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Checklist
We'll be using the following packages in today's lecture:

Already installed: dplyr, ggplot2, nyc�ights13
New: data.table, tidyfast, dtplyr, microbenchmark
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Checklist
We'll be using the following packages in today's lecture:

Already installed: dplyr, ggplot2, nyc�ights13
New: data.table, tidyfast, dtplyr, microbenchmark

The following code chunk will install (if necessary) and load everything for you.

if (!require(pacman)) install.packages('pacman', repos = 'https:��cran.rstudio.com
pacman��p_load(dplyr, data.table, dtplyr, tidyfast, microbenchmark, ggplot2, nycfl
options(dplyr.summarise.inform = FALSE) �� Turn off annoying dplyr group_by messag
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Why learn data.table?
The tidyverse is great. As I keep hinting, it will also provide a bridge to many of the big
data tools that we'll encounter later in the course (SQL databases, etc.)
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Why learn data.table?
The tidyverse is great. As I keep hinting, it will also provide a bridge to many of the big
data tools that we'll encounter later in the course (SQL databases, etc.)

So why bother learning another data wrangling package/syntax?

When it comes to data.table, I can think of at least �ve reasons:

1. Concise
2. Insanely fast
3. Memory ef�cient
4. Feature rich (and stable)
5. Dependency free

Before we get into speci�cs, here are a few examples to whet your appetite...
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Why learn data.table? (cont.)

1) Concise
These two code chunks do the same thing:

vs

# library(data.table) �� Already loaded
starwars_dt = as.data.table(starwars)
starwars_dt[species��"Human", mean(height), by=homeworld]

# library(dplyr) �� Already loaded
# data(starwars, package = "dplyr") �� Optional to bring the DF into the global en
starwars %>% 
  filter(species��"Human") %>% 
  group_by(homeworld) %>% 
  summarise(mean_height=mean(height))
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Why learn data.table? (cont.)

2) Insanely fast

�� Unit: milliseconds
��              expr        min         lq       mean     median         uq
��  collapse_dplyr() 112.396376 112.396376 112.396376 112.396376 112.396376
��     collapse_dt()   5.982716   5.982716   5.982716   5.982716   5.982716
��         max neval
��  112.396376     1
��    5.982716     1

collapse_dplyr = function() {
  storms %>%
    group_by(name, year, month, day) %>% 
    summarize(wind = mean(wind), pressure = mean(pressure), category = dplyr��first(category
  }

storms_dt = as.data.table(storms)
collapse_dt = function() {
  storms_dt[, .(wind = mean(wind), pressure = mean(pressure), category = first(category)),
            by = .(name, year, month, day)]
  }

microbenchmark(collapse_dplyr(), collapse_dt(), times = 1)
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Why learn data.table? (cont.)

2) Insanely fast

�� Unit: milliseconds
��              expr        min         lq       mean     median         uq
��  collapse_dplyr() 112.396376 112.396376 112.396376 112.396376 112.396376
��     collapse_dt()   5.982716   5.982716   5.982716   5.982716   5.982716
��         max neval
��  112.396376     1
��    5.982716     1

Result: data.table is 20x faster! (Thanks to Keith Head for this example.)

collapse_dplyr = function() {
  storms %>%
    group_by(name, year, month, day) %>% 
    summarize(wind = mean(wind), pressure = mean(pressure), category = dplyr��first(category
  }

storms_dt = as.data.table(storms)
collapse_dt = function() {
  storms_dt[, .(wind = mean(wind), pressure = mean(pressure), category = first(category)),
            by = .(name, year, month, day)]
  }

microbenchmark(collapse_dplyr(), collapse_dt(), times = 1)
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Why learn data.table? (cont.)

3) Memory ef�cient
Measuring and comparing memory use gets complicated. But see here (esp. from slide 12)
for a thorough walkthrough of data.table's memory use and ef�ciency.

4) Features and 5) No dependencies
I'll lump these together, since they really have to do with the stability of your code over
time. Just to emphasise the point about dependencies, though:

tools��package_dependencies("data.table", recursive = TRUE)[[1]]

�� [1] "methods"

tools��package_dependencies("dplyr", recursive = TRUE)[[1]]

��  [1] "ellipsis"   "assertthat" "glue"       "magrittr"   "methods"    "pkgconfig" 
��  [7] "R6"         "Rcpp"       "rlang"      "tibble"     "tidyselect" "utils"     
�� [13] "BH"         "plogr"      "tools"      "cli"        "crayon"     "fansi"     
�� [19] "lifecycle"  "pillar"     "vctrs"      "purrr"      "grDevices"  "utf8"      
�� [25] "digest" 9 / 67

https://stackoverflow.com/a/61376971
https://jangorecki.gitlab.io/r-talks/2019-06-18_Poznan_why-data.table/why-data.table.pdf
http://www.tinyverse.org/


Before we continue...
The purpose of this lecture is not to convince you that data.table is superior to the
tidyverse. (Or vice versa.)

For sure, people have strong opinions on the matter and you may �nd yourself pulling
strongly in one direction or the other. And that's okay, but...

My goal is simply to show you another powerful tool that you can use to tackle big (or
small!) data problems ef�ciently in R.
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The purpose of this lecture is not to convince you that data.table is superior to the
tidyverse. (Or vice versa.)

For sure, people have strong opinions on the matter and you may �nd yourself pulling
strongly in one direction or the other. And that's okay, but...

My goal is simply to show you another powerful tool that you can use to tackle big (or
small!) data problems ef�ciently in R.

FWIW, I'm a big fan of both the tidyverse and data.table, and use them both in my own
work.

Knowing how to use each of them and how they complement each other has, I believe,
made me a much more effective R user/empirical economist/data scientist/etc.

We'll get back to the point about complementarity at the end of the lecture.
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data.table basics
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The data.table object
We've already seen that the tidyerse provides its own enhanced version of a data.frame in
the form of tibbles.
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The data.table object
We've already seen that the tidyerse provides its own enhanced version of a data.frame in
the form of tibbles.

The same is true for data.table. In fact, data.table functions only work on objects that have
been converted to data.tables �rst.

Beyond simple visual enhancements (similar to tibbles), the specialised internal
structure of data.table objects is a key reason why the package is so fast. (More here
and here.)

To create a data.table, we have a couple of options:

fread('mydata.csv')  reads a CSV into R as a data.table (and is very fast).
data.table(x = 1�10)  creates a new data.table from scratch
as.data.table(d)  coerces an existing data frame ( d ) to a data.table.
setDT(d)  coerces an existing data frame to a data.table by reference; i.e. we don't have
to (re)assign it.
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What does "modify by reference" mean?
That last bullet leads us to an important concept that underlies much of data.table's
awesomeness: It tries, as much as possible, to modify by reference.
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What does this mean? We don't have time to go into details here, but the very (very) short
version is that there are basically two ways of changing or assigning objects in R.

1. Copy-on-modify: Creates a copy of your data. Implies extra computational overhead.*

2. Modify-in-place: Avoids creating copies and simply changes the data where it sits in
memory.

* In truth, we need to distinguish between shallow and deep copies. But that's more than I want
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That last bullet leads us to an important concept that underlies much of data.table's
awesomeness: It tries, as much as possible, to modify by reference.

What does this mean? We don't have time to go into details here, but the very (very) short
version is that there are basically two ways of changing or assigning objects in R.

1. Copy-on-modify: Creates a copy of your data. Implies extra computational overhead.*

2. Modify-in-place: Avoids creating copies and simply changes the data where it sits in
memory.

When we say that data.table "modi�es by reference", that essentially means it modi�es
objects in place. This translates to lower memory overhead and faster computation time!

P.S. Further reading if this stuff interests you: (a) Reference semantics data.table vignette, (b)
Names and Values section of Advanced R (Hadley Wickham), (c) Nice blog post by Tyson
Barrett that's accessible to beginners.

