
Data Science for Economists
Lecture 5: Data cleaning & wrangling: (1) Tidyverse

Grant McDermott
University of Oregon | EC 607

https://github.com/uo-ec607

Table of contents
�. Prologue

�. Tidyverse basics

�. Data wrangling with dplyr

�lter
arrange
select
mutate
summarise
joins

�. Data tidying with tidyr

pivot_longer / pivot_wider
separate
unite

�. Summary
2 / 55

Prologue

3 / 55

What is "tidy" data?

Resources:
Vignette (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

4 / 55

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://vita.had.co.nz/papers/tidy-data.pdf

What is "tidy" data?

Resources:
Vignette (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

Key points:
�. Each variable forms a column.
�. Each observation forms a row.
�. Each type of observational unit forms a table.

4 / 55

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://vita.had.co.nz/papers/tidy-data.pdf

What is "tidy" data?

Resources:
Vignette (from the tidyr package)
Original paper (Hadley Wickham, 2014 JSS)

Key points:
�. Each variable forms a column.
�. Each observation forms a row.
�. Each type of observational unit forms a table.

Basically, tidy data is more likely to be long (i.e. narrow) format than wide format.

4 / 55

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://vita.had.co.nz/papers/tidy-data.pdf
https://en.wikipedia.org/wiki/Wide_and_narrow_data

Checklist

R packages you'll need today
☑ tidyverse

☑ nyc�ights13

5 / 55

https://www.tidyverse.org/
hhttps://github.com/hadley/nycflights13

Checklist

R packages you'll need today
☑ tidyverse

☑ nyc�ights13

I'll hold off loading these libraries for now. But you can install/update them both with the
following command.

Tip: If you're on Linux, then I strongly recommend installing the pre-compiled binary versions
of these packages from RSPM instead of CRAN. The exact repo mirror varies by distro (see the
link). But on Ubuntu 20.04, for example, you'd use:

install.packages(c('tidyverse', 'nycflights13'), repos = 'https:��cran.rstudio.com

install.packages(c('tidyverse', 'nycflights13'), repos = 'https:��packagemanager.r

5 / 55

https://www.tidyverse.org/
hhttps://github.com/hadley/nycflights13
https://packagemanager.rstudio.com/client/#/repos/1/overview

Tidyverse basics

6 / 55

Tidyverse vs. base R
Much digital ink has been spilled over the "tidyverse vs. base R" debate.

7 / 55

Tidyverse vs. base R
Much digital ink has been spilled over the "tidyverse vs. base R" debate.

I won't delve into this debate here, because I think the answer is clear: We should teach the
tidyverse �rst (or, at least, early).

The documentation and community support are outstanding.
Having a consistent philosophy and syntax makes it easier to learn.
Provides a convenient "front-end" to big data tools that we'll use later in the course.
For data cleaning, wrangling, and plotting, the tidyverse really is a no-brainer.1

1 I'm also a huge fan of data.table. This package will be the subject of our next lecture.

7 / 55

http://varianceexplained.org/r/teach-tidyverse/
http://r-datatable.com/

Tidyverse vs. base R
Much digital ink has been spilled over the "tidyverse vs. base R" debate.

I won't delve into this debate here, because I think the answer is clear: We should teach the
tidyverse �rst (or, at least, early).

The documentation and community support are outstanding.
Having a consistent philosophy and syntax makes it easier to learn.
Provides a convenient "front-end" to big data tools that we'll use later in the course.
For data cleaning, wrangling, and plotting, the tidyverse really is a no-brainer.1

But... this certainly shouldn't put you off learning base R alternatives.

Base R is extremely �exible and powerful (and stable).
There are some things that you'll have to venture outside of the tidyverse for.
A combination of tidyverse and base R is often the best solution to a problem.
Excellent base R data manipulation tutorials: here and here.

1 I'm also a huge fan of data.table. This package will be the subject of our next lecture.

7 / 55

http://varianceexplained.org/r/teach-tidyverse/
https://www.rspatial.org/intr/index.html
https://github.com/matloff/fasteR
http://r-datatable.com/

Tidyverse vs. base R (cont.)
One point of convenience is that there is often a direct correspondence between a tidyverse
command and its base R equivalent.

These generally follow a tidyverse��snake_case vs base��period.case rule. E.g. Compare:

tidyverse base

?readr��read_csv ?utils��read.csv

?dplyr��if_else ?base��ifelse

?tibble��tibble ?base��data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative typically offers some
enhancements or other useful options (and sometimes restrictions) over its base counterpart.

8 / 55

Tidyverse vs. base R (cont.)
One point of convenience is that there is often a direct correspondence between a tidyverse
command and its base R equivalent.

These generally follow a tidyverse��snake_case vs base��period.case rule. E.g. Compare:

tidyverse base

?readr��read_csv ?utils��read.csv

?dplyr��if_else ?base��ifelse

?tibble��tibble ?base��data.frame

Etcetera.

If you call up the above examples, you'll see that the tidyverse alternative typically offers some
enhancements or other useful options (and sometimes restrictions) over its base counterpart.

Remember: There are (almost) always multiple ways to achieve a single goal in R.

8 / 55

Tidyverse packages
Let's load the tidyverse meta-package and check the output.

library(tidyverse)

�� ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──

�� ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
�� ✓ tibble 3.1.0 ✓ dplyr 1.0.4
�� ✓ tidyr 1.1.2 ✓ stringr 1.4.0
�� ✓ readr 1.4.0 ✓ forcats 0.5.1

�� ── Conflicts ── tidyverse_conflicts() ──
�� x dplyr��filter() masks stats��filter()
�� x dplyr��lag() masks stats��lag()

9 / 55

Tidyverse packages
Let's load the tidyverse meta-package and check the output.

library(tidyverse)

�� ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──

�� ✓ ggplot2 3.3.3 ✓ purrr 0.3.4
�� ✓ tibble 3.1.0 ✓ dplyr 1.0.4
�� ✓ tidyr 1.1.2 ✓ stringr 1.4.0
�� ✓ readr 1.4.0 ✓ forcats 0.5.1

�� ── Conflicts ── tidyverse_conflicts() ──
�� x dplyr��filter() masks stats��filter()
�� x dplyr��lag() masks stats��lag()

We see that we have actually loaded a number of packages (which could also be loaded
individually): ggplot2, tibble, dplyr, etc.

