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Today’s lecture is about the bread-and-butter tool of applied econometrics and data science: regression analysis. My goal
is to give you a whirlwind tour of the key functions and packages. I’m going to assume that you already know all of
the necessary theoretical background on causal inference, asymptotics, etc. This lecture will not cover any of theoretical
concepts or seek to justify a particular statistical model. Indeed, most of the models that we’re going to run today are
pretty silly. We also won’t be able to cover some important topics. For example, I’ll only provide the briefest example of a
Bayesian regression model and I won’t touch times series analysis at all. (Although, I will provide links for further reading
at the bottom of this document.) These disclaimers aside, let’s proceed…

Software requirements
R packages

It’s important to note that “base” R already provides all of the tools we need for basic regression analysis. However, we’ll
be using several additional packages today, because they will make our lives easier and offer increased power for some
more sophisticated analyses.

• New: fixest, estimatr, ivreg, sandwich, lmtest,mfx,margins, broom,modelsummary, vtable
• Already used: tidyverse, hrbrthemes, listviewer

A convenient way to install (if necessary) and load everything is by running the below code chunk.
## Load and install the packages that we'll be using today
if (!require("pacman")) install.packages("pacman")
pacman::p_load(mfx, tidyverse, hrbrthemes, estimatr, ivreg, fixest, sandwich,

lmtest, margins, vtable, broom, modelsummary)

## Make sure we have at least version 0.6.0 of ivreg
if (numeric_version(packageVersion("ivreg")) < numeric_version("0.6.0")) install.packages("ivreg")
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## My preferred ggplot2 plotting theme (optional)
theme_set(hrbrthemes::theme_ipsum())

While we’ve already loaded all of the required packages for today, I’ll try to be as explicit about where a particular function
is coming from, whenever I use it below.

Something else that I want to mention up front is that we’ll mostly be working with the starwars data frame that we’ve
already seen from previous lectures. Here’s a quick reminder of what it looks like to refresh your memory.
starwars

## # A tibble: 87 x 14
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Luke~ 172 77 blond fair blue 19 male mascu~
## 2 C-3PO 167 75 <NA> gold yellow 112 none mascu~
## 3 R2-D2 96 32 <NA> white, bl~ red 33 none mascu~
## 4 Dart~ 202 136 none white yellow 41.9 male mascu~
## 5 Leia~ 150 49 brown light brown 19 fema~ femin~
## 6 Owen~ 178 120 brown, gr~ light blue 52 male mascu~
## 7 Beru~ 165 75 brown light blue 47 fema~ femin~
## 8 R5-D4 97 32 <NA> white, red red NA none mascu~
## 9 Bigg~ 183 84 black light brown 24 male mascu~
## 10 Obi-~ 182 77 auburn, w~ fair blue-gray 57 male mascu~
## # ... with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
## # films <list>, vehicles <list>, starships <list>

Regression basics
The lm() function

R’s workhorse command for running regression models is the built-in lm() function. The “lm” stands for “linearmodels”
and the syntax is very intuitive.

lm(y ~ x1 + x2 + x3 + ..., data = df)

You’ll note that the lm() call includes a reference to the data source (in this case, a hypothetical data frame called df). We
covered this in our earlier lecture on R language basics and object-orientated programming, but the reason is that many
objects (e.g. data frames) can exist in your R environment at the same time. So we need to be specific about where our
regression variables are coming from — even if df is the only data frame in our global environment at the time.

Let’s run a simple bivariate regression of mass on height using our dataset of starwars characters.

ols1 = lm(mass ~ height, data = starwars)
ols1

##
## Call:
## lm(formula = mass ~ height, data = starwars)
##
## Coefficients:
## (Intercept) height
## -13.8103 0.6386

The resulting object is pretty terse, but that’s only because it buries most of its valuable information — of which there
is a lot — within its internal list structure. If you’re in RStudio, you can inspect this structure by typing View(ols1)
or simply clicking on the “ols1” object in your environment pane. Doing so will prompt an interactive panel to pop up
for you to play around with. That approach won’t work for this knitted R Markdown document, however, so I’ll use the
listviewer::jsonedit() function that we saw in the previous lecture instead.
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# View(ols1) ## Run this instead if you're in a live session
listviewer::jsonedit(ols1, mode="view") ## Better for R Markdown

As we can see, this ols1 object has a bunch of important slots… containing everything from the regression coefficients,
to vectors of the residuals and fitted (i.e. predicted) values, to the rank of the design matrix, to the input data, etc. etc.
To summarise the key pieces of information, we can use the — wait for it — generic summary() function. This will look
pretty similar to the default regression output from Stata that many of you will be used to.

summary(ols1)

##
## Call:
## lm(formula = mass ~ height, data = starwars)
##
## Residuals:
## Min 1Q Median 3Q Max
## -61.43 -30.03 -21.13 -17.73 1260.06
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.8103 111.1545 -0.124 0.902
## height 0.6386 0.6261 1.020 0.312
##
## Residual standard error: 169.4 on 57 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.01792, Adjusted R-squared: 0.0006956
## F-statistic: 1.04 on 1 and 57 DF, p-value: 0.312

We can then dig down further by extracting a summary of the regression coefficients:

summary(ols1)$coefficients

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.810314 111.1545260 -0.1242443 0.9015590
## height 0.638571 0.6260583 1.0199865 0.3120447

Get “tidy” regression coefficients with the broom package

While it’s easy to extract regression coefficients via the summary() function, in practice I always use the broom package
(link) to do so. broom has a bunch of neat features to convert regression (and other statistical) objects into “tidy” data
frames. This is especially useful because regression output is so often used as an input to something else, e.g. a plot of
coefficients or marginal effects. Here, I’ll use broom::tidy(..., conf.int = TRUE) to coerce the ols1 regression
object into a tidy data frame of coefficient values and key statistics.

# library(broom) ## Already loaded

tidy(ols1, conf.int = TRUE)

## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
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## 1 (Intercept) -13.8 111. -0.124 0.902 -236. 209.
## 2 height 0.639 0.626 1.02 0.312 -0.615 1.89

Again, I could now pipe this tidied coefficients data frame to a ggplot2 call, using saying geom_pointrange() to plot the
error bars. Feel free to practice doing this yourself now, but we’ll get to some explicit examples further below.

broom has a couple of other useful functions too. For example, broom::glance() summarises the model “meta” data
(R2, AIC, etc.) in a data frame.

glance(ols1)

## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.0179 0.000696 169. 1.04 0.312 1 -386. 777. 783.
## # ... with 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>

By the way, if you’re wondering how to export regression results to other formats (e.g. LaTeX tables), don’t worry: We’ll
get to that at the end of the lecture.

Regressing on subsetted data

Our simple model isn’t particularly good; the R2 is only 0.018. Different species and homeworlds aside, we may have an
extreme outlier in our midst…

Jabba!
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Remember: Always plot your data...

Maybe we should exclude Jabba from our regression? You can do this in two ways: 1) Create a new data frame and then
regress, or 2) Subset the original data frame directly in the lm() call.

1) Create a new data frame Recall that we can keep multiple objects in memory in R. So we can easily create a new
data frame that excludes Jabba using, say, dplyr (lecture) or data.table (lecture). For these lecture notes, I’ll stick with
dplyr commands since that’s where our starwars dataset is coming from. But it would be trivial to switch to data.table
if you prefer.
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starwars2 =
starwars %>%
filter(name != "Jabba Desilijic Tiure")
# filter(!(grepl("Jabba", name))) ## Regular expressions also work

ols2 = lm(mass ~ height, data = starwars2)
summary(ols2)

##
## Call:
## lm(formula = mass ~ height, data = starwars2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.382 -8.212 0.211 3.846 57.327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -32.54076 12.56053 -2.591 0.0122 *
## height 0.62136 0.07073 8.785 4.02e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.14 on 56 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.5795, Adjusted R-squared: 0.572
## F-statistic: 77.18 on 1 and 56 DF, p-value: 4.018e-12

2) Subset directly in the lm() call Running a regression directly on a subsetted data frame is equally easy.

ols2a = lm(mass ~ height, data = starwars %>% filter(!(grepl("Jabba", name))))
summary(ols2a)

##
## Call:
## lm(formula = mass ~ height, data = starwars %>% filter(!(grepl("Jabba",
## name))))
##
## Residuals:
## Min 1Q Median 3Q Max
## -39.382 -8.212 0.211 3.846 57.327
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -32.54076 12.56053 -2.591 0.0122 *
## height 0.62136 0.07073 8.785 4.02e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.14 on 56 degrees of freedom
## (28 observations deleted due to missingness)
## Multiple R-squared: 0.5795, Adjusted R-squared: 0.572
## F-statistic: 77.18 on 1 and 56 DF, p-value: 4.018e-12

The overall model fit is much improved by the exclusion of this outlier, with R2 increasing to 0.58. Still, we should be
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cautious about throwing out data. Another approach is to handle or account for outliers with statistical methods. Which
provides a nice segue to nonstandard errors.

