
Data Science for Economists
Lecture 4: R language basics

Grant McDermott
University of Oregon | EC 607

https://github.com/uo-ec607

Table of contents
�. Prologue

�. Introduction

�. Object-oriented programming in R

�. "Everything is an object"

�. "Everything has a name"

�. Indexing

�. Cleaning up

2 / 53

Prologue

3 / 53

Checklist
☑ Pull from the lecture repo to get the latest slides.

☑ Did everyone manage to try the simple shell exercises at the back of our last lecture?

☑ Update your R packages. Do this regularly as a matter of good habit.

4 / 53

Checklist
☑ Pull from the lecture repo to get the latest slides.

☑ Did everyone manage to try the simple shell exercises at the back of our last lecture?

☑ Update your R packages. Do this regularly as a matter of good habit.

Packages that you will need for today.
We're going to work almost exclusively in base R today.

I'll also use the dplyr package, but only to demonstrate a few additional considerations
for working with non-base libraries. Install/update it now, either through RStudio
(recommended) or from your R console (install.packages("dplyr"), dependencies =
TRUE).
(P.S. If you're on Linux, I recommend installing the pre-compiled binary version of dplyr
from RSPM. This avoids the need to build the package from source, greatly reducing your
installation time. See related example here.)

4 / 53

https://dplyr.tidyverse.org/
https://packagemanager.rstudio.com/client/#/repos/1/overview
https://twitter.com/grant_mcdermott/status/1263951531461603328

Agenda
Today and the next lecture are going to be very hands on.

I'll have slides as per usual, but we're going to spent a lot of time live coding together.

This is deliberate.

I want you to get comfortable typing R commands yourself — and navigating the RStudio
IDE — without resorting to copy+paste.
Slightly more painful in the beginning, but much better payoff in the long-run.

5 / 53

Introduction

(Some important R concepts)

6 / 53

Basic arithmetic
R is a powerful calculator and recognizes all of the standard arithmetic operators:

1+2 �� Addition

�� [1] 3

6-7 �� Subtraction

�� [1] -1

5/2 �� Division

�� [1] 2.5

2^3 �� Exponentiation

�� [1] 8

2+4*1^3 �� Standard order of precedence (`*` before `+`, etc.)

�� [1] 6
7 / 53

Basic arithmetic (cont.)
We can also invoke modulo operators (integer division & remainder).

Very useful when dealing with time, for example.

100 %/% 60 �� How many whole hours in 100 minutes?

�� [1] 1

100 �� 60 �� How many minutes are left over?

�� [1] 40

8 / 53

Logic
R also comes equipped with a full set of logical operators and Booleans, which follow
standard programming protocol. For example:

1 > 2

�� [1] FALSE

1 > 2 & 1 > 0.5 �� The "&" stands for "and"

�� [1] FALSE

1 > 2 | 1 > 0.5 �� The "|" stands for "or" (not a pipe a la the shell)

�� [1] TRUE

isTRUE (1 < 2)

�� [1] TRUE

9 / 53

Logic
R also comes equipped with a full set of logical operators and Booleans, which follow
standard programming protocol. For example:

1 > 2

�� [1] FALSE

1 > 2 & 1 > 0.5 �� The "&" stands for "and"

�� [1] FALSE

1 > 2 | 1 > 0.5 �� The "|" stands for "or" (not a pipe a la the shell)

�� [1] TRUE

isTRUE (1 < 2)

�� [1] TRUE

You can read more about logical operators and types here and here. In the next few slides,
however, I want to emphasise some special concepts and gotchas...

9 / 53

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Logic.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/logical.html

Logic (cont.)

Order of precedence
Much like standard arithmetic, logic statements follow a strict order of precedence. Logical
operators (> , �� , etc) are evaluated before Boolean operators (& and |). Failure to recognise
this can lead to unexpected behaviour...

1 > 0.5 & 2

�� [1] TRUE

10 / 53

Logic (cont.)

Order of precedence
Much like standard arithmetic, logic statements follow a strict order of precedence. Logical
operators (> , �� , etc) are evaluated before Boolean operators (& and |). Failure to recognise
this can lead to unexpected behaviour...

1 > 0.5 & 2

�� [1] TRUE

What's happening here is that R is evaluating two separate "logical" statements:

1 > 0.5 , which is is obviously TRUE.
2 , which is TRUE(!) because R is "helpfully" converting it to as.logical(2) .

10 / 53

Logic (cont.)