We can also see information about the package versions and some namespace con�icts.

9 / 55

https://raw.githack.com/uo-ec607/lectures/master/04-rlang/04-rlang.html#59

Tidyverse packages (cont.)
The tidyverse actually comes with a lot more packages than those that are just loaded
automatically.1

tidyverse_packages()

�� [1] "broom" "cli" "crayon" "dbplyr" "dplyr"
�� [6] "forcats" "ggplot2" "haven" "hms" "httr"
�� [11] "jsonlite" "lubridate" "magrittr" "modelr" "pillar"
�� [16] "purrr" "readr" "readxl" "reprex" "rlang"
�� [21] "rstudioapi" "rvest" "stringr" "tibble" "tidyr"
�� [26] "xml2" "tidyverse"

We'll use several of these additional packages during the remainder of this course.

E.g. The lubridate package for working with dates and the rvest package for webscraping.
However, bear in mind that these packages will have to be loaded separately.

1 It also includes a lot of dependencies upon installation. This is a matter of some controversy.

10 / 55

http://www.tinyverse.org/

Tidyverse packages (cont.)
I hope to cover most of the tidyverse packages over the length of this course.

Today, however, I'm only really going to focus on two packages:

�. dplyr
�. tidyr

These are the workhorse packages for cleaning and wrangling data. They are thus the ones
that you will likely make the most use of (alongside ggplot2, which we already met back in
Lecture 1).

Data cleaning and wrangling occupies an inordinate amount of time, no matter where you
are in your research career.

11 / 55

https://dplyr.tidyverse.org/
https://tidyr.tidyverse.org/

An aside on pipes: %>%
We already learned about pipes in our lecture on the bash shell. The tidyverse loads its own
pipe operator, denoted %>% .

I want to reiterate how cool pipes are, and how using them can dramatically improve the
experience of reading and writing code. Compare:

�� These next two lines of code do exactly the same thing.
mpg %>% filter(manufacturer��"audi") %>% group_by(model) %>% summarise(hwy_mean =
summarise(group_by(filter(mpg, manufacturer��"audi"), model), hwy_mean = mean(hwy)

12 / 55

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#91

An aside on pipes: %>%
We already learned about pipes in our lecture on the bash shell. The tidyverse loads its own
pipe operator, denoted %>% .

I want to reiterate how cool pipes are, and how using them can dramatically improve the
experience of reading and writing code. Compare:

The �rst line reads from left to right, exactly how I thought of the operations in my head.

Take this object (mpg), do this (filter), then do this (group_by), etc.

The second line totally inverts this logical order (the �nal operation comes �rst!)

Who wants to read things inside out?

�� These next two lines of code do exactly the same thing.
mpg %>% filter(manufacturer��"audi") %>% group_by(model) %>% summarise(hwy_mean =
summarise(group_by(filter(mpg, manufacturer��"audi"), model), hwy_mean = mean(hwy)

12 / 55

https://raw.githack.com/uo-ec607/lectures/master/03-shell/03-shell.html#91

An aside on pipes: %>% (cont.)
The piped version of the code is even more readable if we write it over several lines. Here it is
again and, this time, I'll run it for good measure so you can see the output:

mpg %>%
 filter(manufacturer��"audi") %>%
 group_by(model) %>%
 summarise(hwy_mean = mean(hwy))

�� # A tibble: 3 x 2
�� model hwy_mean
�� <chr> <dbl>
�� 1 a4 28.3
�� 2 a4 quattro 25.8
�� 3 a6 quattro 24

Remember: Using vertical space costs nothing and makes for much more readable/writeable
code than cramming things horizontally.

13 / 55

An aside on pipes: %>% (cont.)
The piped version of the code is even more readable if we write it over several lines. Here it is
again and, this time, I'll run it for good measure so you can see the output:

mpg %>%
 filter(manufacturer��"audi") %>%
 group_by(model) %>%
 summarise(hwy_mean = mean(hwy))

�� # A tibble: 3 x 2
�� model hwy_mean
�� <chr> <dbl>
�� 1 a4 28.3
�� 2 a4 quattro 25.8
�� 3 a6 quattro 24

Remember: Using vertical space costs nothing and makes for much more readable/writeable
code than cramming things horizontally.

PS — The pipe is originally from the magrittr package (geddit?), which can do some other cool
things if you're inclined to explore.

13 / 55

https://magrittr.tidyverse.org/
https://en.wikipedia.org/wiki/The_Treachery_of_Images

A further aside on the base R pipe: |>
The magrittr pipe has proven so successful and popular, that the R core team recently
announced a "native" pipe would be coming to base R, denoted �� .1 For example:

mtcars �� subset(cyl��4) �� head()
mtcars �� subset(cyl��4) �� d �� lm(mpg ~ disp, data = d)

1 That's actually a | followed by a > . The default font on these slides just makes it look extra
fancy.

14 / 55

https://t.co/HVECPENQ5C?amp=1

A further aside on the base R pipe: |>
The magrittr pipe has proven so successful and popular, that the R core team recently
announced a "native" pipe would be coming to base R, denoted �� .1 For example:

mtcars �� subset(cyl��4) �� head()
mtcars �� subset(cyl��4) �� d �� lm(mpg ~ disp, data = d)

At the time of writing this native pipe is only available in the development version of R. (I'll
show an in-class demo.)

This native pipe complements some other new cool features, like support for "lambda"
functions in R.

So, worth watching this space.

1 That's actually a | followed by a > . The default font on these slides just makes it look extra
fancy.

14 / 55

https://t.co/HVECPENQ5C?amp=1
https://stat.ethz.ch/R-manual/R-devel/library/base/html/pipeOp.html
https://stackoverflow.com/questions/16501/what-is-a-lambda-function

dplyr

15 / 55

Aside: dplyr 1.0.0 release
Some of the dplyr features that we'll cover today were introduced in version 1.0.0 of the
package.

Version 1.0.0 is a big deal since it marks a stable code base for the package going
forward. However, at the time of writing these slides, it had only come out very recently.
Please make sure that you are running at least dplyr 1.0.0 before continuing.

packageVersion('dplyr')

�� [1] '1.0.4'

install.packages('dplyr') �� install updated version if < 1.0.0

16 / 55

https://www.tidyverse.org/blog/2020/06/dplyr-1-0-0/

Aside: dplyr 1.0.0 release
Some of the dplyr features that we'll cover today were introduced in version 1.0.0 of the
package.

