry = geometry)) + ## And here again for the aes()
geom_sf(fill=NA, col="black") +
labs(title = "Outline of North Carolina",

subtitle = "This time brought to you by data.table")

## although coordinates are longitude/latitude, st_union assumes that they are planar
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35.0
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36.0

36.5
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This time brought to you by data.table

Outline of North Carolina

Of course, it’s also possible to efficiently convert between the two classes — e.g. with as.data.table() and st_as_sf()
— depending on what a particular section of code does (data wrangling or spatial operation). I find that often use this
approach in my own work.

Where to get map data
As our first North Carolina examples demonstrate, you can easily import external shapefiles, KML files, etc., into R. Just
use the generic sf::st_read() function on any of these formats and the sf package will take care of the rest. However,
we’ve also seen with the France example that you might not even need an external shapefile. Indeed, R provides access
to a large number of base maps — e.g. countries of the world, US states and counties, etc. — through the maps, (higher
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resolution) mapdata and spData packages, as well as a whole ecosystem of more specialized GIS libraries.6 To convert
these maps into “sf-friendly” data frame format, we can use the sf::st_as_sf() function as per the below examples.

Example 1: TheWorld

# library(maps) ## Already loaded

world = st_as_sf(map("world", plot = FALSE, fill = TRUE))

world_map =
ggplot(world) +
geom_sf(fill = "grey80", col = "grey40", lwd = 0.3) +
labs(
title = "The world",
subtitle = paste("EPSG:", st_crs(world)$epsg)
)

world_map

EPSG: 4326

The world

All of the usual sf functions and transformations can then be applied. For example, we can reproject the above world map
onto the Lambert Azimuthal Equal Area projection (and further orientate it at the South Pole) as follows.
world_map +

coord_sf(crs = "+proj=laea +y_0=0 +lon_0=155 +lat_0=-90") +
labs(subtitle = "Lambert Azimuthal Equal Area projection")

6The list of specialised maps packages is far too long for me to cover here. You can get marine regions, protected areas, nightlights, …, etc., etc.
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Lambert Azimuthal Equal Area projection

The world

Several digressions on projection considerations

Winkel tripel projection As we’ve already seen, most map projections work great “out of the box” with sf. One nig-
gling and notable exception is the Winkel tripel projection. This is the preferred global map projection of National Geo-
graphic and requires a bit more work to get it to play nicely with sf and ggplot2 (as detailed in this thread). Here’s a quick
example of how to do it:

# library(lwgeom) ## Already loaded

wintr_proj = "+proj=wintri +datum=WGS84 +no_defs +over"

world_wintri = lwgeom::st_transform_proj(world, crs = wintr_proj)

## Don't necessarily need a graticule, but if you do then define it manually:
gr =

st_graticule(lat = c(-89.9,seq(-80,80,20),89.9)) %>%
lwgeom::st_transform_proj(crs = wintr_proj)

ggplot(world_wintri) +
geom_sf(data = gr, color = "#cccccc", size = 0.15) + ## Manual graticule
geom_sf(fill = "grey80", col = "grey40", lwd = 0.3) +
coord_sf(datum = NA) +
theme_ipsum(grid = F) +
labs(title = "The world", subtitle = "Winkel tripel projection")
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Winkel tripel projection

The world

Equal Earth projection The latest and greatest projection, however, is the “Equal Earth” projection. This does work
well out of the box, in part due to the ne_countries dataset that comes bundled with the rnaturalearth package (link).
I’ll explain that second part of the previous sentence in moment. But first let’s see the Equal Earth projection in action.