Order of precedence
Much like standard arithmetic, logic statements follow a strict order of precedence. Logical
operators (> , �� , etc) are evaluated before Boolean operators (& and |). Failure to recognise
this can lead to unexpected behaviour...

1 > 0.5 & 2

�� [1] TRUE

What's happening here is that R is evaluating two separate "logical" statements:

1 > 0.5 , which is is obviously TRUE.
2 , which is TRUE(!) because R is "helpfully" converting it to as.logical(2) .

Solution: Be explicit about each component of your logic statement(s).

1 > 0.5 & 1 > 2

�� [1] FALSE

10 / 53

Logic (cont.)

Negation: !
We use ! as a short hand for negation. This will come in very handy when we start �ltering
data objects based on non-missing (i.e. non-NA) observations.

is.na(1:10)

�� [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

!is.na(1:10)

�� [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

Negate(is.na)(1�10) �� This also works. Try it yourself.

11 / 53

Logical operators (cont.)

Value matching: %in%
To see whether an object is contained within (i.e. matches one of) a list of items, use %in% .

4 %in% 1:10

�� [1] TRUE

4 %in% 5:10

�� [1] FALSE

12 / 53

Logical operators (cont.)

Value matching: %in%
To see whether an object is contained within (i.e. matches one of) a list of items, use %in% .

4 %in% 1:10

�� [1] TRUE

4 %in% 5:10

�� [1] FALSE

There's no equivalent "not in" command, but how might we go about creating one?

Hint: Think about negation...

12 / 53

Logical operators (cont.)

Value matching: %in%
To see whether an object is contained within (i.e. matches one of) a list of items, use %in% .

4 %in% 1:10

�� [1] TRUE

4 %in% 5:10

�� [1] FALSE

There's no equivalent "not in" command, but how might we go about creating one?

Hint: Think about negation...

`%ni%` = Negate(`%in%`) �� The backticks (`) help to specify functions.
4 %ni% 5:10

�� [1] TRUE

12 / 53

Logical operators (cont.)

Evaluation
We'll get to assignment shortly. However, to preempt it somewhat, we always use two equal
signs for logical evaluation.

1 = 1 �� This doesn't work

�� Error in 1 = 1� invalid (do_set) left�hand side to assignment

1 �� 1 �� This does.

�� [1] TRUE

1 �� 2 �� Note the single equal sign when combined with a negation.

�� [1] TRUE

13 / 53

Logical operators (cont.)

Evaluation caveat: Floating-point numbers
What do you think will happen if we evaluate 0.1 + 0.2 �� 0.3 ?

14 / 53

Logical operators (cont.)

Evaluation caveat: Floating-point numbers
What do you think will happen if we evaluate 0.1 + 0.2 �� 0.3 ?

0.1 + 0.2 �� 0.3

�� [1] FALSE

Uh-oh! (Or, maybe you're thinking: Huh??)

14 / 53

Logical operators (cont.)

Evaluation caveat: Floating-point numbers
What do you think will happen if we evaluate 0.1 + 0.2 �� 0.3 ?

0.1 + 0.2 �� 0.3

�� [1] FALSE

Uh-oh! (Or, maybe you're thinking: Huh??)

Problem: Computers represent numbers as binary (i.e. base 2) �oating-points. More here.

Fast and memory ef�cient, but can lead to unexpected behaviour.
Similar to the way that standard decimal (i.e. base 10) representation can't precisely
capture certain fractions (e.g.).= 0.3333...

1

3

14 / 53

https://floating-point-gui.de/basic/

Logical operators (cont.)

Evaluation caveat: Floating-point numbers
What do you think will happen if we evaluate 0.1 + 0.2 �� 0.3 ?

0.1 + 0.2 �� 0.3

�� [1] FALSE

Uh-oh! (Or, maybe you're thinking: Huh??)

Problem: Computers represent numbers as binary (i.e. base 2) �oating-points. More here.

Fast and memory ef�cient, but can lead to unexpected behaviour.
Similar to the way that standard decimal (i.e. base 10) representation can't precisely
capture certain fractions (e.g.).