Nonstandard errors
Dealing with statistical irregularities (heteroskedasticity, clustering, etc.) is a fact of life for empirical researchers. How-
ever, it says something about the economics profession that a random stranger could walk uninvited into a live seminar
and ask, “How did you cluster your standard errors?”, and it would likely draw approving nods from audience members.

The good news is that there are lots of ways to get nonstandard errors in R. For many years, these have been based on the
excellent sandwich package (link). However, here I’ll demonstrate using the estimatr package (link), which is both fast
and provides convenient aliases for the standard regression functions. Some examples follow below.

Robust standard errors

You can obtain heteroskedasticity-consistent (HC) “robust” standard errors using estimatr::lm_robust(). Let’s illus-
trate by implementing a robust version of the ols1 regression that we ran earlier. Note that estimatr models automati-
cally print in pleasing tidied/summary format, although you can certainly pipe them to tidy() too.

# library(estimatr) ## Already loaded

ols1_robust = lm_robust(mass ~ height, data = starwars)
# tidy(ols1_robust, conf.int = TRUE) ## Could tidy too
ols1_robust

## Estimate Std. Error t value Pr(>|t|) CI Lower
## (Intercept) -13.810314 23.45557632 -0.5887859 5.583311e-01 -60.7792950
## height 0.638571 0.08791977 7.2631109 1.159161e-09 0.4625147
## CI Upper DF
## (Intercept) 33.1586678 57
## height 0.8146273 57

Thepackage defaults to usingEicker-Huber-White robust standard errors, commonly referred to as “HC2” standard errors.
You can easily specify alternate methods using the se_type = argument.1 For example, you can specify Stata robust
standard errors if you want to replicate code or results from that language. (See here for more details on why this isn’t the
default and why Stata’s robust standard errors differ from those in R and Python.)

lm_robust(mass ~ height, data = starwars, se_type = "stata")

## Estimate Std. Error t value Pr(>|t|) CI Lower
## (Intercept) -13.810314 23.36219608 -0.5911394 5.567641e-01 -60.5923043
## height 0.638571 0.08616105 7.4113649 6.561046e-10 0.4660365
## CI Upper DF
## (Intercept) 32.9716771 57
## height 0.8111055 57

estimatr also supports robust instrumental variable (IV) regression. However, I’m going to hold off discussing these until
we get to the IV section below.

Aside on HAC (Newey-West) standard errors On thing I want to flag is that estimatr does not yet offer support for
HAC (i.e. heteroskedasticity and autocorrelation consistent) standard errors a la Newey-West. I’ve submitted a feature
request on GitHub — vote up if you would like to see it added sooner! — but you can still obtain these pretty easily using
the aforementioned sandwich package. For example, we can use sandwich::NeweyWest() on our existing ols1 object
to obtain HAC SEs for it.

1See the package documentation for a full list of options.
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# library(sandwich) ## Already loaded

# NeweyWest(ols1) ## Print the HAC VCOV
sqrt(diag(NeweyWest(ols1))) ## Print the HAC SEs

## (Intercept) height
## 21.2694130 0.0774265

If you plan to use HAC SEs for inference, then I recommend converting the model object with lmtest::coeftest().
This function builds on sandwich and provides a convenient way to do on-the-fly hypothesis testing with your model,
swapping out a wide variety of alternate variance-covariance (VCOV) matrices. These alternate VCOV matrices could
extendedway beyondHAC— includingHC, clustered, bootstrapped, etc. —but here’s how it wouldwork for the present
case:

# library(lmtest) ## Already loaded

ols1_hac = lmtest::coeftest(ols1, vcov = NeweyWest)
ols1_hac

##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -13.810314 21.269413 -0.6493 0.5187
## height 0.638571 0.077427 8.2474 2.672e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Note that its easy to convert coeftest()-adjusted models to tidied broom objects too.

tidy(ols1_hac, conf.int = TRUE)

## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -13.8 21.3 -0.649 5.19e- 1 -56.4 28.8
## 2 height 0.639 0.0774 8.25 2.67e-11 0.484 0.794

Clustered standard errors

Clustered standard errors is an issue that most commonly affects panel data. As such, I’m going to hold off discussing clus-
tering until we get to the panel data section below. But here’s a quick example of clusteringwith estimatr::lm_robust()
just to illustrate:

lm_robust(mass ~ height, data = starwars, clusters = homeworld)

## Estimate Std. Error t value Pr(>|t|) CI Lower
## (Intercept) -9.3014938 28.84436408 -0.3224718 0.7559158751 -76.6200628
## height 0.6134058 0.09911832 6.1886211 0.0002378887 0.3857824
## CI Upper DF
## (Intercept) 58.0170751 7.486034
## height 0.8410291 8.195141

Dummy variables and interaction terms
For the next few sections, it will prove convenient to demonstrate using a subsample of the starwars data that comprises
only the human characters. Let’s quickly create this new dataset before continuing.
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humans =
starwars %>%
filter(species=="Human") %>%
select(where(Negate(is.list))) ## Drop list columns (optional)

humans

## # A tibble: 35 x 11
## name height mass hair_color skin_color eye_color birth_year sex gender
## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
## 1 Luke S~ 172 77 blond fair blue 19 male mascu~
## 2 Darth ~ 202 136 none white yellow 41.9 male mascu~
## 3 Leia O~ 150 49 brown light brown 19 fema~ femin~
## 4 Owen L~ 178 120 brown, grey light blue 52 male mascu~
## 5 Beru W~ 165 75 brown light blue 47 fema~ femin~
## 6 Biggs ~ 183 84 black light brown 24 male mascu~
## 7 Obi-Wa~ 182 77 auburn, wh~ fair blue-gray 57 male mascu~
## 8 Anakin~ 188 84 blond fair blue 41.9 male mascu~
## 9 Wilhuf~ 180 NA auburn, gr~ fair blue 64 male mascu~
## 10 Han So~ 180 80 brown fair brown 29 male mascu~
## # ... with 25 more rows, and 2 more variables: homeworld <chr>, species <chr>

Dummy variables as factors

Dummy variables are a core component of many regression models. However, these can be a pain to create in some
statistical languages, since you first have to tabulate a whole new matrix of binary variables and then append it to the
original data frame. In contrast, R has a very convenient framework for creating and evaluating dummy variables in a
regression: Simply specify the variable of interest as a factor.2

Here’s an example where we explicitly tell R that “gender” is a factor. Since I don’t plan on reusing this model, I’m just
going to print the results to screen rather than saving it to my global environment.

summary(lm(mass ~ height + as.factor(gender), data = humans))

##
## Call:
## lm(formula = mass ~ height + as.factor(gender), data = humans)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.068 -8.130 -3.660 0.702 37.112
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -84.2520 65.7856 -1.281 0.2157
## height 0.8787 0.4075 2.156 0.0441 *
## as.factor(gender)masculine 10.7391 13.1968 0.814 0.4259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.19 on 19 degrees of freedom
## (13 observations deleted due to missingness)
## Multiple R-squared: 0.444, Adjusted R-squared: 0.3855
## F-statistic: 7.587 on 2 and 19 DF, p-value: 0.003784