# library(rnaturalearth) ## Already loaded

countries =
ne_countries(returnclass = "sf") %>%
st_transform(8857) ## Transform to equal earth projection
# st_transform("+proj=eqearth +wktext") ## PROJ string alternative

ggplot(countries) +
geom_sf(fill = "grey80", col = "grey40", lwd = 0.3) +
labs(title = "The world", subtitle = "Equal Earth projection")
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Equal Earth projection

The world

Pacfic-centered maps and other polygon mishaps As noted, the rnaturalearth::ne_countries spatial data
frame is important for correctly displaying the Equal Earth projection. On the face of it, this looks pretty similar to our
maps::world spatial data frame from earlier. They both contain polygons of all the countries in the world and appear to
have similar default projections. However, some underlying nuances in how those polygons are constructed allows us
avoid some undesirable visual artefacts that arise when reprojecting to the Equal Earth projection. Consider:
world %>%

st_transform(8857) %>% ## Transform to equal earth projection
ggplot() +
geom_sf(fill = "grey80", col = "grey40", lwd = 0.3) +
labs(title = "The... uh, world", subtitle = "Projection fail")

Projection fail

The... uh, world
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These types of visual artefacts are particularly common for Pacific-centered maps and, in that case, arise from polygons
extending over theGreenwich primemeridian. It’s a suprisingly finicky problem to solve. Even the rnaturalearth doesn’t
do a good job. Luckily, Nate Miller has you covered with an excellent guide to set you on the right track.

Example 2: A single country (i.e. Norway)

The maps and mapdata packages have detailed county- and province-level data for several individual nations. We’ve
already seen this with France, but it includes the USA, New Zealand and several other nations. However, we can still use
it to extract a specific country’s border using some intuitive syntax. For example, we could plot a base map of Norway as
follows.

norway = st_as_sf(map("world", "norway", plot = FALSE, fill = TRUE))

## For a hi-resolution map (if you *really* want to see all the fjords):
# norway = st_as_sf(map("worldHires", "norway", plot = FALSE, fill = TRUE))

norway %>%
ggplot() +
geom_sf(fill="black", col=NA)
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80°N

10°W  0° 10°E 20°E 30°E

Hmmm. Looks okay, but I don’t really want to include non-mainland territories like Svalbaard (to the north) and the
Faroe Islands (to the east). This gives me the chance to show off another handy function, sf::st_crop(), which I’ll use to
crop our sf object to a specific extent (i.e. rectangle). While I am at, we could also improve the projection. The Norwegian
Mapping Authority recommends the ETRS89 /UTMprojection, forwhichwe can easily obtain the equivalent EPSG code
(i.e. 25832) from this website.
norway %>%

st_crop(c(xmin=0, xmax=35, ymin=0, ymax=72)) %>%
st_transform(crs = 25832) %>%
ggplot() +
geom_sf(fill="black", col=NA)
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There you go. A nice-looking map of Norway. Fairly appropriate that it resembles a gnarly black metal guitar.

Aside: I recommend detaching the maps package once you’re finished using it, since it avoids potential
namespace conflicts with purrr::map.

detach(package:maps) ## To avoid potential purrr::map() conflicts

BONUS 1: US Census data with tidycensus and tigris
Note: Before continuing with this section, you will first need to request an API key from the Census.

Working with Census data has traditionally quite a pain. You need to register on the website, then download data from
various years or geographies separately, merge these individual files, etc. Thankfully, this too has recently become much
easier thanks to the Census API and — for R at least — the tidycensus (link) and tigris (link) packages from Kyle Walker
(a UO alum). This next section will closely follow a tutorial on his website.

We start by loading the packages and setting our Census API key. Note that I’m not actually running the below chunk,
since I expect you to fill in your own Census key. You only have to run this function once.

# library(tidycensus) ## Already loaded
# library(tigris) ## Already loaded

## Replace the below with your own census API key. We'll use the "install = TRUE"
## option to save the key for future use, so we only ever have to run this once.
census_api_key("YOUR_CENSUS_API_KEY_HERE", install = TRUE)

## Also tell the tigris package to automatically cache its results to save on
## repeated downloading. I recommend adding this line to your ~/.Rprofile file
## so that caching is automatically enabled for future sessions. A quick way to
## do that is with the `usethis::edit_r_profile()` function.
options(tigris_use_cache=TRUE)