Version 1.0.0 is a big deal since it marks a stable code base for the package going
forward. However, at the time of writing these slides, it had only come out very recently.
Please make sure that you are running at least dplyr 1.0.0 before continuing.

packageVersion('dplyr')

�� [1] '1.0.4'

install.packages('dplyr') �� install updated version if < 1.0.0

Note: dplyr 1.0.0 also noti�es you about grouping variables every time you do operations on or
with them. YMMV, but, personally, I �nd these messages annoying and so prefer to switch
them off.

options(dplyr.summarise.inform = FALSE) �� Add to .Rprofile to make permanent

16 / 55

https://www.tidyverse.org/blog/2020/06/dplyr-1-0-0/
https://twitter.com/MattCowgill/status/1278463099272491008

Key dplyr verbs
There are �ve key dplyr verbs that you need to learn.

�. filter : Filter (i.e. subset) rows based on their values.

�. arrange : Arrange (i.e. reorder) rows based on their values.

�. select : Select (i.e. subset) columns by their names:

�. mutate : Create new columns.

�. summarise : Collapse multiple rows into a single summary value.1

1 summarize with a "z" works too. R doesn't discriminate against uncivilised nations of the world.

17 / 55

Key dplyr verbs
There are �ve key dplyr verbs that you need to learn.

�. filter : Filter (i.e. subset) rows based on their values.

�. arrange : Arrange (i.e. reorder) rows based on their values.

�. select : Select (i.e. subset) columns by their names:

�. mutate : Create new columns.

�. summarise : Collapse multiple rows into a single summary value.1

Let's practice these commands together using the starwars data frame that comes pre-
packaged with dplyr.

1 summarize with a "z" works too. R doesn't discriminate against uncivilised nations of the world.

17 / 55

1) dplyr::�lter
We can chain multiple �lter commands with the pipe (%>%), or just separate them within a
single �lter command using commas.

starwars %>%
 filter(
 species �� "Human",
 height �� 190
)

�� # A tibble: 4 x 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Dart… 202 136 none white yellow 41.9 male mascu…
�� 2 Qui�… 193 89 brown fair blue 92 male mascu…
�� 3 Dooku 193 80 white fair brown 102 male mascu…
�� 4 Bail… 191 NA black tan brown 67 male mascu…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

18 / 55

1) dplyr::�lter cont.
Regular expressions work well too.

starwars %>%
 filter(grepl("Skywalker", name))

�� # A tibble: 3 x 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Luke… 172 77 blond fair blue 19 male mascu…
�� 2 Anak… 188 84 blond fair blue 41.9 male mascu…
�� 3 Shmi… 163 NA black fair brown 72 fema… femin…
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

19 / 55

1) dplyr::�lter cont.
A very common filter use case is identifying (or removing) missing data cases.

starwars %>%
 filter(is.na(height))

�� # A tibble: 6 x 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Arve… NA NA brown fair brown NA male mascu…
�� 2 Finn NA NA black dark dark NA male mascu…
�� 3 Rey NA NA brown light hazel NA fema… femin…
�� 4 Poe … NA NA brown light brown NA male mascu…
�� 5 BB8 NA NA none none black NA none mascu…
�� 6 Capt… NA NA unknown unknown unknown NA <NA> <NA>
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

20 / 55

1) dplyr::�lter cont.
A very common filter use case is identifying (or removing) missing data cases.

starwars %>%
 filter(is.na(height))

�� # A tibble: 6 x 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Arve… NA NA brown fair brown NA male mascu…
�� 2 Finn NA NA black dark dark NA male mascu…
�� 3 Rey NA NA brown light hazel NA fema… femin…
�� 4 Poe … NA NA brown light brown NA male mascu…
�� 5 BB8 NA NA none none black NA none mascu…
�� 6 Capt… NA NA unknown unknown unknown NA <NA> <NA>
�� # … with 5 more variables: homeworld <chr>, species <chr>, films <list>,
�� # vehicles <list>, starships <list>

To remove missing observations, simply use negation: filter(!is.na(height)) . Try this
yourself.

20 / 55

2) dplyr::arrange
starwars %>%
 arrange(birth_year)

�� # A tibble: 87 x 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Wick… 88 20 brown brown brown 8 male mascu…
�� 2 IG-88 200 140 none metal red 15 none mascu…
�� 3 Luke… 172 77 blond fair blue 19 male mascu…
�� 4 Leia… 150 49 brown light brown 19 fema… femin…
�� 5 Wedg… 170 77 brown fair hazel 21 male mascu…
�� 6 Plo … 188 80 none orange black 22 male mascu…
�� 7 Bigg… 183 84 black light brown 24 male mascu…
�� 8 Han … 180 80 brown fair brown 29 male mascu…
�� 9 Land… 177 79 black dark brown 31 male mascu…
�� 10 Boba… 183 78.2 black fair brown 31.5 male mascu…
�� # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

21 / 55

2) dplyr::arrange
starwars %>%
 arrange(birth_year)

�� # A tibble: 87 x 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Wick… 88 20 brown brown brown 8 male mascu…
�� 2 IG-88 200 140 none metal red 15 none mascu…
�� 3 Luke… 172 77 blond fair blue 19 male mascu…
�� 4 Leia… 150 49 brown light brown 19 fema… femin…
�� 5 Wedg… 170 77 brown fair hazel 21 male mascu…
�� 6 Plo … 188 80 none orange black 22 male mascu…
�� 7 Bigg… 183 84 black light brown 24 male mascu…
�� 8 Han … 180 80 brown fair brown 29 male mascu…
�� 9 Land… 177 79 black dark brown 31 male mascu…
�� 10 Boba… 183 78.2 black fair brown 31.5 male mascu…
�� # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

Note: Arranging on a character-based column (i.e. strings) will sort alphabetically. Try this
yourself by arranging according to the "name" column.