2Factors are variables that have distinct qualitative levels, e.g. “male”, “female”, “hermaphrodite”, etc.
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Okay, I should tell you that I’m actually making things more complicated than they need to be with the heavy-handed
emphasis on factors. R is “friendly” and tries to help whenever it thinks you have misspecified a function or variable.
While this is something to be aware of, normally It Just WorksTM. A case in point is that we don’t actually need to specify a
string (i.e. character) variable as a factor in a regression. R will automatically do this for you regardless, since it’s the only
sensible way to include string variables in a regression.
## Use the non-factored version of "gender" instead; R knows it must be ordered
## for it to be included as a regression variable
summary(lm(mass ~ height + gender, data = humans))

##
## Call:
## lm(formula = mass ~ height + gender, data = humans)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.068 -8.130 -3.660 0.702 37.112
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -84.2520 65.7856 -1.281 0.2157
## height 0.8787 0.4075 2.156 0.0441 *
## gendermasculine 10.7391 13.1968 0.814 0.4259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.19 on 19 degrees of freedom
## (13 observations deleted due to missingness)
## Multiple R-squared: 0.444, Adjusted R-squared: 0.3855
## F-statistic: 7.587 on 2 and 19 DF, p-value: 0.003784

Interaction effects

Like dummy variables, R provides a convenient syntax for specifying interaction terms directly in the regression model
without having to create them manually beforehand.3 You can use any of the following expansion operators:

• x1:x2 “crosses” the variables (equivalent to including only the x1 × x2 interaction term)
• x1/x2 “nests” the second variable within the first (equivalent to x1 + x1:x2; more on this later)
• x1*x2 includes all parent and interaction terms (equivalent to x1 + x2 + x1:x2)

As a rule of thumb, if not always, it is generally advisable to include all of the parent terms alongside their interactions.
This makes the * option a good default.

For example, we might wonder whether the relationship between a person’s body mass and their height is modulated by
their gender. That is, we want to run a regression of the form,

𝑀𝑎𝑠𝑠 = 𝛽0 + 𝛽1𝐷𝑀𝑎𝑙𝑒 + 𝛽2𝐻𝑒𝑖𝑔ℎ𝑡 + 𝛽3𝐷𝑀𝑎𝑙𝑒 × 𝐻𝑒𝑖𝑔ℎ𝑡

To implement this in R, we simply run the following,

ols_ie = lm(mass ~ gender * height, data = humans)
summary(ols_ie)

3Although there are very good reasons that you might want to modify your parent variables before doing so (e.g. centering them). As it happens, I’m
on record as stating that interaction effects are most widely misunderstood and misapplied concept in econometrics. However, that’s a topic for another
day.
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##
## Call:
## lm(formula = mass ~ gender * height, data = humans)
##
## Residuals:
## Min 1Q Median 3Q Max
## -16.250 -8.158 -3.684 -0.107 37.193
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -61.0000 204.0565 -0.299 0.768
## gendermasculine -15.7224 219.5440 -0.072 0.944
## height 0.7333 1.2741 0.576 0.572
## gendermasculine:height 0.1629 1.3489 0.121 0.905
##
## Residual standard error: 15.6 on 18 degrees of freedom
## (13 observations deleted due to missingness)
## Multiple R-squared: 0.4445, Adjusted R-squared: 0.3519
## F-statistic: 4.801 on 3 and 18 DF, p-value: 0.01254

Panel models
Fixed effects with the fixest package

The simplest (and least efficient) way to include fixed effects in a regression model is, of course, to use dummy variables.
However, it isn’t very efficient or scalable. What’s the point learning all that stuff about the Frisch-Waugh-Lovell, within-
group transformations, etc. etc. if we can’t use them in our software routines? Again, there are several options to choose
fromhere. For example,manyof you are probably familiarwith the excellent lfepackage (link), which offers near-identical
functionality to the popular Stata library, reghdfe (link). However, for fixed effects models in R, I am going to advocate
that you look no further than the fixest package (link).

fixest is relatively new on the scene and has quickly become one of my absolute favourite packages. It has an boatload of
functionality built in to it: support for nonlinearmodels, high-dimensional fixed effects, multiway clustering, multi-model
estimation, LaTeX tables, etc, etc. It is also insanely fast… as in, up to orders of magnitude faster than lfe or reghdfe. I
won’t be able to cover all of fixest’s features in depth here — see the introductory vignette for a thorough walkthrough
— but I hope to least give you a sense of why I am so enthusiastic about it. Let’s start off with a simple example before
moving on to something slightly more demanding.

Simple FE model The package’s main function is fixest::feols(), which is used for estimating linear fixed effects
models. The syntax is such that you first specify the regression model as per normal, and then list the fixed effect(s) after a
|. An example may help to illustrate. Let’s say that we again want to run our simple regression of mass on height, but this
time control for species-level fixed effects.4

# library(fixest) ## Already loaded

ols_fe = feols(mass ~ height | species, data = starwars) ## Fixed effect(s) go after the "|"
ols_fe

## OLS estimation, Dep. Var.: mass
## Observations: 58
## Fixed-effects: species: 31
## Standard-errors: Clustered (species)
## Estimate Std. Error t value Pr(>|t|)

4Since we specify “species” in the fixed effects slot below, feols() will automatically coerce it to a factor variable even though we didn’t explicitly
tell it to.
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## height 0.974876 0.044291 22.01 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 9.6906 Adj. R2: 0.99282
## Within R2: 0.662493

Note that the resultingmodel object has automatically clustered the standard errors by the fixed effect variable (i.e. species).
We’ll explore some more options for adjusting standard errors in fixest objects shortly. But to preview things, you can
specify the standard errors you want at estimation time… or you can adjust the standard errors for any existing model via
summary.fixest(). For example, here are two equivalent ways to specify vanilla (iid) standard errors:

Specify SEs at estimation time.

feols(mass ~ height | species,
data = starwars, se = 'standard')

## OLS estimation, Dep. Var.: mass
## Observations: 58
## Fixed-effects: species: 31
## Standard-errors: Standard
## Estimate Std. Error t value Pr(>|t|))
## height 0.974876 0.136463 7.1439 1.38e-
07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 9.6906 Adj. R2: 0.99282
## Within R2: 0.662493

Adjust SEs of an existing model (ols_fe) on the fly.

summary(ols_fe,
se = 'standard')

## OLS estimation, Dep. Var.: mass
## Observations: 58
## Fixed-effects: species: 31
## Standard-errors: Standard
## Estimate Std. Error t value Pr(>|t|))
## height 0.974876 0.136463 7.1439 1.38e-
07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 9.6906 Adj. R2: 0.99282
## Within R2: 0.662493

Before continuing, let’s quickly save a “tidied” data frame of the coefficients for later use. I’ll use iid standard errors again,
if only to show you that the broom::tidy() method for fixest objects also accepts an se argument. This basically just
provides another convenient way for you to adjust standard errors for your models on the fly.