Let’s say that our goal is to provide a snapshot of Census rental estimates across different cities in the Pacific Northwest.
We start by downloading tract-level rental data for Oregon and Washington using the tidycensus::get_acs() function.
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Note that you’ll need to look up the correct ID variable (in this case: “DP04_0134”).
rent =

tidycensus::get_acs(
geography = "tract", variables = "DP04_0134",
state = c("WA", "OR"), geometry = TRUE
)

rent

## Simple feature collection with 2292 features and 5 fields (with 10 geometries empty)
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -124.7631 ymin: 41.99179 xmax: -116.4635 ymax: 49.00249
## geographic CRS: NAD83
## # A tibble: 2,292 x 6
## GEOID NAME variable estimate moe geometry
## <chr> <chr> <chr> <dbl> <dbl> <MULTIPOLYGON [°]>
## 1 53061~ Census Trac~ DP04_01~ 1181 168 (((-122.2311 48.00875, -122.2288~
## 2 53033~ Census Trac~ DP04_01~ 1208 97 (((-122.3551 47.52103, -122.3551~
## 3 53077~ Census Trac~ DP04_01~ 845 208 (((-120.9789 46.66908, -120.9792~
## 4 53033~ Census Trac~ DP04_01~ 1727 112 (((-122.3555 47.65542, -122.3555~
## 5 53027~ Census Trac~ DP04_01~ 727 147 (((-123.7275 47.07135, -123.7264~
## 6 53061~ Census Trac~ DP04_01~ 2065 331 (((-122.1409 48.06446, -122.1402~
## 7 53033~ Census Trac~ DP04_01~ 1333 142 (((-122.3551 47.50711, -122.3551~
## 8 53077~ Census Trac~ DP04_01~ 1290 155 (((-120.5724 46.59989, -120.5619~
## 9 53011~ Census Trac~ DP04_01~ 1272 62 (((-122.5589 45.62102, -122.5548~
## 10 53021~ Census Trac~ DP04_01~ 550 189 (((-119.0936 46.28581, -119.0934~
## # ... with 2,282 more rows

This returns an sf object, which we can plot directly.
rent %>%

ggplot() +
geom_sf(aes(fill = estimate, color = estimate)) +
coord_sf(crs = 26910) +
scale_fill_viridis_c(name = "Rent ($)", labels = scales::comma) +
scale_color_viridis_c(name = "Rent ($)", labels = scales::comma) +
labs(
title = "Rental rates across Oregon and Washington",
caption = "Data: US Census Bureau"
)
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Hmmm, looks like you want to avoid renting in Seattle if possible…

The above map provides rental information for pretty much all of the Pacific Northwest. Perhaps we’re not interested in
such a broad swatch of geography. What ifwe’d rather get a sense of rentswithin some smaller andwell-definedmetropoli-
tan areas? Well, we’d need some detailed geographic data for starters, say from the TIGER/Line shapefiles collection. The
good news is that the tigris package has you covered here. For example, let’s say we want to narrow down our focus and
compare rents across three Oregon metros: Portland (and surrounds), Corvallis, and Eugene.
or_metros =

tigris::core_based_statistical_areas(cb = TRUE) %>%
# filter(GEOID %in% c("21660", "18700", "38900")) %>% ## Could use GEOIDs directly if you know them
filter(grepl("Portland|Corvallis|Eugene", NAME)) %>%
filter(grepl("OR", NAME)) %>% ## Filter out Portland, ME
select(metro_name = NAME)

Now we do a spatial join on our two data sets using the sf::st_join() function.
or_rent =

st_join(
rent,
or_metros,
join = st_within, left = FALSE
)