* In truth, we need to distinguish between shallow and deep copies. But that's more than I want
you to worry about here.
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On which rows? What to do? Grouped by what?

data.table syntax
All data.tables accept the same basic syntax:

DT[i, j, by]
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On which rows? What to do? Grouped by what?

�lter(); slice(); arrange() select(); mutate() group_by()

data.table syntax
All data.tables accept the same basic syntax:

DT[i, j, by]

dplyr "equivalents":

While the tidyverse tends to break up operations step-by-step, data.table aims to do
everything in one concise expression.

We can execute complex data wrangling commands as a single, �uid thought.
Although, as we'll see in a bit, you can certainly chain (pipe) multiple operations
together too.
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A Quick Example
We'll dive into the details (and quirks) of data.table shortly.

But �rst, a quick side-by-side comparison with dplyr, since that will help to orientate us for
the rest of the lecture. Using our starwars dataset, say we want to know:

What is the average height of the human characters by gender?
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dplyr
data(starwars, package = "dplyr")
starwars %>%
  filter(species��"Human") %>%
  group_by(gender) %>%
  summarise(mean(height, na.rm=T))

data.table
starwars_dt = as.data.table(starwars)
starwars_dt[
  species��"Human", 
  mean(height, na.rm=T), 
  by = gender]

A Quick Example
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dplyr
data(starwars, package = "dplyr")
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data.table
starwars_dt = as.data.table(starwars)
starwars_dt[
  species��"Human", �� i
  mean(height, na.rm=T), 
  by = gender]

A Quick Example
We'll dive into the details (and quirks) of data.table shortly.

But �rst, a quick side-by-side comparison with dplyr, since that will help to orientate us for
the rest of the lecture. Using our starwars dataset, say we want to know:

What is the average height of the human characters by gender?

16 / 67



dplyr
data(starwars, package = "dplyr")
starwars %>%
  filter(species��"Human") %>% 
  group_by(gender) %>%
  summarise(mean(height, na.rm=T))

data.table
starwars_dt = as.data.table(starwars)
starwars_dt[
  species��"Human",
  mean(height, na.rm=T),  �� j
  by = gender]

A Quick Example
We'll dive into the details (and quirks) of data.table shortly.

But �rst, a quick side-by-side comparison with dplyr, since that will help to orientate us for
the rest of the lecture. Using our starwars dataset, say we want to know:

What is the average height of the human characters by gender?
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dplyr
data(starwars, package = "dplyr")
starwars %>%
  filter(species��"Human") %>% 
  group_by(gender) %>%
  summarise(mean(height, na.rm=T))

data.table
starwars_dt = as.data.table(starwars)
starwars_dt[
  species��"Human",
  mean(height, na.rm=T),  
  by = gender] �� by

A Quick Example
We'll dive into the details (and quirks) of data.table shortly.

But �rst, a quick side-by-side comparison with dplyr, since that will help to orientate us for
the rest of the lecture. Using our starwars dataset, say we want to know:

What is the average height of the human characters by gender?
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dplyr
data(starwars, package = "dplyr")
starwars %>%
  filter(species��"Human") %>%
  group_by(gender) %>%
  summarise(mean(height, na.rm=T))

�� # A tibble: 2 x 2
��   gender    `mean(height, na.rm = T)`
��   <chr>                         <dbl>
�� 1 feminine                       160.
�� 2 masculine                      182.

data.table
starwars_dt = as.data.table(starwars)
starwars_dt[
  species��"Human", 
  mean(height, na.rm=T), 
  by = gender]

��       gender       V1
�� 1� masculine 182.3478
�� 2�  feminine 160.2500

A Quick Example
We'll dive into the details (and quirks) of data.table shortly.

But �rst, a quick side-by-side comparison with dplyr, since that will help to orientate us for
the rest of the lecture. Using our starwars dataset, say we want to know:

What is the average height of the human characters by gender?
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Working with rows: DT[i, ]
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Subset by rows (�lter)
Subsetting by rows is very straightforward in data.table. Everything works pretty much the
same as you'd expect if you're coming from dplyr.

DT[x �� "string", ] : Subset to rows where variable x equals "string"

DT[y > 5, ] : Subset to rows where variable y is greater than 5

DT[1�10, ] : Subset to the �rst 10 rows
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Subset by rows (�lter)
Subsetting by rows is very straightforward in data.table. Everything works pretty much the
same as you'd expect if you're coming from dplyr.

DT[x �� "string", ] : Subset to rows where variable x equals "string"

DT[y > 5, ] : Subset to rows where variable y is greater than 5

DT[1�10, ] : Subset to the �rst 10 rows

Multiple �lters/conditions are �ne too:

DT[x��"string" & y>5, ] : Subset to rows where x is "string" AND y is greater than 5

Note that we don't actually need commas when we're only subsetting on i  (i.e. no j  or by
components).

DT[x��"string"]  is equivalent to DT[x��"string", ]
DT[1�10]  is equivalent to DT[1�10, ]
etc.
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Subset by rows (�lter) cont.
Just to emphasise the point, here's an example of subsetting by rows using our starwars
data.table from earlier.

starwars_dt[height>190 & species��'Human']

��                   name height mass hair_color skin_color eye_color birth_year
�� 1�         Darth Vader    202  136       none      white    yellow       41.9
�� 2�        Qui-Gon Jinn    193   89      brown       fair      blue       92.0
�� 3�               Dooku    193   80      white       fair     brown      102.0
�� 4� Bail Prestor Organa    191   NA      black        tan     brown       67.0
��     sex    gender homeworld species
�� 1� male masculine  Tatooine   Human
�� 2� male masculine      <NA>   Human
�� 3� male masculine   Serenno   Human
�� 4� male masculine  Alderaan   Human
��                                                                        films
�� 1� The Empire Strikes Back,Revenge of the Sith,Return of the Jedi,A New Hope
�� 2�                                                        The Phantom Menace
�� 3�                                  Attack of the Clones,Revenge of the Sith
�� 4�                                  Attack of the Clones,Revenge of the Sith
��            vehicles       starships
�� 1�                  TIE Advanced x1
�� 2�  Tribubble bongo                22 / 67



Order by rows (arrange)
starwars_dt[order(birth_year)]  �� (temporarily) sort by youngest to oldest
starwars_dt[order(�birth_year)] �� (temporarily) sort by oldest to youngest
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Order by rows (arrange)
starwars_dt[order(birth_year)]  �� (temporarily) sort by youngest to oldest
starwars_dt[order(�birth_year)] �� (temporarily) sort by oldest to youngest

While ordering as per the above is very straightforward, data.table also provides an
optimised setorder()  function for reordering by reference.
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Order by rows (arrange)
starwars_dt[order(birth_year)]  �� (temporarily) sort by youngest to oldest
starwars_dt[order(�birth_year)] �� (temporarily) sort by oldest to youngest

While ordering as per the above is very straightforward, data.table also provides an
optimised setorder()  function for reordering by reference.

setorder(starwars_dt, birth_year, na.last = TRUE)
starwars_dt[1:5, name:birth_year] �� Only print subset to stay on the slide

��                     name height mass hair_color skin_color eye_color birth_year
�� 1� Wicket Systri Warrick     88   20      brown      brown     brown          8
�� 2�                 IG-88    200  140       none      metal       red         15
�� 3�        Luke Skywalker    172   77      blond       fair      blue         19
�� 4�           Leia Organa    150   49      brown      light     brown         19
�� 5�        Wedge Antilles    170   77      brown       fair     hazel         21
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Manipulating columns: DT[, j]
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j: One slot to rule them all
Recall some of the dplyr verbs that we used to manipulate our variables in different ways:

select()

mutate()

summarise()

count()
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... and it let's you do all of those operations in one place: the j  slot.
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j: One slot to rule them all
Recall some of the dplyr verbs that we used to manipulate our variables in different ways:

select()

mutate()

summarise()

count()

data.table recognizes that all of these verbs are just different versions of telling R...