Solution: Use all.equal() for evaluating �oats (i.e fractions).

all.equal(0.1 + 0.2, 0.3)

�� [1] TRUE

= 0.3333...
1

3

14 / 53

https://floating-point-gui.de/basic/

Assignment
In R, we can use either �� or = to handle assignment.1

1 The �� is really a < followed by a - . It just looks like one thing b/c of the font I'm using here.

15 / 53

https://github.com/tonsky/FiraCode

Assignment
In R, we can use either �� or = to handle assignment.1

Assignment with ��
�� is normally read aloud as "gets". You can think of it as a (left-facing) arrow saying assign
in this direction.

a �� 10 + 5
a

�� [1] 15

1 The �� is really a < followed by a - . It just looks like one thing b/c of the font I'm using here.

15 / 53

https://github.com/tonsky/FiraCode

Assignment
In R, we can use either �� or = to handle assignment.1

Assignment with ��
�� is normally read aloud as "gets". You can think of it as a (left-facing) arrow saying assign
in this direction.

a �� 10 + 5
a

�� [1] 15

Of course, an arrow can point in the other direction too (i.e. ��). So, the following code chunk
is equivalent to the previous one, although used much less frequently.

10 + 5 �� a

1 The �� is really a < followed by a - . It just looks like one thing b/c of the font I'm using here.

15 / 53

https://github.com/tonsky/FiraCode

Assignment (cont.)

Assignment with =
You can also use = for assignment.

b = 10 + 10 �� Note that the assigned object �must� be on the left with "=".
b

�� [1] 20

16 / 53

Assignment (cont.)

Assignment with =
You can also use = for assignment.

b = 10 + 10 �� Note that the assigned object �must� be on the left with "=".
b

�� [1] 20

Which assignment operator to use?
Most R users (purists?) seem to prefer �� for assignment, since = also has speci�c role for
evaluation within functions.

We'll see lots of examples of this later.
But I don't think it matters; = is quicker to type and is more intuitive if you're coming
from another programming language. (More discussion here and here.)

Bottom line: Use whichever you prefer. Just be consistent.

16 / 53

https://github.com/Robinlovelace/geocompr/issues/319#issuecomment-427376764
https://www.separatinghyperplanes.com/2018/02/why-you-should-use-and-never.html

Help
For more information on a (named) function or object in R, consult the "help" documentation.
For example:

help(plot)

Or, more simply, just use ? :

This is what most people use.
?plot

17 / 53

Help
For more information on a (named) function or object in R, consult the "help" documentation.
For example:

help(plot)

Or, more simply, just use ? :

This is what most people use.
?plot

Aside 1: Comments in R are demarcated by # .

Hit Ctrl+Shift�c in RStudio to (un)comment whole sections of highlighted code.

17 / 53

Help
For more information on a (named) function or object in R, consult the "help" documentation.
For example:

help(plot)

Or, more simply, just use ? :

This is what most people use.
?plot

Aside 1: Comments in R are demarcated by # .

Hit Ctrl+Shift�c in RStudio to (un)comment whole sections of highlighted code.

Aside 2: See the Examples section at the bottom of the help �le?

You can run them with the example() function. Try it: example(plot) .

17 / 53

Help (cont.)

Vignettes
For many packages, you can also try the vignette() function, which will provide an
introduction to a package and it's purpose through a series of helpful examples.

Try running vignette("dplyr") in your console now.

18 / 53

Help (cont.)

Vignettes
For many packages, you can also try the vignette() function, which will provide an
introduction to a package and it's purpose through a series of helpful examples.

Try running vignette("dplyr") in your console now.

I highly encourage reading package vignettes if they are available.

They are often the best way to learn how to use a package.

18 / 53

Help (cont.)

Vignettes
For many packages, you can also try the vignette() function, which will provide an
introduction to a package and it's purpose through a series of helpful examples.

Try running vignette("dplyr") in your console now.

I highly encourage reading package vignettes if they are available.

They are often the best way to learn how to use a package.

One complication is that you need to know the exact name of the package vignette(s).

E.g. The dplyr package actually has several vignettes associated with it: "dplyr", "window-
functions", "programming", etc.
You can run vignette() (i.e. without any arguments) to list the available vignettes of
every installed package installed on your system.
Or, run vignette(all = FALSE) if you only want to see the vignettes of any loaded
packages.

18 / 53

Help (cont.)

Demos
Similar to vignettes, many packages come with built-in, interactive demos.

To list all available demos on your system:1

demo(package = .packages(all.available = TRUE))

1 How would you limit the demos to one particular package?

19 / 53

Help (cont.)

Demos
Similar to vignettes, many packages come with built-in, interactive demos.