# coefs_fe = tidy(summary(ols_fe, se = 'standard'), conf.int = TRUE) ## same as below
coefs_fe = tidy(ols_fe, se = 'standard', conf.int = TRUE)

High dimensional FEs and multiway clustering As I already mentioned above, fixest supports (arbitrarily) high-
dimensional fixed effects and (up to fourway) multiway clustering. To see this in action, let’s add “homeworld” as an
additional fixed effect to the model.
## We now have two fixed effects: species and homeworld
ols_hdfe = feols(mass ~ height | species + homeworld, data = starwars)
ols_hdfe

## OLS estimation, Dep. Var.: mass
## Observations: 55
## Fixed-effects: species: 30, homeworld: 38
## Standard-errors: Clustered (species)
## Estimate Std. Error t value Pr(>|t|))
## height 0.755844 0.332888 2.2706 0.03078 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 7.4579 Adj. R2: 1.0077
## Within R2: 0.487231

Easy enough, but the standard errors of the above model are automatically clustered by species, i.e. the first fixed effect
variable. Let’s go a step further and cluster by both “species” and “homeworld”. 5 fixest provides several ways for us to
do this — via the se or cluster arguments — and, again, you can specify your clustering strategy at estimation time, or

5I make no claims to this is a particularly good or sensible clustering strategy, but just go with it.
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adjust the standard errors of an existing model on-the-fly. I’ll (re)assign the model to the same ols_hdfe object, but you
could, of course, create a new object if you so wished.
## Cluster by both species and homeworld

## These next few lines all do the same thing. Pick your favourite!

## Specify desired SEs at estimation time...
# ols_hdfe = feols(mass ~ height | species + homeworld, se = 'twoway', data = starwars)
# ols_hdfe = feols(mass ~ height | species + homeworld, cluster = c('species', 'homeworld'), data = starwars)
# ols_hdfe = feols(mass ~ height | species + homeworld, cluster = ~ species + homeworld, data = starwars)
#
##... or, adjust the SEs of an existing model on the fly
# ols_hdfe = summary(ols_hdfe, se = 'twoway')
# ols_hdfe = summary(ols_hdfe, cluster = c('species', 'homeworld'))
ols_hdfe = summary(ols_hdfe, cluster = ~ species + homeworld) ## I'll go with this one

ols_hdfe

## OLS estimation, Dep. Var.: mass
## Observations: 55
## Fixed-effects: species: 30, homeworld: 38
## Standard-errors: Two-way (species & homeworld)
## Estimate Std. Error t value Pr(>|t|))
## height 0.755844 0.116416 6.4926 4.16e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 7.4579 Adj. R2: 1.0077
## Within R2: 0.487231

Comparing our model coefficients We’ll get to model presentation at the very end of the lecture. For now, I want
to quickly flag that fixest provides some really nice, built-in functions for comparing models. For example, you can get
regression tables with fixest::etable().
etable(ols_fe, ols_hdfe)

## ols_fe ols_hdfe
## Dependent Var.: mass mass
##
## height 0.9749*** (0.0443) 0.7558*** (0.1164)
## Fixed-Effects: ------------------ ------------------
## species Yes Yes
## homeworld No Yes
## _______________ __________________ __________________
## S.E.: Clustered by: species by: spec. & home.
## Observations 58 55
## R2 0.99672 0.99815
## Within R2 0.66249 0.48723

Similarly, the fixest::coefplot() function for plotting estimation results:

coefplot(list(ols_fe, ols_hdfe))

## Add legend (optional)
legend("bottomleft", col = 1:2, lwd = 1, pch = c(20, 17),

legend = c("FE and no clustering", "HDFE and twoway clustering"))
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coefplot() is especially useful for tracing the evolution of treatment effects over time, as in a difference-in-differences
setup (see Examples). However, I realise some people may find it a bit off-putting that it produces base R plots, rather
than a ggplot2 object. We’ll get to an automated ggplot2 coefficient plot solution further below with modelsum-
mary::modelplot(). Nevertheless, let me close this out this section by demonstrating the relative ease with which you
can do this “manually”. Consider the below example, which leverages the fact that we have saved (or can save) regression
models as data frames with broom::tidy(). As I suggested earlier, this makes it simple to construct our own bespoke
coefficient plots.

# library(ggplot2) ## Already loaded

## First get tidied output of the ols_hdfe object
coefs_hdfe = tidy(ols_hdfe, conf.int = TRUE)

bind_rows(
coefs_fe %>% mutate(reg = "Model 1\nFE and no clustering"),
coefs_hdfe %>% mutate(reg = "Model 2\nHDFE and twoway clustering")
) %>%
ggplot(aes(x=reg, y=estimate, ymin=conf.low, ymax=conf.high)) +
geom_pointrange() +
labs(Title = "Marginal effect of height on mass") +
geom_hline(yintercept = 0, col = "orange") +
ylim(-0.5, NA) + ## Added a bit more bottom space to emphasize the zero line
labs(
title = "'Effect' of height on mass",
caption = "Data: Characters from the Star Wars universe"
) +

theme(axis.title.x = element_blank())
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FWIW, we’d normally expect our standard errors to blow up with clustering. Here that effect appears to be outweighed by
the increased precision brought on by additional fixed effects. Still, I wouldn’t put toomuch thought into it. Our clustering
choice doesn’t make much sense and I really just trying to demonstrate the package syntax.

Aside on standard errors We’ve now seen the various options that fixest has for specifying different standard error
structures. In short, you invoke either of the se or cluster arguments. Moreover, you can choose to do so either at esti-
mation time, or by adjusting the standard errors for an existing model post-estimation (e.g. with summary.fixest(mod,
cluster = ...)). There are two additional points that I want to draw your attention to.

First, if you’re coming from another statistical language, adjusting the standard errors post-estimation (rather than always
at estimation time)may seem slightly odd. But this behaviour is actually extremely powerful, because it allows us to analyse
the effect of different error structures on-the-flywithout having to rerun the entiremodel again. fixest is already the fastest
game in town, but just think about the implied time savings for really large models.6 I’m a huge fan of the flexibility, safety,
and speed that on-the-fly standard error adjustment offers us. I even wrote a whole blog post about it if you’d like to read
more.

Second, reconciling standard errors across different software is a much more complicated process than you may realise.
There are a number of unresolved theoretical issues to consider — especially when it comes to multiway clustering —
and package maintainers have to make a number of arbitrary decisions about the best way to account for these. See here
for a detailed discussion. Luckily, Laurent (the fixest package author) has taken the time to write out a detailed vignette
about how to replicate standard errors from other methods and software packages.7

Random andmixed effects

Fixed effects models are more common than random or mixed effects models in economics (in my experience, anyway).
I’d also advocate for Bayesian hierachical models if we’re going down the whole random effects path. However, it’s still
good to know that R has you covered for random effectsmodels through the plm (link) andnlme (link) packages.8 I won’t
go into detail , but click on those links if you would like to see some examples.

6To be clear, adjusting the standard errors via, say, summary.fixest() completes instantaneously.
7If you want a deep dive into the theory with even more simulations, then this paper by the authors of the sandwich paper is another excellent

resource.
8As I mentioned above, plm also handles fixed effects (and pooling) models. However, I prefer fixest and lfe for the reasons already discussed.

14

https://grantmcdermott.com/better-way-adjust-SEs/
https://github.com/sgaure/lfe/issues/1#issuecomment-530643808
https://lrberge.github.io/fixest/articles/standard_errors.html
http://www.stat.columbia.edu/~gelman/arm/
https://cran.r-project.org/web/packages/plm/
https://cran.r-project.org/web/packages/nlme/index.html
http://sandwich.r-forge.r-project.org/articles/jss_2020.html


Instrumental variables
As you would have guessed by now, there are a number of ways to run instrumental variable (IV) regressions in R. I’ll walk
through three different options using the ivreg::ivreg(), estimatr::iv_robust(), and fixest::feols() functions,
respectively. These are all going to follow a similar syntax, where the IV first-stage regression is specified in a multi-
part formula (i.e. where formula parts are separated by one or more pipes, |). However, there are also some subtle and
important differences, which is why I want to go through each of them. After that, I’ll let you decide which of the three
options is your favourite.

The dataset that we’ll be using for this section describes cigarette demand for the 48 continental US states in 1995, and is
taken from the ivreg package. Here’s a quick a peek:

data("CigaretteDemand", package = "ivreg")
head(CigaretteDemand)

## packs rprice rincome salestax cigtax packsdiff pricediff
## AL 101.08543 103.9182 12.91535 0.9216975 26.57481 -0.1418075 0.09010222
## AR 111.04297 115.1854 12.16907 5.4850193 36.41732 -0.1462808 0.19998082
## AZ 71.95417 130.3199 13.53964 6.2057067 42.86964 -0.3733741 0.25576681
## CA 56.85931 138.1264 16.07359 9.0363074 40.02625 -0.5682141 0.32079587
## CO 82.58292 109.8097 16.31556 0.0000000 28.87139 -0.3132622 0.22587189
## CT 79.47219 143.2287 20.96236 8.1072834 48.55643 -0.3184911 0.18546746
## incomediff salestaxdiff cigtaxdiff
## AL 0.18222144 0.1332853 -3.62965832
## AR 0.15055894 5.4850193 2.03070663
## AZ 0.05379983 1.4004856 14.05923036
## CA 0.02266877 3.3634447 15.86267924
## CO 0.13002974 0.0000000 0.06098283
## CT 0.18404197 -0.7062239 9.52297455

Now, assume that we are interested in regressing the number of cigarettes packs consumed per capita on their average
price and people’s real incomes. The problem is that the price is endogenous, because it is simultaneously determined
by demand and supply. So we need to instrument for it using cigarette sales tax. That is, we want to run the following
two-stage IV regression.