"Do something to this variable in my dataset"

... and it let's you do all of those operations in one place: the j  slot.

However, this concision requires a few syntax tweaks w.r.t. how we change and assign
variables in our dataset.

Some people �nd this off-putting (or, at least, weird) when they �rst come to
data.table.
I hope to convince you that these syntax tweaks aren't actually that dif�cult to grok
and give us a lot of power in return.
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Modifying columns :=
To add, delete, or change columns in data.table, we use the ��  operator.

Known as the walrus operator (geddit??)
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Modifying columns :=
To add, delete, or change columns in data.table, we use the ��  operator.

Known as the walrus operator (geddit??)

For example,

DT[, xsq �� x^2] : Create a new column ( xsq ) from an existing one ( x )
DT[, x �� as.character(x)] : Change an existing column

Important: ��  is modifying by reference, i.e. in place. So we don't have to (re)assign the
object to save these changes.

However, we also won't see these changes printed to screen unless we ask R explicitly.

DT = data.table(x = 1:2)
# DT[, xsq �� x^2] �� Modifies in place but doesn't print the result
DT[, x_sq �� x^2][] �� Adding [] prints the result.

��    x x_sq
�� 1� 1    1
�� 2� 2    4
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Modifying columns := (cont.)
As I keep saying, modifying by reference has important implications for data manipulation.
Consider what happens if we copy our data.table and then remove a column.

DT_copy = DT
DT_copy[, x_sq �� NULL]
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Modifying columns := (cont.)
As I keep saying, modifying by reference has important implications for data manipulation.
Consider what happens if we copy our data.table and then remove a column.

DT_copy = DT
DT_copy[, x_sq �� NULL]

Clearly, "x_sq" has been removed from DT_copy . But what of the original DT  table?

DT

��    x
�� 1� 1
�� 2� 2

Uh-oh! It too has been removed... exactly as modifying by reference demands. To avoid this
behaviour, use the explicit data.table��copy()  function. Run this next chunk yourself:

DT[, x_sq �� x^2]     
DT_copy = copy(DT)  
DT_copy[, x_sq �� NULL]
DT �� x_sq is still there (run and confirm for yourself)
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Modifying columns := (cont.)

Sub-assign by reference
One really cool implication of ��  is data.table's sub-assign by reference functionality. As a
simple example, consider another fake dataset.

DT2 = data.table(a = -2:2, b = LETTERS[1:5])
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One really cool implication of ��  is data.table's sub-assign by reference functionality. As a
simple example, consider another fake dataset.

DT2 = data.table(a = -2:2, b = LETTERS[1:5])

Now, imagine we want to locate all rows where "a" is negative and replace the
corresponding "b" cell with NA.
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Modifying columns := (cont.)

Sub-assign by reference
One really cool implication of ��  is data.table's sub-assign by reference functionality. As a
simple example, consider another fake dataset.

DT2 = data.table(a = -2:2, b = LETTERS[1:5])

Now, imagine we want to locate all rows where "a" is negative and replace the
corresponding "b" cell with NA.

In dplyr you'd have to do something like ���mutate(b = ifelse(a < 0, NA, b)) .

28 / 67

https://rdatatable.gitlab.io/data.table/articles/datatable-reference-semantics.html#ref-i-j


Modifying columns := (cont.)

Sub-assign by reference
One really cool implication of ��  is data.table's sub-assign by reference functionality. As a
simple example, consider another fake dataset.

DT2 = data.table(a = -2:2, b = LETTERS[1:5])

Now, imagine we want to locate all rows where "a" is negative and replace the
corresponding "b" cell with NA.

In dplyr you'd have to do something like ���mutate(b = ifelse(a < 0, NA, b)) .
In data.table, simply specify which rows to target ( i ) and then sub-assign ( j ) directly.

DT2[a < 0, b �� NA][] �� Again, just adding the second [] to print to screen

��     a    b
�� 1� -2 <NA>
�� 2� -1 <NA>
�� 3�  0    C
�� 4�  1    D
�� 5�  2    E 28 / 67
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Modifying columns := (cont.)
To modify multiple columns simultaneously, we have two options.

1. LHS ��  RHS form: DT[, c("var1", "var2") �� .(val1, val2)]

2. Functional form: DT[, '��' (var1=val1, var2=val2)]
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Modifying columns := (cont.)
To modify multiple columns simultaneously, we have two options.

1. LHS ��  RHS form: DT[, c("var1", "var2") �� .(val1, val2)]

2. Functional form: DT[, '��' (var1=val1, var2=val2)]

Personally, I much prefer the functional form and so that's what I'll use going forward. E.g.

DT[, '��' (y = 3:4, y_name = c("three", "four"))]
DT �� Another way to print the results instead of appending []

��    x x_sq y y_name
�� 1� 1    1 3  three
�� 2� 2    4 4   four
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Modifying columns := (cont.)
To modify multiple columns simultaneously, we have two options.

1. LHS ��  RHS form: DT[, c("var1", "var2") �� .(val1, val2)]

2. Functional form: DT[, '��' (var1=val1, var2=val2)]

Personally, I much prefer the functional form and so that's what I'll use going forward. E.g.

DT[, '��' (y = 3:4, y_name = c("three", "four"))]
DT �� Another way to print the results instead of appending []

��    x x_sq y y_name
�� 1� 1    1 3  three
�� 2� 2    4 4   four

Note, however, that dynamically assigning dependent columns in a single step (like we did
with dplyr::mutate) doesn't work.

DT[, '��' (z = 5:6, z_sq = z^2)][]

�� Error in eval(jsub, SDenv, parent.frame()): object 'z' not found
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Aside: Chaining data.table operations
That last example provides as good a time as any to mention that you can chain multiple
data.table operations together.
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Aside: Chaining data.table operations
That last example provides as good a time as any to mention that you can chain multiple
data.table operations together.

The native data.table way is simply to append consecutive []  terms.

DT[, z �� 5:6][, z_sq �� z^2][]

��    x x_sq y y_name z z_sq
�� 1� 1    1 3  three 5   25
�� 2� 2    4 4   four 6   36
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Aside: Chaining data.table operations
That last example provides as good a time as any to mention that you can chain multiple
data.table operations together.

The native data.table way is simply to append consecutive []  terms.

DT[, z �� 5:6][, z_sq �� z^2][]

��    x x_sq y y_name z z_sq
�� 1� 1    1 3  three 5   25
�� 2� 2    4 4   four 6   36

But if you prefer the magrittr pipe, then that's also possible. Just pre�x each step with . :

# library(magrittr) �� Not needed since we've already loaded %>% via dplyr
DT %>%
  .[, xyz �� x�y�z] %>%
  .[, xyz_sq �� xyz^2] %>%
  .[]

��    x x_sq y y_name z z_sq xyz xyz_sq
�� 1� 1    1 3  three 5   25   9     81
�� 2� 2    4 4   four 6   36  12    144 30 / 67



Modifying columns := (cont.)
To remove a column from your dataset, set it to NULL.

DT[, y_name �� NULL]
DT

��    x x_sq y z z_sq xyz xyz_sq
�� 1� 1    1 3 5   25   9     81
�� 2� 2    4 4 6   36  12    144
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Subsetting on columns (select)
We can also use the j  slot to subset our data on columns. I'll return to the starwars
dataset for these examples...
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Subsetting on columns (select)
We can also use the j  slot to subset our data on columns. I'll return to the starwars
dataset for these examples...

Subset by column position:

starwars_dt[1:2, c(1:3, 10)]

��                     name height mass homeworld
�� 1� Wicket Systri Warrick     88   20     Endor
�� 2�                 IG-88    200  140      <NA>
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Subsetting on columns (select)
We can also use the j  slot to subset our data on columns. I'll return to the starwars
dataset for these examples...