21 / 55

2) dplyr::arrange cont.
We can also arrange items in descending order using arrange(desc()) .

starwars %>%
 arrange(desc(birth_year))

�� # A tibble: 87 x 14
�� name height mass hair_color skin_color eye_color birth_year sex gender
�� <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
�� 1 Yoda 66 17 white green brown 896 male mascu…
�� 2 Jabb… 175 1358 <NA> green�tan… orange 600 herm… mascu…
�� 3 Chew… 228 112 brown unknown blue 200 male mascu…
�� 4 C-3PO 167 75 <NA> gold yellow 112 none mascu…
�� 5 Dooku 193 80 white fair brown 102 male mascu…
�� 6 Qui�… 193 89 brown fair blue 92 male mascu…
�� 7 Ki-A… 198 82 white pale yellow 92 male mascu…
�� 8 Fini… 170 NA blond fair blue 91 male mascu…
�� 9 Palp… 170 75 grey pale yellow 82 male mascu…
�� 10 Clie… 183 NA brown fair blue 82 male mascu…
�� # … with 77 more rows, and 5 more variables: homeworld <chr>, species <chr>,
�� # films <list>, vehicles <list>, starships <list>

22 / 55

3) dplyr::select
Use commas to select multiple columns out of a data frame. (You can also use "�rst:last" for
consecutive columns). Deselect a column with "-".

starwars %>%
 select(name:skin_color, species, �height)

�� # A tibble: 87 x 5
�� name mass hair_color skin_color species
�� <chr> <dbl> <chr> <chr> <chr>
�� 1 Luke Skywalker 77 blond fair Human
�� 2 C-3PO 75 <NA> gold Droid
�� 3 R2-D2 32 <NA> white, blue Droid
�� 4 Darth Vader 136 none white Human
�� 5 Leia Organa 49 brown light Human
�� 6 Owen Lars 120 brown, grey light Human
�� 7 Beru Whitesun lars 75 brown light Human
�� 8 R5-D4 32 <NA> white, red Droid
�� 9 Biggs Darklighter 84 black light Human
�� 10 Obi-Wan Kenobi 77 auburn, white fair Human
�� # … with 77 more rows

23 / 55

3) dplyr::select cont.
You can also rename some (or all) of your selected variables in place.

starwars %>%
 select(alias=name, crib=homeworld, sex=gender)

�� # A tibble: 87 x 3
�� alias crib sex
�� <chr> <chr> <chr>
�� 1 Luke Skywalker Tatooine masculine
�� 2 C-3PO Tatooine masculine
�� 3 R2-D2 Naboo masculine
�� 4 Darth Vader Tatooine masculine
�� 5 Leia Organa Alderaan feminine
�� 6 Owen Lars Tatooine masculine
�� 7 Beru Whitesun lars Tatooine feminine
�� 8 R5-D4 Tatooine masculine
�� 9 Biggs Darklighter Tatooine masculine
�� 10 Obi-Wan Kenobi Stewjon masculine
�� # … with 77 more rows

24 / 55

3) dplyr::select cont.
You can also rename some (or all) of your selected variables in place.

starwars %>%
 select(alias=name, crib=homeworld, sex=gender)

�� # A tibble: 87 x 3
�� alias crib sex
�� <chr> <chr> <chr>
�� 1 Luke Skywalker Tatooine masculine
�� 2 C-3PO Tatooine masculine
�� 3 R2-D2 Naboo masculine
�� 4 Darth Vader Tatooine masculine
�� 5 Leia Organa Alderaan feminine
�� 6 Owen Lars Tatooine masculine
�� 7 Beru Whitesun lars Tatooine feminine
�� 8 R5-D4 Tatooine masculine
�� 9 Biggs Darklighter Tatooine masculine
�� 10 Obi-Wan Kenobi Stewjon masculine
�� # … with 77 more rows

If you just want to rename columns without subsetting them, you can use rename . Try this
now by replacing select(���) in the above code chunk with rename(���) .

24 / 55

3) dplyr::select cont.
The select(contains(PATTERN)) option provides a nice shortcut in relevant cases.

starwars %>%
 select(name, contains("color"))

�� # A tibble: 87 x 4
�� name hair_color skin_color eye_color
�� <chr> <chr> <chr> <chr>
�� 1 Luke Skywalker blond fair blue
�� 2 C-3PO <NA> gold yellow
�� 3 R2-D2 <NA> white, blue red
�� 4 Darth Vader none white yellow
�� 5 Leia Organa brown light brown
�� 6 Owen Lars brown, grey light blue
�� 7 Beru Whitesun lars brown light blue
�� 8 R5-D4 <NA> white, red red
�� 9 Biggs Darklighter black light brown
�� 10 Obi-Wan Kenobi auburn, white fair blue�gray
�� # … with 77 more rows

25 / 55

3) dplyr::select cont.
The select(���, everything()) option is another useful shortcut if you only want to bring
some variable(s) to the "front" of a data frame.

starwars %>%
 select(species, homeworld, everything()) %>%
 head(5)

�� # A tibble: 5 x 14
�� species homeworld name height mass hair_color skin_color eye_color
�� <chr> <chr> <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 Human Tatooine Luke… 172 77 blond fair blue
�� 2 Droid Tatooine C-3PO 167 75 <NA> gold yellow
�� 3 Droid Naboo R2-D2 96 32 <NA> white, bl… red
�� 4 Human Tatooine Dart… 202 136 none white yellow
�� 5 Human Alderaan Leia… 150 49 brown light brown
�� # … with 6 more variables: birth_year <dbl>, sex <chr>, gender <chr>,
�� # films <list>, vehicles <list>, starships <list>

26 / 55

3) dplyr::select cont.
The select(���, everything()) option is another useful shortcut if you only want to bring
some variable(s) to the "front" of a data frame.

starwars %>%
 select(species, homeworld, everything()) %>%
 head(5)

�� # A tibble: 5 x 14
�� species homeworld name height mass hair_color skin_color eye_color
�� <chr> <chr> <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 Human Tatooine Luke… 172 77 blond fair blue
�� 2 Droid Tatooine C-3PO 167 75 <NA> gold yellow
�� 3 Droid Naboo R2-D2 96 32 <NA> white, bl… red
�� 4 Human Tatooine Dart… 202 136 none white yellow
�� 5 Human Alderaan Leia… 150 49 brown light brown
�� # … with 6 more variables: birth_year <dbl>, sex <chr>, gender <chr>,
�� # films <list>, vehicles <list>, starships <list>

Note: The new relocate function available in dplyr 1.0.0 has brought a lot more functionality
to ordering of columns. See here.

26 / 55

https://www.tidyverse.org/blog/2020/03/dplyr-1-0-0-select-rename-relocate/

4) dplyr::mutate
You can create new columns from scratch, or (more commonly) as transformations of existing
columns.

starwars %>%
 select(name, birth_year) %>%
 mutate(dog_years = birth_year * 7) %>%
 mutate(comment = paste0(name, " is ", dog_years, " in dog years."))