or_rent

## Simple feature collection with 595 features and 6 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -124.1587 ymin: 43.43739 xmax: -121.5144 ymax: 46.38863
## geographic CRS: NAD83
## # A tibble: 595 x 7
## GEOID NAME variable estimate moe geometry metro_name
## * <chr> <chr> <chr> <dbl> <dbl> <MULTIPOLYGON [°]> <chr>
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## 1 53011~ Censu~ DP04_01~ 1272 62 (((-122.5589 45.62102, -12~ Portland-V~
## 2 53011~ Censu~ DP04_01~ 1185 112 (((-122.5528 45.69343, -12~ Portland-V~
## 3 53011~ Censu~ DP04_01~ 866 64 (((-122.6143 45.63259, -12~ Portland-V~
## 4 53011~ Censu~ DP04_01~ 1268 62 (((-122.5282 45.60814, -12~ Portland-V~
## 5 53011~ Censu~ DP04_01~ 1268 267 (((-122.6002 45.78026, -12~ Portland-V~
## 6 53011~ Censu~ DP04_01~ 1274 107 (((-122.5603 45.66535, -12~ Portland-V~
## 7 53011~ Censu~ DP04_01~ 1092 77 (((-122.3562 45.57666, -12~ Portland-V~
## 8 53011~ Censu~ DP04_01~ 1427 106 (((-122.6576 45.69122, -12~ Portland-V~
## 9 53011~ Censu~ DP04_01~ 1148 132 (((-122.667 45.6664, -122.~ Portland-V~
## 10 53011~ Censu~ DP04_01~ 1074 76 (((-122.6716 45.62722, -12~ Portland-V~
## # ... with 585 more rows

One useful way to summarize this data and compare acrossmetros is with a histogram. Note that “regular” ggplot2 geoms
and functions play perfectly nicely with sf objects (i.e. we aren’t limited to geom_sf()).
or_rent %>%

ggplot(aes(x = estimate)) +
geom_histogram() +
facet_wrap(~metro_name)
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That’s a quick taste of working with tidycensus (and tigris). In truth, the package can do a lot more than I’ve shown you
here. For example, you can also use it to download a variety of other Census microdata such as PUMS, which is much
more detailed. See the tidycensuswebsite for more information.

BONUS 2: Interactive maps
Now that you’ve grasped the basic properties of sf objects and how to plot them using ggplot2, its time to scale up with
interactive maps.7 You have several package options here. But I think the best are leaflet (link) and friends, or plotly
(link). We’ve already covered the latter in a previous lecture, so I’ll simply redirect interested parties to this link for some
map-related examples examples. To expand on the former in more depth, leaflet.js is a lightweight JavaScript library for
interactive mapping that has become extremely popular in recent years. You would have seen it being used across all the

7Theability to easily plot interactivemaps fromR is one of themain reasons that I switched all ofmy public presentations fromPDFs to RMarkdown-
driven HMTL.
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major news media publications (New York Times, Washington Post, The Economist, etc.). The good people at RStudio have
kindly packaged a version of leaflet for R, which basically acts as a wrapper to the underlying JavaScript library.

The leaflet syntax is a little different to what you’ve seen thus far and I strongly encourage you to visit the package’s
excellent website for the full set of options. However, a key basic principle that it shares with ggplot2 is that you build
your plot in layers. Here’s an example adapted from Julia Silge, which builds on the tidycensus package that we saw above.
This time, our goal is to plot county-level population densities for Oregon as a whole and produce some helpful popup
text if a user clicks on a particular county. First, we download the data using tidycensus and inspect the resulting data
frame.

# library(tidycensus) ## Already loaded

oregon =
get_acs(
geography = "county", variables = "B01003_001",
state = "OR", geometry = TRUE
)

oregon

## Simple feature collection with 36 features and 5 fields
## geometry type: MULTIPOLYGON
## dimension: XY
## bbox: xmin: -124.5662 ymin: 41.99179 xmax: -116.4635 ymax: 46.29204
## geographic CRS: NAD83
## First 10 features:
## GEOID NAME variable estimate moe
## 1 41017 Deschutes County, Oregon B01003_001 186251 NA
## 2 41003 Benton County, Oregon B01003_001 91107 NA
## 3 41015 Curry County, Oregon B01003_001 22650 NA
## 4 41061 Union County, Oregon B01003_001 26337 NA
## 5 41055 Sherman County, Oregon B01003_001 1642 114
## 6 41051 Multnomah County, Oregon B01003_001 804606 NA
## 7 41007 Clatsop County, Oregon B01003_001 39102 NA
## 8 41033 Josephine County, Oregon B01003_001 86251 NA
## 9 41031 Jefferson County, Oregon B01003_001 23607 NA
## 10 41039 Lane County, Oregon B01003_001 373340 NA
## geometry
## 1 MULTIPOLYGON (((-122.0019 4...
## 2 MULTIPOLYGON (((-123.8167 4...
## 3 MULTIPOLYGON (((-124.3239 4...
## 4 MULTIPOLYGON (((-118.6978 4...
## 5 MULTIPOLYGON (((-121.0312 4...
## 6 MULTIPOLYGON (((-122.9292 4...
## 7 MULTIPOLYGON (((-123.5989 4...
## 8 MULTIPOLYGON (((-124.042 42...
## 9 MULTIPOLYGON (((-121.8495 4...
## 10 MULTIPOLYGON (((-124.1503 4...