Subset by column position:

starwars_dt[1:2, c(1:3, 10)]

��                     name height mass homeworld
�� 1� Wicket Systri Warrick     88   20     Endor
�� 2�                 IG-88    200  140      <NA>

Or by name:

# starwars_dt[, c("name", "height", "mass", "homeworld")] �� Also works
# starwars_dt[, list(name, height, mass, homeworld)] �� So does this
starwars_dt[1:2, .(name, height, mass, homeworld)]

��                     name height mass homeworld
�� 1� Wicket Systri Warrick     88   20     Endor
�� 2�                 IG-88    200  140      <NA>
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Aside: What's with the .()?
We've now seen .()  in a couple places, e.g the previous slide and this slide from earlier if
you were paying close attention.

.()  is just a data.table shortcut for list() .

We'll be using .()  quite liberally once we start working subsetting and/or grouping by
multiple variables at a time.

You can think of it as one of data.table's syntactical quirks. But, really, it's just there to give
you more options. You can often — if not always — use these three forms interchangeably in
data.table:

.(var1, var2, ���)

list(var1, var2, ���)

c("var1", "var2", ���)
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We'll be using .()  quite liberally once we start working subsetting and/or grouping by
multiple variables at a time.

You can think of it as one of data.table's syntactical quirks. But, really, it's just there to give
you more options. You can often — if not always — use these three forms interchangeably in
data.table:

.(var1, var2, ���)

list(var1, var2, ���)

c("var1", "var2", ���)

I like the .()  syntax best — less typing! — but each to their own.
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Aside: What's with the .()?
We've now seen .()  in a couple places, e.g the previous slide and this slide from earlier if
you were paying close attention.

.()  is just a data.table shortcut for list() .

We'll be using .()  quite liberally once we start working subsetting and/or grouping by
multiple variables at a time.

You can think of it as one of data.table's syntactical quirks. But, really, it's just there to give
you more options. You can often — if not always — use these three forms interchangeably in
data.table:

.(var1, var2, ���)

list(var1, var2, ���)

c("var1", "var2", ���)

I like the .()  syntax best — less typing! — but each to their own.

Okay, back to subsetting on columns...
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Subsetting on columns (cont.)
You can also exclude columns through negation. Try this next code chunk yourself:

starwars_dt[, !c("name", "height")]
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Subsetting on columns (cont.)
You can also exclude columns through negation. Try this next code chunk yourself:

starwars_dt[, !c("name", "height")]

Renaming columns
You can rename (set) a column by reference. Again, run this yourself:

setnames(starwars_dt, old = c("name", "homeworld"), new = c"(alias", "crib"))[]
�� Better change it back, in case we use "name" or "homeworld" on a later slide
setnames(starwars_dt, old = c("alias", "crib"), new = c("name", "homeworld"))
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Subsetting on columns (cont.)
You can also exclude columns through negation. Try this next code chunk yourself:

starwars_dt[, !c("name", "height")]

Renaming columns
You can rename (set) a column by reference. Again, run this yourself:

setnames(starwars_dt, old = c("name", "homeworld"), new = c"(alias", "crib"))[]
�� Better change it back, in case we use "name" or "homeworld" on a later slide
setnames(starwars_dt, old = c("alias", "crib"), new = c("name", "homeworld"))

While the setnames()  approach offers performance bene�ts, I often �nd it convenient to
dynamically (and/or temporarily) rename columns when subsetting them. For example:

starwars_dt[1:2, .(alias = name, crib = homeworld)]

��                    alias  crib
�� 1� Wicket Systri Warrick Endor
�� 2�                 IG-88  <NA>
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Subsetting on columns (cont.)
One last thing I'll mention w.r.t. to subsetting columns is that you can also use dplyr verbs
on data.tables if you prefer.

For example run the following code chunk for yourself. (You'll get a warning about ef�ciency
loss, but this will be very minor for a case like this.)

starwars_dt[1:5, ] %>% 
  select(crib = homeworld, everything())
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Subsetting on columns (cont.)
One last thing I'll mention w.r.t. to subsetting columns is that you can also use dplyr verbs
on data.tables if you prefer.

For example run the following code chunk for yourself. (You'll get a warning about ef�ciency
loss, but this will be very minor for a case like this.)

starwars_dt[1:5, ] %>% 
  select(crib = homeworld, everything())

I don't want to preempt myself, though. I'll get back to dplyr+data.table functionality at the
end of the lecture....
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Aggregating
Finally, we can do aggregating manipulations in j .

starwars_dt[, mean(height, na.rm=T)]

�� [1] 174.358
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Aggregating
Finally, we can do aggregating manipulations in j .

starwars_dt[, mean(height, na.rm=T)]

�� [1] 174.358

Note that we don't keep anything unless we assign the result to a new object. If you want
to add the new aggregated column to your original dataset, use �� .

��              name height mean_height
�� 1� Luke Skywalker    172     174.358
�� 2�          C-3PO    167     174.358
�� 3�          R2-D2     96     174.358
�� 4�    Darth Vader    202     174.358
�� 5�    Leia Organa    150     174.358

starwars_dt[, mean_height �� mean(height, na.rm=T)] %>% �� Add mean height as colu
  .[1:5, .(name, height, mean_height)] �� Just to keep everything on the slide
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Aggregating (cont.)
data.table also provides special convenience symbols for common aggregation tasks in j .

For example, we can quickly count the number of observations using .N .

starwars_dt[, .N]

�� [1] 87
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Aggregating (cont.)
data.table also provides special convenience symbols for common aggregation tasks in j .

For example, we can quickly count the number of observations using .N .

starwars_dt[, .N]

�� [1] 87

Of course, this is a pretty silly example since it's just going to give us the total number of
rows in the dataset. Like most forms of aggregation, .N  is much more interesting when it is
applied by group.

This provides a nice segue to our next section...
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Group by: DT[, , by]
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by
data.table's by  argument functions very similarly to the dplyr��group_by  equivalent. Try
these next few examples in your own R console:

starwars_dt[, mean(height, na.rm=T), by = species] : Collapse by single variable
starwars_dt[, .(species_height = mean(height, na.rm=T)), by = species] : As
above, but explicitly name the summary variable
starwars_dt[, mean(mass, na.rm=T), by = height>190] : Conditionals work too.
starwars_dt[, species_n �� .N, by = species][] : Add an aggregated column to the
data (here: number of observations by species group)
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by
data.table's by  argument functions very similarly to the dplyr��group_by  equivalent. Try
these next few examples in your own R console:

starwars_dt[, mean(height, na.rm=T), by = species] : Collapse by single variable
starwars_dt[, .(species_height = mean(height, na.rm=T)), by = species] : As
above, but explicitly name the summary variable
starwars_dt[, mean(mass, na.rm=T), by = height>190] : Conditionals work too.
starwars_dt[, species_n �� .N, by = species][] : Add an aggregated column to the
data (here: number of observations by species group)

To perform aggregations by multiple variables, we'll use the .()  syntax again.

��    species homeworld mean_height
�� 1�   Human  Tatooine    179.2500
�� 2�   Droid  Tatooine    132.0000
�� 3�   Droid     Naboo     96.0000
�� 4�   Human  Alderaan    176.3333

starwars_dt[, .(mean_height = mean(height, na.rm=T)), by = .(species, homeworld)] 
  head(4) �� Just to keep everything on the slide
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Ef�cient subsetting with .SD
We've seen how to group by multiple variables. But what if we want to summarise multiple
variables, regardless of how we are grouping?

One solution is to again use .()  and write everything out, e.g.

�� Run yourself if you'd like to check the output
starwars_dt[, 
            .(mean(height, na.rm=T), mean(mass, na.rm=T), mean(birth_year, na.rm=T
            by = species]
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Ef�cient subsetting with .SD
We've seen how to group by multiple variables. But what if we want to summarise multiple
variables, regardless of how we are grouping?

One solution is to again use .()  and write everything out, e.g.