To list all available demos on your system:1

demo(package = .packages(all.available = TRUE))

To run a speci�c demo, just tell R which one and the name of the parent package. For example:

demo("graphics", package = "graphics")

1 How would you limit the demos to one particular package?

19 / 53

Object-oriented programming in R

20 / 53

Motivation
In our very �rst lecture, I mentioned R's approach to object-oriented programming (OOP),
which is often summarised as:

"Everything is an object and everything has a name."

21 / 53

https://en.wikipedia.org/wiki/Object-oriented_programming

Motivation
In our very �rst lecture, I mentioned R's approach to object-oriented programming (OOP),
which is often summarised as:

"Everything is an object and everything has a name."

In the next two sections, I want to dive into this idea a little more. I also want to preempt
some issues that might trip you up if you new to R or OOP in general.

At least, they were things that tripped me up at the beginning.

21 / 53

https://en.wikipedia.org/wiki/Object-oriented_programming

Motivation
In our very �rst lecture, I mentioned R's approach to object-oriented programming (OOP),
which is often summarised as:

"Everything is an object and everything has a name."

In the next two sections, I want to dive into this idea a little more. I also want to preempt
some issues that might trip you up if you new to R or OOP in general.

At least, they were things that tripped me up at the beginning.

The good news, as well see, is that avoiding and solving these issues is pretty straightforward.

Not to mention: A very small price to pay for the freedom and control that R offers us.

21 / 53

https://en.wikipedia.org/wiki/Object-oriented_programming

Disclaimer
Okay, this slide is just to let you know that I'm being a little fast and loose with terms.

Most obviously, there are actually multiple OOP frameworks in R.

S3, S4, R6...
Hadley Wickham's "Advanced R" provides a very thorough overview of the main ones.

But for our purposes, I think it is much more helpful to think about (a) the shared
characteristics of these different systems and (b) the broad implications of OOP in R.

What we lose in detail, we hopefully gain in perspective.
But do read Hadley's book if you get the chance. It's incredibly helpful (as are all his
books).

22 / 53

https://adv-r.hadley.nz/oo.html

"Everything is an object"

23 / 53

What are objects?
It's important to emphasise that there are many different types (or classes) of objects.

We'll revisit the issue of "type" vs "class" in a slide or two. For the moment, it is helpful simply
to name some objects that we'll be working with regularly:

vectors
matrices
data frames
lists
functions
etc.

24 / 53

What are objects?
It's important to emphasise that there are many different types (or classes) of objects.

We'll revisit the issue of "type" vs "class" in a slide or two. For the moment, it is helpful simply
to name some objects that we'll be working with regularly:

vectors
matrices
data frames
lists
functions
etc.

Most likely, you already have a good idea of what distinguishes these objects and how to use
them.

However, bear in mind that there subtleties that may confuse while you're still getting
used to R.
E.g. There are different kinds of data frames. We'll soon encounter "tibbles" and
"data.tables", which are enhanced versions of the standard data frame in R.

24 / 53

https://tibble.tidyverse.org/
https://rdatatable.gitlab.io/data.table/articles/datatable-intro.html#what-is-datatable-1a

What are objects? (cont.)
Each object class has its own set of rules ("methods") for determining valid operations.

For example, you can perform many of the same operations on matrices and data frames.
But there are some operations that only work on a matrix, and vice versa.
At the same time, you can (usually) convert an object from one type to another.

�� Create a small data frame called "d".
d = data.frame(x = 1:2, y = 3:4)
d

�� x y
�� 1 1 3
�� 2 2 4

�� Convert it to (i.e. create) a matrix call "m".
m = as.matrix(d)
m

�� x y
�� [1,] 1 3
�� [2,] 2 4

25 / 53

Object class, type, and structure
Use the class , typeof , and str commands if you want understand more about a particular
object.

d = data.frame(x = 1�2, y = 3�4) �� Create a small data frame called "d".
class(d) �� Evaluate its class.

�� [1] "data.frame"

typeof(d) �� Evaluate its type.

�� [1] "list"

str(d) �� Show its structure.

�� 'data.frame': 2 obs. of 2 variables:
�� $ x: int 1 2
�� $ y: int 3 4

26 / 53

Object class, type, and structure
Use the class , typeof , and str commands if you want understand more about a particular
object.

d = data.frame(x = 1�2, y = 3�4) �� Create a small data frame called "d".
class(d) �� Evaluate its class.

�� [1] "data.frame"

typeof(d) �� Evaluate its type.

�� [1] "list"

str(d) �� Show its structure.

�� 'data.frame': 2 obs. of 2 variables:
�� $ x: int 1 2
�� $ y: int 3 4

PS — Confused by the fact that typeof(d) returns "list"? See here.