𝑃𝑟𝑖𝑐𝑒𝑖 = 𝜋0 + 𝜋1𝑆𝑎𝑙𝑒𝑠𝑇 𝑎𝑥𝑖 + 𝑣𝑖 (First stage)

𝑃𝑎𝑐𝑘𝑠𝑖 = 𝛽0 + 𝛽2𝑃𝑟𝑖𝑐𝑒𝑖 + 𝛽1𝑅𝑒𝑎𝑙𝐼𝑛𝑐𝑜𝑚𝑒𝑖 + 𝑢𝑖 (Second stage)

Option 1: ivreg::ivreg()

I’ll startwith ivreg() from the ivreg package (link).9 The ivreg() function supports several syntax options for specifying
the IV component. I’m going to use the syntax that I find most natural, namely a formula with a three-part RHS: y ~ ex
| en | in. Implementing our two-stage regression from above may help to illustrate.

# library(ivreg) ## Already loaded

## Run the IV regression. Note the three-part formula RHS.
iv =

ivreg(
log(packs) ~ ## LHS: Dependent variable
log(rincome) | ## 1st part RHS: Exogenous variable(s)
log(rprice) | ## 2nd part RHS: Endogenous variable(s)
salestax, ## 3rd part RHS: Instruments

data = CigaretteDemand

9Some of you may wondering, but ivreg is a dedicated IV-focused package that splits off (and updates) functionality that used to be bundled with the
AER package.
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)
summary(iv)

##
## Call:
## ivreg(formula = log(packs) ~ log(rincome) | log(rprice) | salestax,
## data = CigaretteDemand)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.611000 -0.086072 0.009423 0.106912 0.393159
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.4307 1.3584 6.943 1.24e-08 ***
## log(rprice) -1.1434 0.3595 -3.181 0.00266 **
## log(rincome) 0.2145 0.2686 0.799 0.42867
##
## Diagnostic tests:
## df1 df2 statistic p-value
## Weak instruments 1 45 45.158 2.65e-08 ***
## Wu-Hausman 1 44 1.102 0.3
## Sargan 0 NA NA NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1896 on 45 degrees of freedom
## Multiple R-Squared: 0.4189, Adjusted R-squared: 0.3931
## Wald test: 6.534 on 2 and 45 DF, p-value: 0.003227

ivreg has lot of functionality bundled into it, including cool diagnostic tools and full integration with sandwich and co.
for swapping in different standard errors on the fly. See the introductory vignette for more.

The only other thing Iwant tomention briefly is that youmay see a number ivreg() tutorials using an alternative formula
representation. (Rememberme saying that the package allowsdifferent formula syntax, right?) Specifically, you’ll probably
see examples that use an older two-part RHS formula like: y ~ ex + en | ex + in. Note that here we are writing the ex
variables on both sides of the | separator. The equivalent for our cigarette example would be as follows. Run this yourself
to confirm the same output as above.

## Alternative two-part formula RHS (which I like less but YMMV)
iv2 =

ivreg(
log(packs) ~ ## LHS: Dependent var
log(rincome) + log(rprice) | ## 1st part RHS: Exogenous vars + endogenous vars
log(rincome) + salestax, ## 2nd part RHS: Exogenous vars (again) + Instruments

data = CigaretteDemand
)

summary(iv2)

This two-part syntax is closely linked to the manual implementation of IV, since it requires explicitly stating all of your
exogenous variables (including instruments) in one slot. However, it requires duplicate typing of the exogenous variables
and I personally find it less intuitive to write.10 But different strokes for different folks.

10Note that we didn’t specify the endogenous variable (i.e. log(rprice)) directly. Rather, we told R what the exogenous variables were. It then figured
out which variables were endogenous and needed to be instrumented in the first-stage.
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Option 2: estimatr::iv_robust()

Our second IVoption comes from the estimatrpackage thatwe sawearlier. Thiswill default to usingHC2 robust standard
errors although, as before, we could specify other options if we so wished (including clustering). Currently, the function
doesn’t accept the three-part RHS formula. But the two-part version works exactly the same as it did for ivreg(). All we
need to do is change the function call to estimatr::iv_robust().
# library(estimatr) ## Already loaded

## Run the IV regression with robust SEs. Note the two-part formula RHS.
iv_reg_robust =

iv_robust( ## Only need to change the function call. Everything else stays the same.
log(packs) ~
log(rincome) + log(rprice) |
log(rincome) + salestax,

data = CigaretteDemand
)

summary(iv_reg_robust, diagnostics = TRUE)

##
## Call:
## iv_robust(formula = log(packs) ~ log(rincome) + log(rprice) |
## log(rincome) + salestax, data = CigaretteDemand)
##
## Standard error type: HC2
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|) CI Lower CI Upper DF
## (Intercept) 9.4307 1.2845 7.342 3.179e-09 6.8436 12.0177 45
## log(rincome) 0.2145 0.3164 0.678 5.012e-01 -0.4227 0.8518 45
## log(rprice) -1.1434 0.3811 -3.000 4.389e-03 -1.9110 -0.3758 45
##
## Multiple R-squared: 0.4189 , Adjusted R-squared: 0.3931
## F-statistic: 7.966 on 2 and 45 DF, p-value: 0.001092

Option 3: fixest::feols()

Finally, we get back to the fixest::feols() function that we’ve already seen above. Truth be told, this is the IV option
that I use most often in my own work. In part, this statement reflects the fact that I work mostly with panel data and will
invariably be using fixest anyway. But I also happen to like its IV syntax a lot. The key thing is to specify the IV first-stage
as a separate formula in the final slot of the model call.11 For example, if we had fe fixed effects, then the model call would
be y ~ ex | fe | en ~ in. Since we don’t have any fixed effects in our current cigarette demand example, the first-stage
will come directly after the exogenous variables:

# library(fixest) ## Already loaded

iv_feols =
feols(
log(packs) ~ log(rincome) | ## y ~ ex
log(rprice) ~ salestax, ## en ~ in (IV first-stage; must be the final slot)

data = CigaretteDemand
)

# summary(iv_feols, stage = 1) ## Show the 1st stage in detail
iv_feols

11This closely resembles Stata’s approach to writing out the IV first-stage, where you specify the endogenous variable(s) and the instruments together
in a slot.
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## TSLS estimation, Dep. Var.: log(packs), Endo.: log(rprice), Instr.: salestax
## Second stage: Dep. Var.: log(packs)
## Observations: 48
## Standard-errors: Standard
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.430700 1.358400 6.942600 1.24000e-08 ***
## fit_log(rprice) -1.143400 0.359486 -3.180600 2.66200e-03 **
## log(rincome) 0.214515 0.268585 0.798687 4.28667e-01
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.183555 Adj. R2: 0.393109
## F-test (1st stage): stat = 45.2 , p = 2.655e-8, on 1 and 45 DoF.
## Wu-Hausman: stat = 1.102, p = 0.299559, on 1 and 44 DoF.