But this soon become tedious. Imagine we have even more variables. Do we really have to
write out mean(���, na.rm=T)  for each one?

�� Run yourself if you'd like to check the output
starwars_dt[, 
            .(mean(height, na.rm=T), mean(mass, na.rm=T), mean(birth_year, na.rm=T
            by = species]
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Ef�cient subsetting with .SD
We've seen how to group by multiple variables. But what if we want to summarise multiple
variables, regardless of how we are grouping?

One solution is to again use .()  and write everything out, e.g.

But this soon become tedious. Imagine we have even more variables. Do we really have to
write out mean(���, na.rm=T)  for each one?

Fortunately, the answer is "no". data.table provides a special .SD  symbol for subsetting
data. In truth, .SD can do a lot more than what I'm about to show you, but here's how it
would work in the present case...

See next slide.

�� Run yourself if you'd like to check the output
starwars_dt[, 
            .(mean(height, na.rm=T), mean(mass, na.rm=T), mean(birth_year, na.rm=T
            by = species]
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Ef�cient subsetting with .SD (cont.)
starwars_dt[, 
            lapply(.SD, mean, na.rm=T),
            .SDcols = c("height", "mass", "birth_year"),
            by = species] %>% 
  head(2) �� Just keep everything on the slide

��    species height  mass birth_year
�� 1�    Ewok   88.0 20.00    8.00000
�� 2�   Droid  131.2 69.75   53.33333
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Ef�cient subsetting with .SD (cont.)
starwars_dt[, 
            lapply(.SD, mean, na.rm=T),
            .SDcols = c("height", "mass", "birth_year"),
            by = species] %>%
  head(2) �� Just keep everything on the slide

��    species height  mass birth_year
�� 1�    Ewok   88.0 20.00    8.00000
�� 2�   Droid  131.2 69.75   53.33333

First, we specify what we want to do on our data subset (i.e. .SD ). In this case, we want the
mean for each element, which we obtain by iterating over with the base lapply()
function.1

1 We'll learn more about iteration once we get to the programming section of the course.
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Ef�cient subsetting with .SD (cont.)
starwars_dt[, 
            lapply(.SD, mean, na.rm=T), 
            .SDcols = c("height", "mass", "birth_year"),
            by = species] %>%
  head(2) �� Just keep everything on the slide

��    species height  mass birth_year
�� 1�    Ewok   88.0 20.00    8.00000
�� 2�   Droid  131.2 69.75   53.33333

First, we specify what we want to do on our data subset (i.e. .SD ). In this case, we want the
mean for each element, which we obtain by iterating over with the base lapply()
function.1

Then, we specify which columns to subset with the .SDcols  argument.

1 We'll learn more about iteration once we get to the programming section of the course.
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Ef�cient subsetting with .SD (cont.)
starwars_dt[, 
            lapply(.SD, mean, na.rm=T), 
            .SDcols = c("height", "mass", "birth_year"), 
            by = species] %>%
  head(2) �� Just keep everything on the slide

��    species height  mass birth_year
�� 1�    Ewok   88.0 20.00    8.00000
�� 2�   Droid  131.2 69.75   53.33333

First, we specify what we want to do on our data subset (i.e. .SD ). In this case, we want the
mean for each element, which we obtain by iterating over with the base lapply()
function.1

Then, we specify which columns to subset with the .SDcols  argument.

P.S. One annoyance I have is that the .()  syntax doesn't work for .SDcols . However, we
can at least feed it consecutive columns without quotes, e.g. .SDcols = height:mass . See
here.1 We'll learn more about iteration once we get to the programming section of the course.
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Ef�cient subsetting with .SD (cont.)
Just to add: We need only specify .SDcols  if we want to subset speci�c parts of the data.
(You can also use shortcuts like .SDcols = is.numeric  or .SDcols = patterns('abc') .)

If we instead want to apply the same function on all the variables in our dataset, then .SD
by itself will suf�ce.
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Ef�cient subsetting with .SD (cont.)
Just to add: We need only specify .SDcols  if we want to subset speci�c parts of the data.
(You can also use shortcuts like .SDcols = is.numeric  or .SDcols = patterns('abc') .)

If we instead want to apply the same function on all the variables in our dataset, then .SD
by itself will suf�ce.

As a quick example, recall our earlier DT object that contains only numeric variables.

DT

��    x x_sq y z z_sq xyz xyz_sq
�� 1� 1    1 3 5   25   9     81
�� 2� 2    4 4 6   36  12    144
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Ef�cient subsetting with .SD (cont.)
Just to add: We need only specify .SDcols  if we want to subset speci�c parts of the data.
(You can also use shortcuts like .SDcols = is.numeric  or .SDcols = patterns('abc') .)

If we instead want to apply the same function on all the variables in our dataset, then .SD
by itself will suf�ce.

As a quick example, recall our earlier DT object that contains only numeric variables.

DT

��    x x_sq y z z_sq xyz xyz_sq
�� 1� 1    1 3 5   25   9     81
�� 2� 2    4 4 6   36  12    144

We can obtain the mean for each variable as follows.

DT[, lapply(.SD, mean)]

��      x x_sq   y   z z_sq  xyz xyz_sq
�� 1� 1.5  2.5 3.5 5.5 30.5 10.5  112.5
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keyby
The last thing I want to mention w.r.t. by  is its close relative: keyby .

The keyby  argument works exactly like by  — you can use it as a drop-in replacement —
except that it orders the results and creates a key.

Setting a key for a data.table will allow for various (and often astonishing) performance
gains.1

Keys are important enough that I want to save them for their own section, though...

1 Note that you won't see an immediate performance gain with keyby , but subsequent operations
will certainly bene�t. (Of course, you can get an immediate boost by setting the key ahead of time,
but I'll explain all that on the next slide...)
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What are keys?
Keys are a way of ordering the data that allows for extremely fast subsetting.

The data.table vignette describes them as "supercharged rownames". I know that might
sound a bit abstract, but here's the idea in a nutshell...
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What are keys?
Keys are a way of ordering the data that allows for extremely fast subsetting.

The data.table vignette describes them as "supercharged rownames". I know that might
sound a bit abstract, but here's the idea in a nutshell...

Imagine that we want to �lter a dataset based on a particular value (e.g. �nd all the
human characters in our starwars dataset).

Normally, we'd have to search through the whole dataset to identify matching cases.
But, if we've set an appropriate key, then the data are already ordered in such a way
that we (i.e. our computer) only has to search through a much smaller subset.
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What are keys?
Keys are a way of ordering the data that allows for extremely fast subsetting.

The data.table vignette describes them as "supercharged rownames". I know that might
sound a bit abstract, but here's the idea in a nutshell...

Imagine that we want to �lter a dataset based on a particular value (e.g. �nd all the
human characters in our starwars dataset).

Normally, we'd have to search through the whole dataset to identify matching cases.
But, if we've set an appropriate key, then the data are already ordered in such a way
that we (i.e. our computer) only has to search through a much smaller subset.

Analogy: Think of the way a �ling cabinet might divide items by alphabetical order: Files
starting "ABC" in the top drawer, "DEF" in the second drawer, etc. To �nd Alice's �le, you'd
only have to search the top draw. For Fred, the second draw, and so on.
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sound a bit abstract, but here's the idea in a nutshell...

Imagine that we want to �lter a dataset based on a particular value (e.g. �nd all the
human characters in our starwars dataset).

Normally, we'd have to search through the whole dataset to identify matching cases.
But, if we've set an appropriate key, then the data are already ordered in such a way
that we (i.e. our computer) only has to search through a much smaller subset.

Analogy: Think of the way a �ling cabinet might divide items by alphabetical order: Files
starting "ABC" in the top drawer, "DEF" in the second drawer, etc. To �nd Alice's �le, you'd
only have to search the top draw. For Fred, the second draw, and so on.