�� # A tibble: 87 x 4
�� name birth_year dog_years comment
�� <chr> <dbl> <dbl> <chr>
�� 1 Luke Skywalker 19 133 Luke Skywalker is 133 in dog years.
�� 2 C-3PO 112 784 C-3PO is 784 in dog years.
�� 3 R2-D2 33 231 R2-D2 is 231 in dog years.
�� 4 Darth Vader 41.9 293. Darth Vader is 293.3 in dog years.
�� 5 Leia Organa 19 133 Leia Organa is 133 in dog years.
�� 6 Owen Lars 52 364 Owen Lars is 364 in dog years.
�� 7 Beru Whitesun lars 47 329 Beru Whitesun lars is 329 in dog yea…
�� 8 R5-D4 NA NA R5-D4 is NA in dog years.
�� 9 Biggs Darklighter 24 168 Biggs Darklighter is 168 in dog year…
�� 10 Obi-Wan Kenobi 57 399 Obi-Wan Kenobi is 399 in dog years.
�� # … with 77 more rows

27 / 55

4) dplyr::mutate cont.
Note: mutate is order aware. So you can chain multiple mutates in a single call.

starwars %>%
 select(name, birth_year) %>%
 mutate(
 dog_years = birth_year * 7, �� Separate with a comma
 comment = paste0(name, " is ", dog_years, " in dog years.")
)

�� # A tibble: 87 x 4
�� name birth_year dog_years comment
�� <chr> <dbl> <dbl> <chr>
�� 1 Luke Skywalker 19 133 Luke Skywalker is 133 in dog years.
�� 2 C-3PO 112 784 C-3PO is 784 in dog years.
�� 3 R2-D2 33 231 R2-D2 is 231 in dog years.
�� 4 Darth Vader 41.9 293. Darth Vader is 293.3 in dog years.
�� 5 Leia Organa 19 133 Leia Organa is 133 in dog years.
�� 6 Owen Lars 52 364 Owen Lars is 364 in dog years.
�� 7 Beru Whitesun lars 47 329 Beru Whitesun lars is 329 in dog yea…
�� 8 R5-D4 NA NA R5-D4 is NA in dog years.
�� 9 Biggs Darklighter 24 168 Biggs Darklighter is 168 in dog year…
�� 10 Obi-Wan Kenobi 57 399 Obi-Wan Kenobi is 399 in dog years.
�� # … with 77 more rows 28 / 55

4) dplyr::mutate cont.
Boolean, logical and conditional operators all work well with mutate too.

�� # A tibble: 2 x 4
�� name height tall1 tall2
�� <chr> <int> <lgl> <chr>
�� 1 Luke Skywalker 172 FALSE Short
�� 2 Anakin Skywalker 188 TRUE Tall

starwars %>%
 select(name, height) %>%
 filter(name %in% c("Luke Skywalker", "Anakin Skywalker")) %>%
 mutate(tall1 = height > 180) %>%
 mutate(tall2 = ifelse(height > 180, "Tall", "Short")) �� Same effect, but can ch

29 / 55

4) dplyr::mutate cont.
Lastly, combining mutate with the new across feature in dplyr 1.0.0+ allows you to easily
work on a subset of variables. For example:

starwars %>%
 select(name:eye_color) %>%
 mutate(across(where(is.character), toupper)) %>%
 head(5)

�� # A tibble: 5 x 6
�� name height mass hair_color skin_color eye_color
�� <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 LUKE SKYWALKER 172 77 BLOND FAIR BLUE
�� 2 C-3PO 167 75 <NA> GOLD YELLOW
�� 3 R2-D2 96 32 <NA> WHITE, BLUE RED
�� 4 DARTH VADER 202 136 NONE WHITE YELLOW
�� 5 LEIA ORGANA 150 49 BROWN LIGHT BROWN

30 / 55

4) dplyr::mutate cont.
Lastly, combining mutate with the new across feature in dplyr 1.0.0+ allows you to easily
work on a subset of variables. For example:

starwars %>%
 select(name:eye_color) %>%
 mutate(across(where(is.character), toupper)) %>%
 head(5)

�� # A tibble: 5 x 6
�� name height mass hair_color skin_color eye_color
�� <chr> <int> <dbl> <chr> <chr> <chr>
�� 1 LUKE SKYWALKER 172 77 BLOND FAIR BLUE
�� 2 C-3PO 167 75 <NA> GOLD YELLOW
�� 3 R2-D2 96 32 <NA> WHITE, BLUE RED
�� 4 DARTH VADER 202 136 NONE WHITE YELLOW
�� 5 LEIA ORGANA 150 49 BROWN LIGHT BROWN

Note: This work�ow (i.e. combining mutate and across) supersedes the old "scoped" variants
of mutate that you might have used previously. More details here and here.

30 / 55

https://www.tidyverse.org/blog/2020/04/dplyr-1-0-0-colwise/
https://dplyr.tidyverse.org/dev/articles/colwise.html

5) dplyr::summarise
Particularly useful in combination with the group_by command.

starwars %>%
 group_by(species, gender) %>%
 summarise(mean_height = mean(height, na.rm = TRUE))

�� # A tibble: 42 x 3
�� # Groups: species [38]
�� species gender mean_height
�� <chr> <chr> <dbl>
�� 1 Aleena masculine 79
�� 2 Besalisk masculine 198
�� 3 Cerean masculine 198
�� 4 Chagrian masculine 196
�� 5 Clawdite feminine 168
�� 6 Droid feminine 96
�� 7 Droid masculine 140
�� 8 Dug masculine 112
�� 9 Ewok masculine 88
�� 10 Geonosian masculine 183
�� # … with 32 more rows

31 / 55

5) dplyr::summarise cont.
Note that including "na.rm = TRUE" (or, its alias "na.rm = T") is usually a good idea with
summarise functions. Otherwise, any missing value will propogate to the summarised value
too.

�� Probably not what we want
starwars %>%
 summarise(mean_height = mean(height))

�� # A tibble: 1 x 1
�� mean_height
�� <dbl>
�� 1 NA

�� Much better
starwars %>%
 summarise(mean_height = mean(height, na.rm = TRUE))

�� # A tibble: 1 x 1
�� mean_height
�� <dbl>
�� 1 174.