26 / 53

https://stackoverflow.com/questions/45396538/typeofdata-frame-shows-list-in-r

Object class, type, and structure (cont.)
Of course, you can always just inspect/print an object directly in the console.

E.g. Type d and hit Enter.

The View() function is also very helpful. This is the same as clicking on the object in your
RStudio Environment pane. (Try both methods now.)

E.g. View(d) .

27 / 53

Global environment
Let's go back to the simple data frame that we created a few slides earlier.

d

�� x y
�� 1 1 3
�� 2 2 4

28 / 53

Global environment
Let's go back to the simple data frame that we created a few slides earlier.

d

�� x y
�� 1 1 3
�� 2 2 4

Now, let's try to run a regression1 on these "x" and "y" variables:

lm(y ~ x) �� The "lm" stands for linear model(s)

�� Error in eval(predvars, data, env): object 'y' not found

1 Yes, this is a dumb regression with perfectly co-linear variables. Just go with it.

28 / 53

Global environment
Let's go back to the simple data frame that we created a few slides earlier.

d

�� x y
�� 1 1 3
�� 2 2 4

Now, let's try to run a regression1 on these "x" and "y" variables:

lm(y ~ x) �� The "lm" stands for linear model(s)

�� Error in eval(predvars, data, env): object 'y' not found

Uh-oh. What went wrong here? (Answer on next slide.)

1 Yes, this is a dumb regression with perfectly co-linear variables. Just go with it.

28 / 53

Global environment (cont.)
The error message provides the answer to our question:

�� Error in eval(predvars, data, env): object 'y' not found

29 / 53

Global environment (cont.)
The error message provides the answer to our question:

�� Error in eval(predvars, data, env): object 'y' not found

R can't �nd the variables that we've supplied in our Global Environment:

29 / 53

https://www.datamentor.io/r-programming/environment-scope/

Global environment (cont.)
The error message provides the answer to our question:

�� Error in eval(predvars, data, env): object 'y' not found

R can't �nd the variables that we've supplied in our Global Environment:

Put differently: Because the variables "x" and "y" live as separate objects in the global
environment, we have to tell R that they belong to the object d .

Think about how you might do this before clicking through to the next slide. 29 / 53

https://www.datamentor.io/r-programming/environment-scope/

Global environment (cont.)
There are a various ways to solve this problem. One is to simply specify the datasource:

lm(y ~ x, data = d) �� Works when we add "data = d"!

��
�� Call:
�� lm(formula = y ~ x, data = d)
��
�� Coefficients:
�� (Intercept) x
�� 2 1

30 / 53

Global environment (cont.)
There are a various ways to solve this problem. One is to simply specify the datasource:

lm(y ~ x, data = d) �� Works when we add "data = d"!

��
�� Call:
�� lm(formula = y ~ x, data = d)
��
�� Coefficients:
�� (Intercept) x
�� 2 1

I wanted to emphasize this global environment issue, because it is something that Stata users
(i.e. many economists) struggle with when they �rst come to R.

In Stata, the entire workspace essentially consists of one (and only one) data frame. So
there can be no ambiguity where variables are coming from.
However, that "convenience" comes at a really high price IMO. You can never read more
than two separate datasets (let alone object types) into memory at the same time, have to
resort all sorts of hacks to add summary variables to your dataset, etc.
Speaking of which... 30 / 53

Working with multiple objects
As I keep saying, R's ability to keep multiple objects in memory at the same time is a huge
plus when it comes to effective data work.

E.g. We can copy an exiting data frame, or create new one entirely from scratch. Either will
exist happily with our existing objects in the global environment.

d2 = data.frame(x = rnorm(10), y = runif(10))

31 / 53

Working with multiple objects (cont.)
Again, however, it does mean that you have to pay attention to the names of those distinct
data frames and be speci�c about which objects you are referring to.

Do we want to run a regression of "y" on "x" from data frame d or data frame d2 ?

32 / 53

"Everything has a name"

33 / 53

Reserved words
We've seen that we can assign objects to different names. However, there are a number of
special words that are "reserved" in R.

These are are fundamental commands, operators and relations in base R that you cannot
(re)assign, even if you wanted to.
We already encountered examples with the logical operators.

See here for a full list, including (but not limited to):

if
else
while
function
for
TRUE
FALSE
NULL
Inf
NaN
NA

34 / 53

http://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html

Semi-reserved words
In addition to the list of strictly reserved words, there is a class of words and strings that I am
going to call "semi-reserved".