Not only is this much quicker, but the same idea also carries over to all other forms of data
manipulation that rely on subsetting (aggregation by group, joins, etc.)
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What are keys?
Keys are a way of ordering the data that allows for extremely fast subsetting.

The data.table vignette describes them as "supercharged rownames". I know that might
sound a bit abstract, but here's the idea in a nutshell...

Imagine that we want to �lter a dataset based on a particular value (e.g. �nd all the
human characters in our starwars dataset).

Normally, we'd have to search through the whole dataset to identify matching cases.
But, if we've set an appropriate key, then the data are already ordered in such a way
that we (i.e. our computer) only has to search through a much smaller subset.

Analogy: Think of the way a �ling cabinet might divide items by alphabetical order: Files
starting "ABC" in the top drawer, "DEF" in the second drawer, etc. To �nd Alice's �le, you'd
only have to search the top draw. For Fred, the second draw, and so on.

Not only is this much quicker, but the same idea also carries over to all other forms of data
manipulation that rely on subsetting (aggregation by group, joins, etc.)

P.S. We'll get there later in the course, but keys are also the secret sauce in databases.
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How do I set a key?
You can set a key when you �rst create a data.table. E.g.

DT = data.table(x = 1�10, y = LETTERS[1�10], key = "x")

DT = as.data.table(d, key = "x")

setDT(d, key = "x")
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How do I set a key?
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DT = data.table(x = 1�10, y = LETTERS[1�10], key = "x")

DT = as.data.table(d, key = "x")

setDT(d, key = "x")

Or, you can set keys on an existing data.table with the setkey()  function.

setkey(DT, x) : Note that the key doesn't have to be quoted this time

Important: Since keys just describe a particular ordering of the data, you can set a key on
multiple columns. (More here.) E.g.

DT = as.data.table(DF, key = c("x", "y"))

setkey(DT, x, y) : Again, no quotes needed
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How do I set a key?
You can set a key when you �rst create a data.table. E.g.

DT = data.table(x = 1�10, y = LETTERS[1�10], key = "x")

DT = as.data.table(d, key = "x")

setDT(d, key = "x")

Or, you can set keys on an existing data.table with the setkey()  function.

setkey(DT, x) : Note that the key doesn't have to be quoted this time

Important: Since keys just describe a particular ordering of the data, you can set a key on
multiple columns. (More here.) E.g.

DT = as.data.table(DF, key = c("x", "y"))

setkey(DT, x, y) : Again, no quotes needed

P.S. Use the key()  function to see what keys are currently set for your data.table. You can
only ever have one key per table at a time, but it's very easy to change them using one of
the above commands.
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Example
Recall the speed benchmark that we saw at the very beginning of the lecture: data.table
ended up being 20x faster than dplyr for a fairly standard summarising task.
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ended up being 20x faster than dplyr for a fairly standard summarising task.

Let's redo the benchmark, but this time include a version where we pre-assign a key. For
optimal performance, the key should match the same variables that we're
grouping/subsetting on.

Again, a key can be set on multiple variables, although the lead grouping variable (in
the below case: "name") is the most important.
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Example
Recall the speed benchmark that we saw at the very beginning of the lecture: data.table
ended up being 20x faster than dplyr for a fairly standard summarising task.

Let's redo the benchmark, but this time include a version where we pre-assign a key. For
optimal performance, the key should match the same variables that we're
grouping/subsetting on.

Again, a key can be set on multiple variables, although the lead grouping variable (in
the below case: "name") is the most important.

See next slide for results

�� First create a keyed version of the storms data.table.
�� Note that key variables match the 'by' grouping variables below.
storms_dt_key = as.data.table(storms, key = c("name", "year", "month", "day"))
�� Collapse function for this keyed data.table. Everything else stays the same.
collapse_dt_key = function() {
  storms_dt_key[, .(wind = mean(wind), pressure = mean(pressure), category = first(category
                by = .(name, year, month, day)]
}
�� Run the benchmark on all three functions.
microbenchmark(collapse_dplyr(), collapse_dt(), collapse_dt_key(), times = 1)
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Example (cont.)
�� Unit: milliseconds
��               expr        min         lq       mean     median         uq
��   collapse_dplyr() 112.849845 112.849845 112.849845 112.849845 112.849845
��  collapse_dt_key()   1.107796   1.107796   1.107796   1.107796   1.107796
��         max neval
��  112.849845     1
��    1.107796     1
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��  collapse_dt_key()   1.107796   1.107796   1.107796   1.107796   1.107796
��         max neval
��  112.849845     1
��    1.107796     1

The keyed data.table version is now 100x (!!!) faster than dplyr.

That thing you feel... is your face melting.

It's not just this toy example. In my experience working with real-life data, setting keys
almost always leads to huge speed-ups... and those gains tend to scale as the datasets
increase in size.

48 / 67



Example (cont.)
�� Unit: milliseconds
��               expr        min         lq       mean     median         uq
��   collapse_dplyr() 112.849845 112.849845 112.849845 112.849845 112.849845
��  collapse_dt_key()   1.107796   1.107796   1.107796   1.107796   1.107796
��         max neval
��  112.849845     1
��    1.107796     1

The keyed data.table version is now 100x (!!!) faster than dplyr.

That thing you feel... is your face melting.

It's not just this toy example. In my experience working with real-life data, setting keys
almost always leads to huge speed-ups... and those gains tend to scale as the datasets
increase in size.

Bottom line: data.table is already plenty fast. But use keys if you're really serious about
performance.
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Merging datasets
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Merge (aka join) options
data.table provides two ways to merge datasets.

DT1[DT2, on = "id"]

merge(DT1, DT2, by = "id")
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Merge (aka join) options
data.table provides two ways to merge datasets.

DT1[DT2, on = "id"]

merge(DT1, DT2, by = "id")

I prefer the latter because it offers extra functionality (see ?merge.data.table ), but each to
their own.1

1 For a really good summary of the different join options (left, right, full, anti, etc.) using these two
methods, as well as their dplyr equivalents, see here.
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Merge (aka join) options
data.table provides two ways to merge datasets.

DT1[DT2, on = "id"]

merge(DT1, DT2, by = "id")

I prefer the latter because it offers extra functionality (see ?merge.data.table ), but each to
their own.1

I'm going to keep things brief by simply showing you how to repeat the same left join that
we practiced with dplyr in the last lecture, using data from the nyc�ights13 package.

# library(nycflights13) �� Already loaded
flights_dt = as.data.table(flights) 
planes_dt = as.data.table(planes)

1 For a really good summary of the different join options (left, right, full, anti, etc.) using these two
methods, as well as their dplyr equivalents, see here.
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dplyr

left_join(
  flights, 
  planes, 
  by = "tailnum"
  )

data.table

merge(
  flights_dt, 
  planes_dt, 
  all.x = TRUE, �� omit for inner join
  by = "tailnum")

Left join example (cont.)
Here's a comparison with the dplyr equivalents from last week. I'll let you run and compare
these yourself. (Note that the row orders will be different.)
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left_join(
  flights, 
  planes, 
  by = "tailnum"
  )

data.table

merge(
  flights_dt, 
  planes_dt, 
  all.x = TRUE, �� omit for inner join
  by = "tailnum")

Left join example (cont.)
Here's a comparison with the dplyr equivalents from last week. I'll let you run and compare
these yourself. (Note that the row orders will be different.)

If you run these, you'll see that both methods handle the ambiguous "year" columns by
creating "year.x" and "year.y" variants. We avoided this in dplyr by using rename() . How
might you avoid the same thing in data.table?
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dplyr

left_join(
  flights, 
  planes, 
  by = "tailnum"
  )

data.table

merge(
  flights_dt, 
  planes_dt, 
  all.x = TRUE, �� omit for inner join
  by = "tailnum")

Left join example (cont.)
Here's a comparison with the dplyr equivalents from last week. I'll let you run and compare
these yourself. (Note that the row orders will be different.)