32 / 55

5) dplyr::summarise cont.
The same across -based work�ow that we saw with mutate a few slides back also works with
summarise . For example:

starwars %>%
 group_by(species) %>%
 summarise(across(where(is.numeric), mean, na.rm=T)) %>%
 head(5)

�� # A tibble: 5 x 4
�� species height mass birth_year
�� <chr> <dbl> <dbl> <dbl>
�� 1 Aleena 79 15 NaN
�� 2 Besalisk 198 102 NaN
�� 3 Cerean 198 82 92
�� 4 Chagrian 196 NaN NaN
�� 5 Clawdite 168 55 NaN

33 / 55

5) dplyr::summarise cont.
The same across -based work�ow that we saw with mutate a few slides back also works with
summarise . For example:

starwars %>%
 group_by(species) %>%
 summarise(across(where(is.numeric), mean, na.rm=T)) %>%
 head(5)

�� # A tibble: 5 x 4
�� species height mass birth_year
�� <chr> <dbl> <dbl> <dbl>
�� 1 Aleena 79 15 NaN
�� 2 Besalisk 198 102 NaN
�� 3 Cerean 198 82 92
�� 4 Chagrian 196 NaN NaN
�� 5 Clawdite 168 55 NaN

Note: Again, this functionality supersedes the old "scoped" variants of summarise that you
used prior to dplyr 1.0.0. Details here and here.

33 / 55

https://www.tidyverse.org/blog/2020/04/dplyr-1-0-0-colwise/
https://dplyr.tidyverse.org/dev/articles/colwise.html

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

34 / 55

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

slice : Subset rows by position rather than �ltering by values.

E.g. starwars %>% slice(c(1, 5))

34 / 55

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

slice : Subset rows by position rather than �ltering by values.

E.g. starwars %>% slice(c(1, 5))

pull : Extract a column from as a data frame as a vector or scalar.

E.g. starwars %>% filter(gender��"female") %>% pull(height)

34 / 55

Other dplyr goodies
group_by and ungroup : For (un)grouping.

Particularly useful with the summarise and mutate commands, as we've already seen.

slice : Subset rows by position rather than �ltering by values.

E.g. starwars %>% slice(c(1, 5))

pull : Extract a column from as a data frame as a vector or scalar.

E.g. starwars %>% filter(gender��"female") %>% pull(height)

count and distinct : Number and isolate unique observations.

E.g. starwars %>% count(species) , or starwars %>% distinct(species)
You could also use a combination of mutate , group_by , and n() , e.g. starwars %>%
group_by(species) %>% mutate(num = n()) .

34 / 55

Other dplyr goodies (cont.)
There are also a whole class of window functions for getting leads and lags, ranking, creating
cumulative aggregates, etc.

See vignette("window�functions") .

35 / 55

https://cran.r-project.org/web/packages/dplyr/vignettes/window-functions.html

Other dplyr goodies (cont.)
There are also a whole class of window functions for getting leads and lags, ranking, creating
cumulative aggregates, etc.

See vignette("window�functions") .

The �nal set of dplyr "goodies" are the family of join operations. However, these are important
enough that I want to go over some concepts in a bit more depth...

We will encounter and practice these many more times as the course progresses.

35 / 55

https://cran.r-project.org/web/packages/dplyr/vignettes/window-functions.html

Joins
One of the mainstays of the dplyr package is merging data with the family join operations.

inner_join(df1, df2)

left_join(df1, df2)

right_join(df1, df2)

full_join(df1, df2)

semi_join(df1, df2)

anti_join(df1, df2)

(You �nd �nd it helpful to to see visual depictions of the different join operations here.)

36 / 55

https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html
https://r4ds.had.co.nz/relational-data.html

Joins
One of the mainstays of the dplyr package is merging data with the family join operations.

inner_join(df1, df2)

left_join(df1, df2)

right_join(df1, df2)

full_join(df1, df2)

semi_join(df1, df2)

anti_join(df1, df2)

(You �nd �nd it helpful to to see visual depictions of the different join operations here.)

For the simple examples that I'm going to show here, we'll need some data sets that come
bundled with the nyc�ights13 package.

Load it now and then inspect these data frames in your own console.

library(nycflights13)
flights
planes

36 / 55

https://cran.r-project.org/web/packages/dplyr/vignettes/two-table.html
https://r4ds.had.co.nz/relational-data.html
http://github.com/hadley/nycflights13

Joins (cont.)
Let's perform a left join on the �ights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.

37 / 55

https://stat545.com/bit001_dplyr-cheatsheet.html#left_joinsuperheroes-publishers

Joins (cont.)
Let's perform a left join on the �ights and planes datasets.

Note: I'm going subset columns after the join, but only to keep text on the slide.

�� Joining, by = c("year", "tailnum")

�� # A tibble: 336,776 x 10
�� year month day dep_time arr_time carrier flight tailnum type model
�� <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
�� 1 2013 1 1 517 830 UA 1545 N14228 <NA> <NA>
�� 2 2013 1 1 533 850 UA 1714 N24211 <NA> <NA>
�� 3 2013 1 1 542 923 AA 1141 N619AA <NA> <NA>
�� 4 2013 1 1 544 1004 B6 725 N804JB <NA> <NA>
�� 5 2013 1 1 554 812 DL 461 N668DN <NA> <NA>
�� 6 2013 1 1 554 740 UA 1696 N39463 <NA> <NA>
�� 7 2013 1 1 555 913 B6 507 N516JB <NA> <NA>
�� 8 2013 1 1 557 709 EV 5708 N829AS <NA> <NA>
�� 9 2013 1 1 557 838 B6 79 N593JB <NA> <NA>
�� 10 2013 1 1 558 753 AA 301 N3ALAA <NA> <NA>
�� # … with 336,766 more rows

left_join(flights, planes) %>%
 select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, type, mod

37 / 55

https://stat545.com/bit001_dplyr-cheatsheet.html#left_joinsuperheroes-publishers

Joins (cont.)
(continued from previous slide)

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that
share the same name). It also told us its choices:

�� Joining, by = c("year", "tailnum")

However, there's an obvious problem here: the variable "year" does not have a consistent
meaning across our joining datasets!

In one it refers to the year of �ight, in the other it refers to year of construction.