These are named functions or constants (e.g. pi) that you can re-assign if you really
wanted to... but already come with important meanings from base R.

Arguably the most important semi-reserved character is c() , which we use for concatenation;
i.e. creating vectors and binding different objects together.

my_vector = c(1, 2, 5)
my_vector

�� [1] 1 2 5

35 / 53

Semi-reserved words
In addition to the list of strictly reserved words, there is a class of words and strings that I am
going to call "semi-reserved".

These are named functions or constants (e.g. pi) that you can re-assign if you really
wanted to... but already come with important meanings from base R.

Arguably the most important semi-reserved character is c() , which we use for concatenation;
i.e. creating vectors and binding different objects together.

my_vector = c(1, 2, 5)
my_vector

�� [1] 1 2 5

What happens if you type the following? (Try it in your console.)

c = 4
c(1, 2 ,5)

35 / 53

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

36 / 53

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

However, this is still extremely sloppy coding. R won't always be able to distinguish between
con�icting de�nitions. And neither will you. For example:

pi

�� [1] 3.141593

pi = 2
pi

�� [1] 2

36 / 53

Semi-reserved words (cont.)
(Continued from previous slide.)

In this case, thankfully nothing. R is "smart" enough to distinguish between the variable c =
4 that we created and the built-in function c() that calls for concatenation.

However, this is still extremely sloppy coding. R won't always be able to distinguish between
con�icting de�nitions. And neither will you. For example:

pi

�� [1] 3.141593

pi = 2
pi

�� [1] 2

Bottom line: Don't use (semi-)reserved characters!

36 / 53

Namespace con�icts
A similar issue crops up when we load two packages, which have functions that share the same
name. E.g. Look what happens we load the dplyr package.

library(dplyr)

��
�� Attaching package: 'dplyr'

�� The following objects are masked from 'package:stats':
��
�� filter, lag

�� The following objects are masked from 'package:base':
��
�� intersect, setdiff, setequal, union

37 / 53

Namespace con�icts
A similar issue crops up when we load two packages, which have functions that share the same
name. E.g. Look what happens we load the dplyr package.

library(dplyr)

��
�� Attaching package: 'dplyr'

�� The following objects are masked from 'package:stats':
��
�� filter, lag

�� The following objects are masked from 'package:base':
��
�� intersect, setdiff, setequal, union

The messages that you see about some object being masked from 'package:X' are warning you
about a namespace con�ict.

E.g. Both dplyr and the stats package (which gets loaded automatically when you start
R) have functions named "�lter" and "lag".

37 / 53

Namespace con�icts (cont.)
The potential for namespace con�icts is a result of the OOP approach.1

Also re�ects the fundamental open-source nature of R and the use of external packages.
People are free to call their functions whatever they want, so some overlap is only to be
expected.

1 Similar problems arise in virtually every other programming language (Python, C, etc.)

38 / 53

Namespace con�icts (cont.)
The potential for namespace con�icts is a result of the OOP approach.1

Also re�ects the fundamental open-source nature of R and the use of external packages.
People are free to call their functions whatever they want, so some overlap is only to be
expected.

Whenever a namespace con�ict arises, the most recently loaded package will gain preference.
So the filter() function now refers speci�cally to the dplyr variant.

But what if we want the stats variant? Well, we have two options:

�. Temporarily use stats��filter()
�. Permanently assign filter = stats��filter

1 Similar problems arise in virtually every other programming language (Python, C, etc.)

38 / 53

Solving namespace con�icts

1. Use package��function()
We can explicitly call a con�icted function from a particular package using the
package��function() syntax. For example:

stats��filter(1:10, rep(1, 2))

�� Time Series:
�� Start = 1
�� End = 10
�� Frequency = 1
�� [1] 3 5 7 9 11 13 15 17 19 NA

39 / 53

Solving namespace con�icts

1. Use package��function()
We can explicitly call a con�icted function from a particular package using the
package��function() syntax. For example:

stats��filter(1:10, rep(1, 2))

�� Time Series:
�� Start = 1
�� End = 10
�� Frequency = 1
�� [1] 3 5 7 9 11 13 15 17 19 NA

We can also use �� for more than just con�icted cases.

E.g. Being explicit about where a function (or dataset) comes from can help add clarity to
our code. Try these lines of code in your R console.

dplyr��starwars �� Print the starwars data frame from the dplyr package
scales��comma(c(1000, 1000000)) �� Use the comma function, which comes from the sc

39 / 53

Solving namespace con�icts (cont.)