Again, I emphasise that the IV first-stage must always come last in the feols() model call. Just to be pedantic — but also
to demonstrate how easy fixest’s IV functionality extends to panel settings — here’s a final feols() example. This time,
I’ll use a panel version of the same US cigarette demand data that includes entries from both 1985 and 1995. The dataset
originally comes from the AER package, but we can download it from the web as follows. Note that I’m going to modify
some variables to make it better comparable to our previous examples.
## Get the data
url = 'https://vincentarelbundock.github.io/Rdatasets/csv/AER/CigarettesSW.csv'
cigs_panel =

read.csv(url, row.names = 1) %>%
mutate(
rprice = price/cpi,
rincome = income/population/cpi
)

head(cigs_panel)

## state year cpi population packs income tax price taxs
## 1 AL 1985 1.076 3973000 116.4863 46014968 32.5 102.18167 33.34834
## 2 AR 1985 1.076 2327000 128.5346 26210736 37.0 101.47500 37.00000
## 3 AZ 1985 1.076 3184000 104.5226 43956936 31.0 108.57875 36.17042
## 4 CA 1985 1.076 26444000 100.3630 447102816 26.0 107.83734 32.10400
## 5 CO 1985 1.076 3209000 112.9635 49466672 31.0 94.26666 31.00000
## 6 CT 1985 1.076 3201000 109.2784 60063368 42.0 128.02499 51.48333
## rprice rincome
## 1 94.96438 10.76387
## 2 94.30762 10.46817
## 3 100.90962 12.83046
## 4 100.22058 15.71332
## 5 87.60842 14.32619
## 6 118.98234 17.43861

Let’s run a panel IV now, where we’ll explicitly account for year and state fixed effects.
iv_feols_panel =

feols(
log(packs) ~ log(rincome) |
year + state | ## Now include FEs slot
log(rprice) ~ taxs, ## IV first-stage still comes last

data = cigs_panel
)

# summary(iv_feols_panel, stage = 1) ## Show the 1st stage in detail
iv_feols_panel
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## TSLS estimation, Dep. Var.: log(packs), Endo.: log(rprice), Instr.: taxs
## Second stage: Dep. Var.: log(packs)
## Observations: 96
## Fixed-effects: year: 2, state: 48
## Standard-errors: Clustered (year)
## Estimate Std. Error t value Pr(>|t|)
## fit_log(rprice) -1.279300 2.29e-15 -5.578376e+14 1.14e-15 ***
## log(rincome) 0.443422 1.45e-14 3.056237e+13 2.08e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## RMSE: 0.044789 Adj. R2: 0.92791
## Within R2: 0.533965
## F-test (1st stage): stat = 108.6 , p = 1.407e-13, on 1 and 45 DoF.
## Wu-Hausman: stat = 6.0215, p = 0.018161 , on 1 and 44 DoF.

Good news, our coefficients are around the same magnitude. But the increased precision of the panel model has yielded
gains in statistical significance.

Other models
Generalised linear models (logit, etc.)

To run a generalised linear model (GLM), we use the in-built glm() function and simply assign an appropriate family
(which describes the error distribution and corresponding link function). For example, here’s a simple logit model.

glm_logit = glm(am ~ cyl + hp + wt, data = mtcars, family = binomial)
summary(glm_logit)

##
## Call:
## glm(formula = am ~ cyl + hp + wt, family = binomial, data = mtcars)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.17272 -0.14907 -0.01464 0.14116 1.27641
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 19.70288 8.11637 2.428 0.0152 *
## cyl 0.48760 1.07162 0.455 0.6491
## hp 0.03259 0.01886 1.728 0.0840 .
## wt -9.14947 4.15332 -2.203 0.0276 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 43.2297 on 31 degrees of freedom
## Residual deviance: 9.8415 on 28 degrees of freedom
## AIC: 17.841
##
## Number of Fisher Scoring iterations: 8

Alternatively, you may recall me saying earlier that fixest supports nonlinear models. So you could (in this case, without
fixed-effects) also estimate:
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feglm(am ~ cyl + hp + wt, data = mtcars, family = binomial)

## GLM estimation, family = binomial, Dep. Var.: am
## Observations: 32
## Standard-errors: Standard
## Estimate Std. Error t value Pr(>|t|))
## (Intercept) 19.703000 8.540100 2.307100 0.021049 *
## cyl 0.487598 1.127600 0.432433 0.665427
## hp 0.032592 0.019846 1.642200 0.100538
## wt -9.149500 4.370200 -2.093600 0.036294 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Log-Likelihood: -4.9207 Adj. Pseudo R2: 0.633551
## BIC: 23.7 Squared Cor.: 0.803395

Remember that the estimates above simply reflect the naive coefficient values, which enter multiplicatively via the link
function. We’ll get a dedicated section on extracting marginal effects from non-linear models in a moment. But I do want
to quickly flag the mfx package (link), which provides convenient aliases for obtaining marginal effects from a variety of
GLMs. For example,

# library(mfx) ## Already loaded
## Be careful: mfx loads the MASS package, which produces a namespace conflict
## with dplyr for select(). You probably want to be explicit about which one you
## want, e.g. `select = dplyr::select`

## Get marginal effects for the above logit model
# logitmfx(am ~ cyl + hp + wt, atmean = TRUE, data = mtcars) ## Can also estimate directly
logitmfx(glm_logit, atmean = TRUE, data = mtcars)

## Call:
## logitmfx(formula = glm_logit, data = mtcars, atmean = TRUE)
##
## Marginal Effects:
## dF/dx Std. Err. z P>|z|
## cyl 0.0537504 0.1132652 0.4746 0.6351
## hp 0.0035927 0.0029037 1.2373 0.2160
## wt -1.0085932 0.6676628 -1.5106 0.1309

Bayesian regression

We could spend a whole course on Bayesian models. The very, very short version is that R offers outstanding support
for Bayesian models and data analysis. You will find convenient interfaces to all of the major MCMC and Bayesian soft-
ware engines: Stan, JAGS, TensorFlow (via Greta), etc. Here follows a super simple example using the rstanarm package
(link). Note that we did not install this package with the others above, as it can take fairly long and involve some minor
troubleshooting.12

# install.packages("rstanarm") ## Run this first if you want to try yourself
library(rstanarm)

bayes_reg =
stan_glm(
mass ~ gender * height,
data = humans,

12FWIW, on my machine (running Arch Linux) I had to install stan (and thus rstanarm) by running R through the shell. For some reason, RStudio
kept closing midway through the installation process.
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family = gaussian(), prior = cauchy(), prior_intercept = cauchy()
)

summary(bayes_reg)

##
## Model Info:
## function: stan_glm
## family: gaussian [identity]
## formula: mass ~ gender * height
## algorithm: sampling
## sample: 4000 (posterior sample size)
## priors: see help('prior_summary')
## observations: 22
## predictors: 4
##
## Estimates:
## mean sd 10% 50% 90%
## (Intercept) -67.1 74.9 -161.8 -67.6 27.5
## gendermasculine -0.2 9.2 -7.1 0.0 6.9
## height 0.8 0.5 0.2 0.8 1.4
## gendermasculine:height 0.1 0.1 0.0 0.1 0.2
## sigma 15.9 2.7 12.8 15.6 19.4
##
## Fit Diagnostics:
## mean sd 10% 50% 90%
## mean_PPD 82.4 4.8 76.3 82.5 88.3
##
## The mean_ppd is the sample average posterior predictive distribution of the outcome variable (for details see help('summary.stanreg')).
##
## MCMC diagnostics
## mcse Rhat n_eff
## (Intercept) 1.7 1.0 1942
## gendermasculine 0.3 1.0 1301
## height 0.0 1.0 1873
## gendermasculine:height 0.0 1.0 1435
## sigma 0.1 1.0 2628
## mean_PPD 0.1 1.0 2932
## log-posterior 0.0 1.0 1531
##
## For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence Rhat=1).

Evenmore models

Of course, there are simply too many other models and other estimation procedures to cover in this lecture. A lot of these
other models that you might be thinking of come bundled with the base R installation. But just to highlight a few, mostly
new packages that I like a lot for specific estimation procedures:

• Difference-in-differences (with variable timing, etc.): did (link) andDRDID (link)
• Synthetic control: tidysynth (link), gsynth (link) and scul (link)
• Count data (hurdle models, etc.): pscl (link)
• Lasso: biglasso (link)
• Causal forests: grf (link)
• etc.
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Finally, just a reminder to take a look at the Further Resources links at the bottom of this document to get a sense of where
to go for full-length econometrics courses and textbooks.