38 / 55

Joins (cont.)
(continued from previous slide)

Note that dplyr made a reasonable guess about which columns to join on (i.e. columns that
share the same name). It also told us its choices:

�� Joining, by = c("year", "tailnum")

However, there's an obvious problem here: the variable "year" does not have a consistent
meaning across our joining datasets!

In one it refers to the year of �ight, in the other it refers to year of construction.

Luckily, there's an easy way to avoid this problem.

See if you can �gure it out before turning to the next slide.
Try ?dplyr��join .

38 / 55

Joins (cont.)
(continued from previous slide)

You just need to be more explicit in your join call by using the by = argument.

You can also rename any ambiguous columns to avoid confusion.

�� # A tibble: 3 x 11
�� year month day dep_time arr_time carrier flight tailnum year_built type
�� <int> <int> <int> <int> <int> <chr> <int> <chr> <int> <chr>
�� 1 2013 1 1 517 830 UA 1545 N14228 1999 Fixe…
�� 2 2013 1 1 533 850 UA 1714 N24211 1998 Fixe…
�� 3 2013 1 1 542 923 AA 1141 N619AA 1990 Fixe…
�� # … with 1 more variable: model <chr>

left_join(
 flights,
 planes %>% rename(year_built = year), �� Not necessary w/ below line, but helpfu
 by = "tailnum" �� Be specific about the joining column
) %>%
 select(year, month, day, dep_time, arr_time, carrier, flight, tailnum, year_buil
 head(3) �� Just to save vertical space on the slide

39 / 55

Joins (cont.)
(continued from previous slide)

Last thing I'll mention for now; note what happens if we again specify the join column... but
don't rename the ambiguous "year" column in at least one of the given data frames.

�� # A tibble: 3 x 11
�� year.x year.y month day dep_time arr_time carrier flight tailnum type model
�� <int> <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
�� 1 2013 1999 1 1 517 830 UA 1545 N14228 Fixe… 737-…
�� 2 2013 1998 1 1 533 850 UA 1714 N24211 Fixe… 737-…
�� 3 2013 1990 1 1 542 923 AA 1141 N619AA Fixe… 757-…

left_join(
 flights,
 planes, �� Not renaming "year" to "year_built" this time
 by = "tailnum"
) %>%
 select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnu
 head(3)

40 / 55

Joins (cont.)
(continued from previous slide)

Last thing I'll mention for now; note what happens if we again specify the join column... but
don't rename the ambiguous "year" column in at least one of the given data frames.

�� # A tibble: 3 x 11
�� year.x year.y month day dep_time arr_time carrier flight tailnum type model
�� <int> <int> <int> <int> <int> <int> <chr> <int> <chr> <chr> <chr>
�� 1 2013 1999 1 1 517 830 UA 1545 N14228 Fixe… 737-…
�� 2 2013 1998 1 1 533 850 UA 1714 N24211 Fixe… 737-…
�� 3 2013 1990 1 1 542 923 AA 1141 N619AA Fixe… 757-…

Make sure you know what "year.x" and "year.y" are. Again, it pays to be speci�c.

left_join(
 flights,
 planes, �� Not renaming "year" to "year_built" this time
 by = "tailnum"
) %>%
 select(contains("year"), month, day, dep_time, arr_time, carrier, flight, tailnu
 head(3)

40 / 55

tidyr

41 / 55

Key tidyr verbs
�. pivot_longer : Pivot wide data into long format (i.e. "melt").1

�. pivot_wider : Pivot long data into wide format (i.e. "cast").2

�. separate : Separate (i.e. split) one column into multiple columns.

�. unite : Unite (i.e. combine) multiple columns into one.

1 Updated version of tidyr��gather .

2 Updated version of tidyr��spread .

42 / 55

Key tidyr verbs
�. pivot_longer : Pivot wide data into long format (i.e. "melt").1

�. pivot_wider : Pivot long data into wide format (i.e. "cast").2

�. separate : Separate (i.e. split) one column into multiple columns.

�. unite : Unite (i.e. combine) multiple columns into one.

Let's practice these verbs together in class.

Side question: Which of pivot_longer vs pivot_wider produces "tidy" data?

1 Updated version of tidyr��gather .

2 Updated version of tidyr��spread .

42 / 55

1) tidyr::pivot_longer
stocks = data.frame(�� Could use "tibble" instead of "data.frame" if you prefer
 time = as.Date('2009-01-01') + 0:1,
 X = rnorm(2, 0, 1),
 Y = rnorm(2, 0, 2),
 Z = rnorm(2, 0, 4)
)
stocks

�� time X Y Z
�� 1 2009-01-01 0.7630456 -0.7002949 -3.417682
�� 2 2009-01-02 -0.4579186 -0.7498116 -6.052036

stocks %>% pivot_longer(�time, names_to="stock", values_to="price")

�� # A tibble: 6 x 3
�� time stock price
�� <date> <chr> <dbl>
�� 1 2009-01-01 X 0.763
�� 2 2009-01-01 Y -0.700
�� 3 2009-01-01 Z -3.42
�� 4 2009-01-02 X -0.458
�� 5 2009-01-02 Y -0.750
�� 6 2009-01-02 Z -6.05 43 / 55

1) tidyr::pivot_longer cont.
Let's quickly save the "tidy" (i.e. long) stocks data frame for use on the next slide.

�� Write out the argument names this time: i.e. "names_to=" and "values_to="
tidy_stocks =
 stocks %>%
 pivot_longer(�time, names_to="stock", values_to="price")

44 / 55

2) tidyr::pivot_wider
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)

�� # A tibble: 2 x 4
�� time X Y Z
�� <date> <dbl> <dbl> <dbl>
�� 1 2009-01-01 0.763 -0.700 -3.42
�� 2 2009-01-02 -0.458 -0.750 -6.05

tidy_stocks %>% pivot_wider(names_from=time, values_from=price)

�� # A tibble: 3 x 3
�� stock 2009-01-01 2009-01-02
�� <chr> <dbl> <dbl>
�� 1 X 0.763 -0.458
�� 2 Y -0.700 -0.750
�� 3 Z -3.42 -6.05

45 / 55

2) tidyr::pivot_wider
tidy_stocks %>% pivot_wider(names_from=stock, values_from=price)

�� # A tibble: 2 x 4
�� time X Y Z
�� <date> <dbl> <dbl> <dbl>
�� 1 2009-01-01 0.763 -0.700 -3.42
�� 2 2009-01-02 -0.458 -0.750 -6.05

tidy_stocks %>% pivot_wider(names_from=time, values_from=price)

�� # A tibble: 3 x 3
�� stock 2009-01-01 2009-01-02
�� <chr> <dbl> <dbl>
�� 1 X 0.763 -0.458
�� 2 Y -0.700 -0.750
�� 3 Z -3.42 -6.05

Note that the second example — which has combined different pivoting arguments — has
effectively transposed the data.