2. Assign function = package��function
A more permanent solution is to assign a con�icted function name to a particular package.
This will hold for the remainder of your current R session, or until you change it back. E.g.

filter = stats��filter �� Note the lack of parentheses.
filter = dplyr��filter �� Change it back again.

40 / 53

Solving namespace con�icts (cont.)

2. Assign function = package��function
A more permanent solution is to assign a con�icted function name to a particular package.
This will hold for the remainder of your current R session, or until you change it back. E.g.

filter = stats��filter �� Note the lack of parentheses.
filter = dplyr��filter �� Change it back again.

General advice
I would generally advocate for the temporary package��function() solution.

Another good rule of thumb is that you want to load your most important packages last. (E.g.
Load the tidyverse after you've already loaded any other packages.)

Other than that, simply pay attention to any warnings when loading a new package and ? is
your friend if you're ever unsure. (E.g. ?filter will tell you which variant is being used.)

In truth, problematic namespace con�icts are rare. But it's good to be aware of them.

40 / 53

User-side namespace con�icts
A �nal thing to say about namespace con�icts is that they don't only arise from loading
packages. They can arise when users create their own functions with a con�icting name.

E.g. If I was naive enough to create a new function called c() .

41 / 53

User-side namespace con�icts
A �nal thing to say about namespace con�icts is that they don't only arise from loading
packages. They can arise when users create their own functions with a con�icting name.

E.g. If I was naive enough to create a new function called c() .

In a similar vein, one of the most common and confusing errors that even experienced R
programmers run into is related to the habit of calling objects "df" or "data"... both of which
are functions in base R!

See for yourself by typing ?df or ?data .

Again, R will �gure out what you mean if you are clear/lucky enough. But, much the same as
with c() , it's relatively easy to run into problems.

Case in point: Triggering the infamous "object of type closure is not subsettable" error
message. (See from 1:45 here.)

41 / 53

https://rstudio.com/resources/rstudioconf-2020/object-of-type-closure-is-not-subsettable/

Indexing

42 / 53

Option 1: []
We've already seen an example of indexing in the form of R console output. For example:

1+2

�� [1] 3

The [1] above denotes the �rst (and, in this case, only) element of our output.1 In this case, a
vector of length one equal to the value "3".

43 / 53

Option 1: []
We've already seen an example of indexing in the form of R console output. For example:

1+2

�� [1] 3

The [1] above denotes the �rst (and, in this case, only) element of our output.1 In this case, a
vector of length one equal to the value "3".

Try the following in your console to see a more explicit example of indexed output:

rnorm(n = 100, mean = 0, sd = 1)
rnorm(100) �� Would work just as well. (Why? Hint: see ?rnorm)

[1] Indexing in R begins at 1. Not 0 like some languages (e.g. Python and JavaScript).

43 / 53

Option 1: [] (cont.)
More importantly, we can also use [] to index objects that we create in R.

a = 1:10
a[4] �� Get the 4th element of object "a"

�� [1] 4

a[c(4, 6)] �� Get the 4th and 6th elements

�� [1] 4 6

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

�� # A tibble: 1 x 1
�� name
�� <chr>
�� 1 Luke Skywalker

starwars[1, 1] �� Show the cell corresponding to the 1st row & 1st column of the d

44 / 53

Option 1: [] (cont.)
More importantly, we can also use [] to index objects that we create in R.

a = 1:10
a[4] �� Get the 4th element of object "a"

�� [1] 4

a[c(4, 6)] �� Get the 4th and 6th elements

�� [1] 4 6

It also works on larger arrays (vectors, matrices, data frames, and lists). For example:

�� # A tibble: 1 x 1
�� name
�� <chr>
�� 1 Luke Skywalker

What does starwars[1�3, 1] give you?

starwars[1, 1] �� Show the cell corresponding to the 1st row & 1st column of the d

44 / 53

Option 1: [] (cont.)
We haven't covered them properly yet (patience), but lists are a more complex type of array
object in R.

They can contain a random assortment of objects that don't share the same class, or have
the same shape (e.g. rank) or common structure.
E.g. A list can contain a scalar, a string, and a data frame. Or you can have a list of data
frames, or even lists of lists.

45 / 53

Option 1: [] (cont.)
We haven't covered them properly yet (patience), but lists are a more complex type of array
object in R.