So, the popup text of interest is held within the “NAME” and “estimate” columns. I’ll use a bit of regular expression work
to extract the county name from the “NAME” column (i.e. without the state) and then build up themap layer by layer. Note
that the leaflet syntax requires that I prepend variables names with a tilde (~) when I refer to them in the plot building
process. This tilde operates in much the same way as the asthetics (aes()) function does in ggplot2. One other thing to
note is that I need to define a colour palette — which I’ll call col_pal here — separately from the main plot. This is a bit
of an inconvenience if you’re used to the fully-integrated ggplot2 API, but only a small one.
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# library(leaflet) ## Already loaded

col_pal = colorQuantile(palette = "viridis", domain = oregon$estimate, n = 10)

oregon %>%
mutate(county = gsub(",.*", "", NAME)) %>% ## Get rid of everything after the first comma
st_transform(crs = 4326) %>%
leaflet(width = "100%") %>%
addProviderTiles(provider = "CartoDB.Positron") %>%
addPolygons(
popup = ~paste0(county, "<br>", "Population: ", prettyNum(estimate, big.mark=",")),
stroke = FALSE,
smoothFactor = 0,
fillOpacity = 0.7,
color = ~col_pal(estimate)
) %>%

addLegend(
"bottomright",
pal = col_pal,
values = ~estimate,
title = "Population percentiles",
opacity = 1
)

No suprises here. The bulk of Oregon’s population is situated just west of the Cascades, in cities connected along the I-5.

A particularly useful feature of interactive maps is not being limited by scale or granularity, so you can really dig in to
specific areas and neighbourhoods. Here’s an example using home values from Lane County.
lane =

get_acs(
geography = "tract", variables = "B25077_001",
state = "OR", county = "Lane County", geometry = TRUE
)

## Getting data from the 2015-2019 5-year ACS
lane_pal = colorNumeric(palette = "plasma", domain = lane$estimate)

lane %>%
mutate(tract = gsub(",.*", "", NAME)) %>% ## Get rid of everything after the first comma
st_transform(crs = 4326) %>%
leaflet(width = "100%") %>%
addProviderTiles(provider = "CartoDB.Positron") %>%
addPolygons(
# popup = ~tract,
popup = ~paste0(tract, "<br>", "Median value: $", prettyNum(estimate, big.mark=",")),
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stroke = FALSE,
smoothFactor = 0,
fillOpacity = 0.5,
color = ~lane_pal(estimate)
) %>%

addLegend(
"bottomright",
pal = lane_pal,
values = ~estimate,
title = "Median home values<br>Lane County, OR",
labFormat = labelFormat(prefix = "$"),
opacity = 1
)

Having tried to convince you of the conceptual similarities between building maps with either leaflet or ggplot2 — lay-
ering etc. — there’s no denying that the syntax does take some getting used to. If you only plan to spin up the occasional
interactive map, that cognitive overhead might be more effort than it’s worth. The good news is that R spatial community
has created the mapview package (link) for very quickly generating interactive maps. Behind the scenes, it uses leaflet
to power everything, alongside some sensible defaults. Here’s a quick example that recreates our Lane county home value
map from above.