45 / 55

Aside: Remembering the pivot_* syntax
There's a long-running joke about no-one being able to remember Stata's "reshape" command.
(Exhibit A.)

It's easy to see this happening with the pivot_* functions too. However, I �nd that I never
forget the commands as long as I remember the argument order is "names" then "values".

46 / 55

https://twitter.com/helleringer143/status/1117234887902285836

3) tidyr::separate

�� name
�� 1 Adam.Smith
�� 2 Paul.Samuelson
�� 3 Milton.Friedman

economists %>% separate(name, c("first_name", "last_name"))

�� first_name last_name
�� 1 Adam Smith
�� 2 Paul Samuelson
�� 3 Milton Friedman

economists = data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"
economists

47 / 55

3) tidyr::separate

�� name
�� 1 Adam.Smith
�� 2 Paul.Samuelson
�� 3 Milton.Friedman

economists %>% separate(name, c("first_name", "last_name"))

�� first_name last_name
�� 1 Adam Smith
�� 2 Paul Samuelson
�� 3 Milton Friedman

This command is pretty smart. But to avoid ambiguity, you can also specify the separation
character with separate(���, sep=".") .

economists = data.frame(name = c("Adam.Smith", "Paul.Samuelson", "Milton.Friedman"
economists

47 / 55

3) tidyr::separate cont.
A related function is separate_rows , for splitting up cells that contain multiple �elds or
observations (a frustratingly common occurence with survey data).

jobs = data.frame(
 name = c("Jack", "Jill"),
 occupation = c("Homemaker", "Philosopher, Philanthropist, Troublemaker")
)
jobs

�� name occupation
�� 1 Jack Homemaker
�� 2 Jill Philosopher, Philanthropist, Troublemaker

�� Now split out Jill's various occupations into different rows
jobs %>% separate_rows(occupation)

�� # A tibble: 4 x 2
�� name occupation
�� <chr> <chr>
�� 1 Jack Homemaker
�� 2 Jill Philosopher
�� 3 Jill Philanthropist 48 / 55

4) tidyr::unite
gdp = data.frame(
 yr = rep(2016, times = 4),
 mnth = rep(1, times = 4),
 dy = 1:4,
 gdp = rnorm(4, mean = 100, sd = 2)
)
gdp

�� yr mnth dy gdp
�� 1 2016 1 1 101.6175
�� 2 2016 1 2 100.4228
�� 3 2016 1 3 102.3959
�� 4 2016 1 4 101.8645

�� Combine "yr", "mnth", and "dy" into one "date" column
gdp %>% unite(date, c("yr", "mnth", "dy"), sep = "-")

�� date gdp
�� 1 2016-1-1 101.6175
�� 2 2016-1-2 100.4228
�� 3 2016-1-3 102.3959
�� 4 2016-1-4 101.8645

49 / 55

4) tidyr::unite cont.
Note that unite will automatically create a character variable. You can see this better if we
convert it to a tibble.

gdp_u = gdp %>% unite(date, c("yr", "mnth", "dy"), sep = "-") %>% as_tibble()
gdp_u

�� # A tibble: 4 x 2
�� date gdp
�� <chr> <dbl>
�� 1 2016-1-1 102.
�� 2 2016-1-2 100.
�� 3 2016-1-3 102.
�� 4 2016-1-4 102.

50 / 55

4) tidyr::unite cont.
Note that unite will automatically create a character variable. You can see this better if we
convert it to a tibble.

gdp_u = gdp %>% unite(date, c("yr", "mnth", "dy"), sep = "-") %>% as_tibble()
gdp_u

�� # A tibble: 4 x 2
�� date gdp
�� <chr> <dbl>
�� 1 2016-1-1 102.
�� 2 2016-1-2 100.
�� 3 2016-1-3 102.
�� 4 2016-1-4 102.

If you want to convert it to something else (e.g. date or numeric) then you will need to modify
it using mutate . See the next slide for an example, using the lubridate package's super
helpful date conversion functions.

50 / 55

https://lubridate.tidyverse.org/

4) tidyr::unite cont.
(continued from previous slide)

library(lubridate)
gdp_u %>% mutate(date = ymd(date))

�� # A tibble: 4 x 2
�� date gdp
�� <date> <dbl>
�� 1 2016-01-01 98.5
�� 2 2016-01-02 102.
�� 3 2016-01-03 101.
�� 4 2016-01-04 101.

51 / 55

Other tidyr goodies
Use crossing to get the full combination of a group of variables.1

crossing(side=c("left", "right"), height=c("top", "bottom"))

�� # A tibble: 4 x 2
�� side height
�� <chr> <chr>
�� 1 left bottom
�� 2 left top
�� 3 right bottom
�� 4 right top

1 Base R alternative: expand.grid .

52 / 55

Other tidyr goodies
Use crossing to get the full combination of a group of variables.1

crossing(side=c("left", "right"), height=c("top", "bottom"))

�� # A tibble: 4 x 2
�� side height
�� <chr> <chr>
�� 1 left bottom
�� 2 left top
�� 3 right bottom
�� 4 right top

See ?expand and ?complete for more specialised functions that allow you to �ll in (implicit)
missing data or variable combinations in existing data frames.

You'll encounter this during your next assignment.

1 Base R alternative: expand.grid .

52 / 55

Summary

53 / 55

Key verbs

dplyr
�. filter
�. arrange
�. select
�. mutate
�. summarise

tidyr
�. pivot_longer
�. pivot_wider
�. separate
�. unite

54 / 55

Key verbs

dplyr
�. filter
�. arrange
�. select
�. mutate
�. summarise

tidyr
�. pivot_longer
�. pivot_wider
�. separate
�. unite

Other useful items include: pipes (%>%), grouping (group_by), joining functions (left_join ,
inner_join , etc.).

54 / 55

Next lecture: Data cleaning and
wrangling: (2) data.table

55 / 55