Marginal effects
Calculatingmarginal effects in a linear regressionmodel like OLS is perfectly straightforward… just look at the coefficient
values. But that quickly goes out the window when you have interaction terms or non-linear models like probit, logit, etc.
Luckily, there are various ways to obtain these from R models. For example, we already saw the mfx package above
for obtaining marginal effects from GLM models. I want to briefly focus on two of my favourite methods for obtaining
marginal effects across different model classes: 1) Themargins package and 2) a shortcut that works particularly well for
models with interaction terms.

Themargins package

The margins package (link), which is modeled on its namesake in Stata, is great for obtaining marginal effects across an
entire range of models.13 You can read more in the package vignette, but here’s a very simple example to illustrate.

Consider our interaction effects regression from earlier, where we were interested in how people’s mass varied
by height and gender. To get the average marginal effect (AME) of these dependent variables, we can just use the
margins::margins() function.

# library(margins) ## Already loaded

ols_ie_marg = margins(ols_ie)

Like a normal regression object, we can get a nice print-out display of the above object by summarising or tidying it.

# summary(ols_ie_marg) ## Same effect
tidy(ols_ie_marg, conf.int = TRUE)

## # A tibble: 2 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 gendermasculine 13.5 26.8 0.505 0.613 -38.9 66.0
## 2 height 0.874 0.420 2.08 0.0376 0.0503 1.70

If we want to compare marginal effects at specific values — e.g. how the AME of height on mass differs across genders —
then that’s easily done too.
ols_ie %>%

margins(
variables = "height", ## The main variable we're interested in
at = list(gender = c("masculine", "feminine")) ## How the main variable is modulated by at specific values of a second variable
) %>%

tidy(conf.int = TRUE) ## Tidy it (optional)

## # A tibble: 2 x 9
## term at.variable at.value estimate std.error statistic p.value conf.low
## <chr> <chr> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 height gender masculine 0.896 0.443 2.02 0.0431 0.0279
## 2 height gender feminine 0.733 1.27 0.576 0.565 -1.76
## # ... with 1 more variable: conf.high <dbl>

If you’re the type of person who prefers visualizations (like me), then you should consider margins::cplot(), which is
the package’s in-built method for constructing conditional effect plots.

13I do, however, want to flag that it does not yet support fixest (or lfe) models. But there are workarounds in the meantime.
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cplot(ols_ie, x = "gender", dx = "height", what = "effect",
data = humans)
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In this case,it doesn’t makemuch sense to read a lot into the larger standard errors on the female group; that’s being driven
by a very small sub-sample size.

Finally, you can also use cplot() to plot the predicted values of your outcome variable (here: “mass”), conditional on one
of your dependent variables. For example:

par(mfrow=c(1, 2)) ## Just to plot these next two (base) figures side-by-side
cplot(ols_ie, x = "gender", what = "prediction", data = humans)
cplot(ols_ie, x = "height", what = "prediction", data = humans)
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par(mfrow=c(1, 1)) ## Reset plot defaults

Note that cplot() uses the base R plotting method. If you’d prefer ggplot2 equivalents, take a look at the marginsplot
package (link).

Finally, I also want to draw your attention to the emmeans package (link), which provides very similar functionality to
margins. I’m not as familiar with it myself, but I know that it has many fans.

Special case: / shortcut for interaction terms

I’ll keep this one brief, but I wanted to mention one of my favourite R shortcuts: Obtaining the full marginal effects for
interaction terms by using the / expansion operator. I’ve tweeted about this and even wrote an whole blog post about it
too (which you should totally read). But the very short version is that you can switch out the normal f1 * x2 interaction
terms syntax for f1 / x2 and it automatically returns the full marginal effects. (The formal way to describe it is that the
model variables have been “nested”.)

Here’s a super simple example, using the same interaction effects model from before.

# ols_ie = lm(mass ~ gender * height, data = humans) ## Original model
ols_ie_marg2 = lm(mass ~ gender / height, data = humans)
tidy(ols_ie_marg2, conf.int = TRUE)

## # A tibble: 4 x 7
## term estimate std.error statistic p.value conf.low conf.high
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 (Intercept) -61.0 204. -0.299 0.768 -4.90e+2 368.
## 2 gendermasculine -15.7 220. -0.0716 0.944 -4.77e+2 446.
## 3 genderfeminine:height 0.733 1.27 0.576 0.572 -1.94e+0 3.41
## 4 gendermasculine:height 0.896 0.443 2.02 0.0582 -3.46e-2 1.83

Note that the marginal effects on the two gender × height interactions (i.e. 0.733 and 0.896) are the same as we got with
the margins::margins() function above.

Where this approach really shines is when you are estimating interaction terms in large models. The margins package
relies on a numerical delta method which can be very computationally intensive, whereas using / adds no additional
overhead beyond calculating the model itself. Still, that’s about as much as say it here. Read my aforementioned blog post
if you’d like to learn more.

Presentation
Tables

Regression tables There are loads of different options here. We’ve already seen the excellent etable() function from
fixest above.14 However, my own personal favourite tool or creating and exporting regression tables is the modelsum-
mary package (link). It is extremely flexible and handles all manner of models and output formats. modelsummary also
supports automated coefficient plots and data summary tables, which I’ll get back to in a moment. The documentation is
outstanding and you should read it, but here is a bare-boned example just to demonstrate.

# library(modelsummary) ## Already loaded

## Note: msummary() is an alias for modelsummary()
msummary(list(ols1, ols_ie, ols_fe, ols_hdfe))

14Note that etable() is limited to fixest models only.
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feminine (N=9) masculine (N=26)

Mean Std. Dev. Mean Std. Dev. Diff. in Means Std. Error

height 160.2 7.0 182.3 8.2 22.1 3.0
mass 56.3 16.3 87.0 16.5 30.6 10.1
birth_year 46.4 18.8 55.2 26.0 8.8 10.2

N % N %
eye_color blue 3 33.3 9 34.6

blue-gray 0 0.0 1 3.8
brown 5 55.6 12 46.2
dark 0 0.0 1 3.8
hazel 1 11.1 1 3.8
yellow 0 0.0 2 7.7

Model 1 Model 2 Model 3 Model 4

(Intercept) -13.810 -61.000
(111.155) (204.057)

height 0.639 0.733 0.975 0.756
(0.626) (1.274) (0.044) (0.116)

gendermasculine -15.722
(219.544)

gendermasculine × height 0.163
(1.349)

Num.Obs. 59 22 58 55
R2 0.018 0.444 0.997 0.998
R2 Adj. 0.001 0.352 0.993 1.008
R2 Within 0.662 0.487
R2 Pseudo
AIC 777.0 188.9 492.1 513.1
BIC 783.2 194.4 558.0 649.6
Log.Lik. -385.503 -89.456 -214.026 -188.552
F 1.040 4.801
FE: homeworld X
FE: species X X
Std. errors Clustered (species) Two-way (species & homeworld)

One nice thing about modelsummary is that it plays very well with R Markdown and will automatically coerce your
tables to the format that matches your document output: HTML, LaTeX/PDF, RTF, etc. Of course, you can also specify
the output type if you aren’t usingRMarkdownandwant to export a table for later use. Finally, you can even specify special
table formats like threepartable for LaTeX and, provided that you have called the necessary packages in your preamble, it
will render correctly (see example here.

Summary tables A variety of summary tables — balance, correlation, etc. — can be produced by the companion set
of modelsummary::datasummary*() functions. Again, you should read the documentation to see all of the options. But
here’s an example of a very simple balance table using a subset of our “humans” data frame.

datasummary_balance(~ gender,
data = humans %>% select(height:mass, birth_year, eye_color, gender))

Another package that I like a lot in this regard is vtable (link). Not only can it be used to construct descriptive labels like
you’d find in Stata’s “Variables” pane, but it is also very good at producing the type of “out of the box” summary tables that
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economists like. For example, here’s the equivalent version of the above balance table.