# library(mapview) ## Already loaded

mapview::mapview(lane, zcol = "estimate",
layer.name = 'Median home values<br>Lane County, OR')
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Super easy, no? While it doesn’t offer quite the same flexibility as the native leaflet syntax,mapview is a great way to get
decent interactive maps up and running with minimal effort.8

BONUS 3: Other map plotting options (plot, tmap, etc.)
While I think that ggplot2 (together with sf) and leaflet are the best value bet for map plotting in R — especially for
relative newcomers that have been inculcated into the tidyverse ecosystem — it should be said that there are many other
options available to you. The base R plot() function is very powerful and handles all manner of spatial objects. (It is also
very fast.) The package that I’ll highlight briefly in closing, however, is tmap (link). The focus of tmap is thematic maps
that are “production ready”. The package is extremely flexible and can accept various spatial objects and output various
map types (including interactive). Moreover, the syntax should look very familar to us, since it is inspired by ggplot2’s
layered graphics of grammar approach. Here’s an example of a great looking map taken from the tmap homepage.

# library(tmap) ## Already loaded
# library(tmaptools) ## Already loaded

## Load elevation raster data, and country polygons
data(land, World)

## Convert to Eckert IV projection
land_eck4 = st_transform(land, "+proj=eck4")

## Plot
tm_shape(land_eck4) +

tm_raster(
"elevation",
breaks=c(-Inf, 250, 500, 1000, 1500, 2000, 2500, 3000, 4000, Inf),

8I also want to flag the companion mapedit package (link), which lets you edit maps interactively by hand (e.g. redrawing polygons). I’ve used it for
some of my projects and it works very well.
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palette = terrain.colors(9),
title="Elevation"
) +

tm_shape(World) +
tm_borders("grey20") +
tm_graticules(labels.size = .5) +
tm_text("name", size="AREA") +
tm_compass(position = c(.65, .15), color.light = "grey90") +
tm_credits("Eckert IV projection", position = c("RIGHT", "BOTTOM")) +
tm_style("classic") +
tm_layout(
inner.margins=c(.04,.03, .02, .01),
legend.position = c("left", "bottom"),
legend.frame = TRUE,
bg.color="lightblue",
legend.bg.color="lightblue",
earth.boundary = TRUE,
space.color="grey90"
)
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Further reading
You could easily spend a whole semester (or degree!) on spatial analysis and, more broadly, geocomputation. I’ve simply
tried to give you as much useful information as can reasonably be contained in one lecture. Here are some resources for
further reading and study:

• The package websites that I’ve linked to throughout this tutorial are an obvious next port of call for delving deeper
into their functionality: sf, leaflet, etc.

• The best overall resource right now may be Geocomputation with R, a superb new text by Robin Lovelace, Jakub
Nowosad, and Jannes Muenchow. This is a “living”, open-source document, which is constantly updated by its
authors and features a very modern approach to working with geographic data. Highly recommended.

• Similarly, the rockstar team behind sf, Edzer Pebesma and Roger Bivand, are busy writing their own book, Spatial
Data Science. This project is currently less developed, but I expect it to become the key reference point in years to
come. Imporantly, both of the above books cover raster-based spatial data.

• On the subject of raster data… If you’re in themarket for shorter guides, Jamie Afflerbach has a great introduction to
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https://github.com/r-spatial/sf
https://rstudio.github.io/leaflet/
https://geocompr.robinlovelace.net/index.html
https://www.r-spatial.org/book/
https://www.r-spatial.org/book/


rasters here. At a slightlymore advanced level, UO’s very ownEdRubin has typically excellent tutorial here. Finally,
the sf team is busy developing a newpackage called stars, whichwill provide equivalent functionality (among other
things) for raster data. UPDATE: I ended up caving and wrote up a short set of bonus notes on rasters here.

• If you want more advice on drawing maps, including a bunch that we didn’t cover today (choropleths, state-bins,
etc.), Kieran Healy’s Data Vizualisation book has you covered.

• Something else we didn’t really cover at all todaywas spatial statistics. This too could be subject to a degree-length
treatment. However, for now I’ll simply point you to Spatio-Temporal Statistics with R, by Christopher Wikle and
coauthors. (Another free book!) Finally, since it is likely the most interesting thing for economists working with
spatial data, I’ll also add that Darin Christensen and Thiemo Fetzer have written a very fast R-implementation (via
C++) of Conley standard errors. The GitHub repo is here. See their original blog post (and update) for more details.
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https://rawgit.com/jafflerbach/spatial-analysis-R/gh-pages/intro_spatial_data_R.html
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