If you run these, you'll see that both methods handle the ambiguous "year" columns by
creating "year.x" and "year.y" variants. We avoided this in dplyr by using rename() . How
might you avoid the same thing in data.table? Possible answer: Use setnames() .

merge(
  flights_dt,
  setnames(planes_dt, old = "year", new = "year_built"),
  all.x = TRUE, 
  by = "tailnum")
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Use keys for lightning fast joins
The only other thing I'll point out is that setting keys can lead to dramatic speed-ups for
merging data.tables. I'll demonstrate using an inner join this time.

merge_dt = function() merge(flights_dt, planes_dt, by = "tailnum")

flights_dt_key = as.data.table(flights, key = "tailnum")
planes_dt_key = as.data.table(planes, key = "tailnum")
merge_dt_key = function() merge(flights_dt_key, planes_dt_key, by = "tailnum")

microbenchmark(merge_dt(), merge_dt_key(), times = 1)

�� Unit: milliseconds
��            expr       min        lq      mean    median        uq       max
��      merge_dt() 301.44576 301.44576 301.44576 301.44576 301.44576 301.44576
��  merge_dt_key()  36.09671  36.09671  36.09671  36.09671  36.09671  36.09671
��  neval
��      1
��      1
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Use keys for lightning fast joins
The only other thing I'll point out is that setting keys can lead to dramatic speed-ups for
merging data.tables. I'll demonstrate using an inner join this time.

merge_dt = function() merge(flights_dt, planes_dt, by = "tailnum")

flights_dt_key = as.data.table(flights, key = "tailnum")
planes_dt_key = as.data.table(planes, key = "tailnum")
merge_dt_key = function() merge(flights_dt_key, planes_dt_key, by = "tailnum")

microbenchmark(merge_dt(), merge_dt_key(), times = 1)

�� Unit: milliseconds
��            expr       min        lq      mean    median        uq       max
��      merge_dt() 301.44576 301.44576 301.44576 301.44576 301.44576 301.44576
��  merge_dt_key()  36.09671  36.09671  36.09671  36.09671  36.09671  36.09671
��  neval
��      1
��      1

So, we get about a 10x speed-up for this simple case just by setting keys. More importantly,
ordering your data by setting keys will make a huge difference once you start working with
big datasets and making complicated joins. Trust me. (FWIW, the same is true for dplyr.)
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Reshaping data
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Reshaping options with data.table
In the tidyverse lecture, we saw how to reshape data using the tidyr::pivot* functions.

data.table offers its own functions for �exibly reshaping data:

melt() : convert wide data to long data
dcast() : convert long data to wide data
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Reshaping options with data.table
In the tidyverse lecture, we saw how to reshape data using the tidyr::pivot* functions.

data.table offers its own functions for �exibly reshaping data:

melt() : convert wide data to long data
dcast() : convert long data to wide data

However, I also want to �ag the tidyfast package by Tyson Barrett, which implements
data.table versions of the tidyr::pivot* functions (among other things).

tidyfast��dt_pivot_longer() : wide to long
tidyfast��dt_pivot_wider() : long to wide
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Reshaping options with data.table
In the tidyverse lecture, we saw how to reshape data using the tidyr::pivot* functions.

data.table offers its own functions for �exibly reshaping data:

melt() : convert wide data to long data
dcast() : convert long data to wide data

However, I also want to �ag the tidyfast package by Tyson Barrett, which implements
data.table versions of the tidyr::pivot* functions (among other things).

tidyfast��dt_pivot_longer() : wide to long
tidyfast��dt_pivot_wider() : long to wide

I'll demonstrate reshaping with both options on the same fake "stocks" data that we
created last time:

stocks = data.table(time = as.Date('2009-01-01') + 0:1,
                    X = rnorm(2, 0, 1),
                    Y = rnorm(2, 0, 2),
                    Z = rnorm(2, 0, 4))
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# See ?melt.data.table for options
melt(stocks, id.vars ="time")

��          time variable       value
�� 1� 2009-01-01        X -0.36176990
�� 2� 2009-01-02        X  0.04221233
�� 3� 2009-01-01        Y -3.86370033
�� 4� 2009-01-02        Y  1.06425112
�� 5� 2009-01-01        Z -3.80638594
�� 6� 2009-01-02        Z -9.91299065

��          time stock       price
�� 1� 2009-01-01     X -0.36176990
�� 2� 2009-01-02     X  0.04221233
�� 3� 2009-01-01     Y -3.86370033
�� 4� 2009-01-02     Y  1.06425112
�� 5� 2009-01-01     Z -3.80638594
�� 6� 2009-01-02     Z -9.91299065

Reshape from wide to long
Our data are currently in wide format.

stocks

��          time           X         Y         Z
�� 1� 2009-01-01 -0.36176990 -3.863700 -3.806386
�� 2� 2009-01-02  0.04221233  1.064251 -9.912991

To convert this into long format, we could do either of the following:

stocks %>% 
  dt_pivot_longer(X�Z, names_to="stock", va
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Reshape from long to wide
Let's quickly save the long-format stocks data.table. I'll use the melt()  approach and also
throw in some extra column-naming options, just so you can see those in action.

stocks_long = melt(stocks, id.vars ="time", 
                   variable.name = "stock", value.name = "price")
stocks_long

��          time stock       price
�� 1� 2009-01-01     X -0.36176990
�� 2� 2009-01-02     X  0.04221233
�� 3� 2009-01-01     Y -3.86370033
�� 4� 2009-01-02     Y  1.06425112
�� 5� 2009-01-01     Z -3.80638594
�� 6� 2009-01-02     Z -9.91299065
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dcast(stocks_long, 
      time ~ stock, 
      value.var = "price")

��          time           X         Y         Z
�� 1� 2009-01-01 -0.36176990 -3.863700 -3.806386
�� 2� 2009-01-02  0.04221233  1.064251 -9.912991

stocks_long %>% 
  dt_pivot_wider(names_from=stock, 
                 values_from=price)

��          time           X         Y         Z
�� 1� 2009-01-01 -0.36176990 -3.863700 -3.806386
�� 2� 2009-01-02  0.04221233  1.064251 -9.912991

Reshape from long to wide
Let's quickly save the long-format stocks data.table. I'll use the melt()  approach and also
throw in some extra column-naming options, just so you can see those in action.

stocks_long = melt(stocks, id.vars ="time", 
                   variable.name = "stock", value.name = "price")
stocks_long

��          time stock       price
�� 1� 2009-01-01     X -0.36176990
�� 2� 2009-01-02     X  0.04221233
�� 3� 2009-01-01     Y -3.86370033
�� 4� 2009-01-02     Y  1.06425112
�� 5� 2009-01-01     Z -3.80638594
�� 6� 2009-01-02     Z -9.91299065
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data.table + tidyverse work�ows
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Choosing a work�ow that works for you
When it comes to data work in R, we truly are spoilt for choice.

We have two incredible data wrangling ecosystems to choose from.

tidyverse (esp. dplyr and tidyr)
data.table

Over the last two lectures, we've explored some of the key features of each. It's only natural
that people might �nd themselves gravitating to one or the other.

Some people love the expressiveness and modularity of the tidyverse.
Others love the concision and power of data.table.
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Choosing a work�ow that works for you
When it comes to data work in R, we truly are spoilt for choice.

We have two incredible data wrangling ecosystems to choose from.

tidyverse (esp. dplyr and tidyr)
data.table

Over the last two lectures, we've explored some of the key features of each. It's only natural
that people might �nd themselves gravitating to one or the other.

Some people love the expressiveness and modularity of the tidyverse.
Others love the concision and power of data.table.

And that's cool. But I'll repeat a point I made earlier: I use both ecosystems in my own work
and honestly believe that this has been to my bene�t.