# library(vtable) ## Already loaded

## An additional argument just for formatting across different output types of
## this .Rmd document
otype = ifelse(knitr::is_latex_output(), 'return', 'kable')

## st() is an alias for sumtable()
st(humans %>% select(height:mass, birth_year, eye_color, gender),

group = 'gender',
out = otype)

## Variable N Mean SD N Mean SD
## 1 gender feminine masculine
## 2 height 8 160.25 6.985 23 182.348 8.189
## 3 mass 3 56.333 16.289 19 86.958 16.549
## 4 birth_year 5 46.4 18.77 20 55.165 26.02
## 5 eye_color 9 26
## 6 ... blue 3 33.3% 9 34.6%
## 7 ... blue-gray 0 0% 1 3.8%
## 8 ... brown 5 55.6% 12 46.2%
## 9 ... dark 0 0% 1 3.8%
## 10 ... hazel 1 11.1% 1 3.8%
## 11 ... yellow 0 0% 2 7.7%

Lastly, Stata users in particular might like the qsu() and descr() functions from the lightning-fast collapse package
(link).

Figures

Coefficient plots We’ve already worked through an example of how to extract and compare model coefficients here. I
use this “manual” approach to visualizing coefficient estimates all the time. However, our focus onmodelsummary in the
preceding section provides a nice segue to another one of the package’s features: modelplot(). Consider the following,
which shows both the degree to which modelplot() automates everything and the fact that it readily accepts regular
ggplot2 syntax.

# library(modelsummary) ## Already loaded
mods = list('FE, no clustering' = summary(ols_fe, se = 'standard'), # Don't cluster SEs

'HDFE, twoway clustering' = ols_hdfe)

modelplot(mods) +
## You can further modify with normal ggplot2 commands...
coord_flip() +
labs(
title = "'Effect' of height on mass",
subtitle = "Comparing fixed effect models"
)
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'Effect' of height on mass

Or, here’s another example where we compare the (partial) Masculine × Height coefficient from our earlier interaction
model, with the (full) marginal effect that we obtained later on.

ie_mods = list('Partial effect' = ols_ie, 'Marginal effect' = ols_ie_marg2)

modelplot(ie_mods, coef_map = c("gendermasculine:height" = "Masculine × Height")) +
coord_flip() +
labs(
title = "'Effect' of height on mass",
subtitle = "Comparing partial vs marginal effects"
)
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Prediction and model validation The easiest way to visually inspect model performance (i.e. validation and predic-
tion) is with ggplot2. In particular, you should already be familiar with geom_smooth() from our earlier lectures, which
allows you to feed a model type directly in the plot call. For instance, using our starwars2 data frame that excludes that
slimy outlier, Jabba the Hutt:

ggplot(starwars2, aes(x = height, y = mass)) +
geom_point(alpha = 0.7) +
geom_smooth(method = "lm") ## See ?geom_smooth for other methods/options

## `geom_smooth()` using formula 'y ~ x'
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Now, I should say that geom_smooth() isn’t particularly helpful when you’ve already constructed a (potentially compli-
cated) model outside of the plot call. Similarly, it’s not useful when you want to use a model for making predictions on a
new dataset (e.g. evaluating out-of-sample fit).

The good news is that the generic predict() function in base R has you covered. For example, let’s say that we want to
re-estimate our simple bivariate regression of mass on height from earlier.15 This time, however, we’ll estimate our model
on a training dataset that only consists of the first 30 characters ranked by height. Here’s how you would do it.

## Estimate a model on a training sample of the data (shortest 30 characters)
ols1_train = lm(mass ~ height, data = starwars %>% filter(rank(height) <=30))

## Use our model to predict the mass for all starwars characters (excl. Jabba).
## Note that I'm including a 95% prediction interval. See ?predict.lm for other
## intervals and options.
predict(ols1_train, newdata = starwars2, interval = "prediction") %>%

head(5) ## Just print the first few rows

## fit lwr upr
## 1 68.00019 46.307267 89.69311
## 2 65.55178 43.966301 87.13725
## 3 30.78434 8.791601 52.77708
## 4 82.69065 60.001764 105.37954
## 5 57.22718 35.874679 78.57968

Hopefully, you can already see how the above data frame could easily be combined with the original data in a ggplot2
call. (I encourage you to try it yourself before continuing.) At the same time, it is perhaps a minor annoyance to have to
combine the original and predicted datasets before plotting. If this describes your thinking, then there’s even more good
news because the broom package does more than tidy statistical models. It also ships the augment() function, which
provides a convenient way to append model predictions to your dataset. Note that augment() accepts exactly the same
arguments as predict(), although the appended variable names are slightly different.16

15I’m sticking to a bivariate regression model for these examples because we’re going to be evaluating a 2D plot below.
16Specifically, we’ re adding “.fitted”, “.resid”, “.lower”, and “.upper” columns to our data frame. The convention adopted by augment() is to always

prefix added variables with a “.” to avoid overwriting existing variables.
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## Alternative to predict(): Use augment() to add .fitted and .resid, as well as
## .conf.low and .conf.high prediction interval variables to the data.
starwars2 = augment(ols1_train, newdata = starwars2, interval = "prediction")

## Show the new variables (all have a "." prefix)
starwars2 %>% select(contains("."), everything()) %>% head()

## # A tibble: 6 x 18
## .fitted .lower .upper .resid name height mass hair_color skin_color
## <dbl> <dbl> <dbl> <dbl> <chr> <int> <dbl> <chr> <chr>
## 1 68.0 46.3 89.7 9.00 Luke~ 172 77 blond fair
## 2 65.6 44.0 87.1 9.45 C-3PO 167 75 <NA> gold
## 3 30.8 8.79 52.8 1.22 R2-D2 96 32 <NA> white, bl~
## 4 82.7 60.0 105. 53.3 Dart~ 202 136 none white
## 5 57.2 35.9 78.6 -8.23 Leia~ 150 49 brown light
## 6 70.9 49.1 92.8 49.1 Owen~ 178 120 brown, gr~ light
## # ... with 9 more variables: eye_color <chr>, birth_year <dbl>, sex <chr>,
## # gender <chr>, homeworld <chr>, species <chr>, films <list>,
## # vehicles <list>, starships <list>

We can now see how well our model — again, only estimated on the shortest 30 characters — performs against all of the
data.
starwars2 %>%

ggplot(aes(x = height, y = mass, col = rank(height)<=30, fill = rank(height)<=30)) +
geom_point(alpha = 0.7) +
geom_line(aes(y = .fitted)) +
geom_ribbon(aes(ymin = .lower, ymax = .upper), alpha = 0.3, col = NA) +
scale_color_discrete(name = "Training sample?", aesthetics = c("colour", "fill")) +
labs(
title = "Predicting mass from height",
caption = "Line of best fit, with shaded regions denoting 95% prediction interval."
)
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Line of best fit, with shaded regions denoting 95% prediction interval.

Further resources
• Ed Rubin has outstanding teaching notes for econometrics with R on his website. This includes both undergrad-

and graduate-level courses. Seriously, check them out.
• Several introductory texts are freely available, including Introduction to Econometrics with R (ChristophHanck et al.),
Using R for Introductory Econometrics (Florian Heiss), and Modern Dive (Chester Ismay and Albert Kim).

• Tyler Ransom has a nice cheat sheet for common regression tasks and specifications.
• Itamar Caspi has written a neat unofficial appendix to this lecture, recipes for Dummies. The title might be a little

inscrutable if you haven’t heard of the recipes package before, but basically it handles “tidy” data preprocessing,
which is an especially important topic for machine learning methods. We’ll get to that later in course, but check out
Itamar’s post for a good introduction.

• I promised to provide some links to time series analysis. The good news is that R’s support for time series is very,
very good. The Time Series Analysis task view on CRAN offers an excellent overview of available packages and
their functionality.

• Lastly, for more on visualizing regression output, I highly encourage you to look over Chapter 6 of Kieran Healy’s
Data Visualization: A Practical Guide. Not only will learn how to produce beautiful and effective model visualiza-
tions, but you’ll also pick up a variety of technical tips.
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