These next few slides offer a few additional thoughts on how data.table and the tidyverse
can be combined pro�tably in your own work�ow.
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�� library(ggplot2) # already loaded
storms_dt[, .(wind = mean(wind), 
                  pressure = mean(pressure), 
                  category = first(category)), 
                by = .(name, year, month, day)] %>%
  ggplot(aes(x = pressure, y = wind, col=category)) +
  geom_point(alpha = 0.3) + 
  theme_minimal()

Pick and choose
The �rst point is perhaps the most obvious one: The tidyverse consists of multiple
packages. Just because you prefer to use data.table instead of dplyr+tidyr for your
data.wrangling needs, doesn't mean that other tidyverse packages are off limits too.

Case in point: Almost every hardcore data.table user I know is a hardcore ggplot2 user too.
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Don't be a fanatic
Closely related to the second �rst point: Don't try to shoehorn every problem into a
tidyverse or data.table framework.

Recall my admonition from last time: "A combination of tidyverse and base R is often
the best solution to a problem. You can add data.table to that list.
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Don't be a fanatic
Closely related to the second �rst point: Don't try to shoehorn every problem into a
tidyverse or data.table framework.

Recall my admonition from last time: "A combination of tidyverse and base R is often
the best solution to a problem. You can add data.table to that list.

Having worked extensively with both packages, I think it's fair to say that there are things
the tidyverse (dplyr+tidyr) does better, and there are things that data.table does better.

If you �nd a great solution on StackOver�ow that uses the "other" package... use it.
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Don't be a fanatic
Closely related to the second �rst point: Don't try to shoehorn every problem into a
tidyverse or data.table framework.

Recall my admonition from last time: "A combination of tidyverse and base R is often
the best solution to a problem. You can add data.table to that list.

Having worked extensively with both packages, I think it's fair to say that there are things
the tidyverse (dplyr+tidyr) does better, and there are things that data.table does better.

If you �nd a great solution on StackOver�ow that uses the "other" package... use it.

Plus, as I hinted earlier, you can use tidyverse verbs on data.tables. Try yourself:

starwars_dt %>% group_by(homeworld) %>% summarise(height = mean(height, na.rm=T))

1 This does incur a performance penalty. Luckily there's a better solution coming on the next
slide...
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Don't be a fanatic
Closely related to the second �rst point: Don't try to shoehorn every problem into a
tidyverse or data.table framework.

Recall my admonition from last time: "A combination of tidyverse and base R is often
the best solution to a problem. You can add data.table to that list.

Having worked extensively with both packages, I think it's fair to say that there are things
the tidyverse (dplyr+tidyr) does better, and there are things that data.table does better.

If you �nd a great solution on StackOver�ow that uses the "other" package... use it.

Plus, as I hinted earlier, you can use tidyverse verbs on data.tables. Try yourself:

starwars_dt %>% group_by(homeworld) %>% summarise(height = mean(height, na.rm=T))

Bottom line: Don't be a fanatic. Insisting on ecosystem purity is rarely worth it.

1 This does incur a performance penalty. Luckily there's a better solution coming on the next
slide...

60 / 67

https://raw.githack.com/uo-ec607/lectures/master/05-tidyverse/05-tidyverse.html#11
https://stackoverflow.com/a/27513921


dtplyr
Do you love dplyr's syntax, but want data.table's performance?
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dtplyr
Do you love dplyr's syntax, but want data.table's performance? Well, you're in luck!

Hadley Wickham's dtplyr package provides a data.table "back-end" for dplyr.

Basically, write your code as if you were using dplyr and then it gets automatically
translated to (and evaluated as) data.table code.
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dtplyr
Do you love dplyr's syntax, but want data.table's performance? Well, you're in luck!

Hadley Wickham's dtplyr package provides a data.table "back-end" for dplyr.

Basically, write your code as if you were using dplyr and then it gets automatically
translated to (and evaluated as) data.table code.

If this sounds appealing to you (and it should) I strongly encourage you to check out the
package website for details. But here's quick example, using our benchmark from earlier.

# library(dtplyr) �� Already loaded
storms_dtplyr = lazy_dt(storms) �� dtplyr requires objects to be set as "lazy" data.tables
collapse_dtplyr = function() {
  storms_dtplyr %>%
    group_by(name, year, month, day) %>% 
    summarize(wind = mean(wind), pressure = mean(pressure), category = first(category)) %>%
    as_tibble()
}
�� Just compare dtplyr with normal dplyr and data.table versions (i.e. no keys)
microbenchmark��microbenchmark(collapse_dplyr(), collapse_dtplyr(), times = 1)

See next slide for results
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dtplyr (cont.)
�� Unit: milliseconds
��               expr        min         lq       mean     median         uq
��   collapse_dplyr() 117.106259 117.106259 117.106259 117.106259 117.106259
��  collapse_dtplyr()   5.416915   5.416915   5.416915   5.416915   5.416915
��         max neval
��  117.106259     1
��    5.416915     1

62 / 67



dtplyr (cont.)
�� Unit: milliseconds
��               expr        min         lq       mean     median         uq
��   collapse_dplyr() 117.106259 117.106259 117.106259 117.106259 117.106259
��  collapse_dtplyr()   5.416915   5.416915   5.416915   5.416915   5.416915
��         max neval
��  117.106259     1
��    5.416915     1

A 20x speed-up for free? I'd take it!
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dtplyr (cont.)
�� Unit: milliseconds
��               expr        min         lq       mean     median         uq
��   collapse_dplyr() 117.106259 117.106259 117.106259 117.106259 117.106259
��  collapse_dtplyr()   5.416915   5.416915   5.416915   5.416915   5.416915
��         max neval
��  117.106259     1
��    5.416915     1

A 20x speed-up for free? I'd take it!

Aside: dtplyr automatically prints its data.table translation to screen. This can be super
helpful when you �rst come over to data.table from the tidyverse.

�� Source: local data table [�� x 2]
�� Call:   `_DT2`[species �� "Human"][, .(height = mean(height, na.rm = TRUE)), 
��     keyby = .(gender)]
�� 
��   gender    height
��   <chr>      <dbl>
�� 1 feminine    160.
�� 2 masculine   182.

lazy_dt(starwars) %>% filter(species��"Human") %>% group_by(gender) %>% summarise(
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Summary
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Summary
data.table is a powerful data wrangling package that combines concise syntax with
incredible performance. It is also very lightweight, despite being feature rich.

The basic syntax is DT[i, j, by]

i  On which rows?
j  What to do?
by  Grouped by what?

data.table (re)introduces some new ideas like modify by reference (e.g. �� ), as well as
syntax (e.g. .() , .SD  .SDcols , etc.).

All of these ideas support data.table's core goals: Maximise performance and �exibility,
whilst maintaining a concise and consistent syntax. They are worth learning.

Pro tip: Use keys to order your data and yield dramatic speed-ups.

The tidyverse and data.table are often viewed as substitutes, but you can pro�tably
combine both into your work�ow... even if you favour one for (most of) your data wrangling
needs.
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Further resources
As hard as it may be to believe, there's a ton of data.table features that we didn't cover
today. Some, we'll get to in later lectures (e.g. the insanely fast fread()  and fwrite()  CSV
I/O functions). Others, we won't, but hopefully I've given you enough of a grounding to
continue exploring on your own.

Here are some recommended further resources:

http://r-datatable.com (Of�cial website. See the vignettes, especially.)
https://github.com/Rdatatable/data.table#cheatsheets (Cheatsheet.)
https://atrebas.github.io/post/2019-03-03-datatable-dplyr (Really nice, side-by-side
comparisons of common data.table and dplyr operations.)
https://brooksandrew.github.io/simpleblog/articles/advanced-data-table/ (Some cool
advanced data.table tricks.)

And related packages:

https://tysonbarrett.com/tidyfast
https://dtplyr.tidyverse.org
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PS — Assignment
Your next assignment is up.

Impress me with your data wrangling skills using either the tidyverse or data.table (or both!)
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Next lecture: Webscraping (1)
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