They can contain a random assortment of objects that don't share the same class, or have
the same shape (e.g. rank) or common structure.
E.g. A list can contain a scalar, a string, and a data frame. Or you can have a list of data
frames, or even lists of lists.

The relevance to indexing is that lists require two square brackets [[]] to index the parent
list item and then the standard [] within that parent item. An example might help to
illustrate:

my_list = list(a = "hello", b = c(1,2,3), c = data.frame(x = 1:5, y = 6:10))
my_list[[1]] �� Return the 1st list object

�� [1] "hello"

my_list[[2]][3] �� Return the 3rd element of the 2nd list object

�� [1] 3
45 / 53

Option 2: $
Lists provide a nice segue to our other indexing operator: $.

Let's continue with the my_list example from the previous slide.

my_list

�� $a
�� [1] "hello"
��
�� $b
�� [1] 1 2 3
��
�� $c
�� x y
�� 1 1 6
�� 2 2 7
�� 3 3 8
�� 4 4 9
�� 5 5 10

46 / 53

Option 2: $
Lists provide a nice segue to our other indexing operator: $.

Let's continue with the my_list example from the previous slide.

my_list

�� $a
�� [1] "hello"
��
�� $b
�� [1] 1 2 3
��
�� $c
�� x y
�� 1 1 6
�� 2 2 7
�� 3 3 8
�� 4 4 9
�� 5 5 10

Notice how our (named) parent list objects are demarcated: "$a", "$b" and "$c".

46 / 53

Option 2: $ (cont.)
We can call these objects directly by name using the dollar sign, e.g.

my_list$a �� Return list object "a"

�� [1] "hello"

my_list$b[3] �� Return the 3rd element of list object "b"

�� [1] 3

my_listcx �� Return column "x" of list object "c"

�� [1] 1 2 3 4 5

47 / 53

Option 2: $ (cont.)
We can call these objects directly by name using the dollar sign, e.g.

my_list$a �� Return list object "a"

�� [1] "hello"

my_list$b[3] �� Return the 3rd element of list object "b"

�� [1] 3

my_listcx �� Return column "x" of list object "c"

�� [1] 1 2 3 4 5

Aside: Typing View(my_list) (or, equivalently, clicking on the object in RStudio's environment
pane) provides a nice interactive window for exploring the nested structure of lists.

47 / 53

Option 2: $ (cont.)
The $ form of indexing also works (and in the manner that you probably expect) for other
object types in R.

In some cases, you can also combine the two index options.

E.g. Get the 1st element of the "name" column from the starwars data frame.

starwars$name[1]

�� [1] "Luke Skywalker"

48 / 53

Option 2: $ (cont.)
The $ form of indexing also works (and in the manner that you probably expect) for other
object types in R.

In some cases, you can also combine the two index options.

E.g. Get the 1st element of the "name" column from the starwars data frame.

starwars$name[1]

�� [1] "Luke Skywalker"

However, note some key differences between the output from this example and that of our
previous starwars[1, 1] example. What are they?

Hint: Apart from the visual cues, try wrapping each command in str() .

48 / 53

Option 2: $ (cont.)
The last thing that I want to say about $ is that it provides another way to avoid the "object
not found" problem that we ran into with our earlier regression example.

lm(y ~ x) �� Doesn't work

�� Error in eval(predvars, data, env): object 'y' not found

lm(d$y ~ d$x) �� Works!

��
�� Call:
�� lm(formula = d$y ~ d$x)
��
�� Coefficients:
�� (Intercept) d$x
�� 2 1

49 / 53

Cleaning up

50 / 53

Removing objects (and packages)
Use rm() to remove an object or objects from your working environment.

a = "hello"
b = "world"
rm(a, b)

You can also use rm(list = ls()) to remove all objects in your working environment (except
packages), but this is frowned upon.

Better just to start a new R session.

51 / 53

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

Removing objects (and packages)
Use rm() to remove an object or objects from your working environment.

a = "hello"
b = "world"
rm(a, b)

You can also use rm(list = ls()) to remove all objects in your working environment (except
packages), but this is frowned upon.

Better just to start a new R session.

Detaching packages is more complicated, because there are so many cross-dependencies (i.e.
one package depends on, and might even automatically load, another.) However, you can try,
e.g. detach(package:dplyr)

Again, better just to restart your R session.

51 / 53

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

Removing plots
You can use dev.off() to removing any (i.e. all) plots that have been generated during your
session. For example, try this in your R console:

plot(1:10)
dev.off()

52 / 53

Removing plots
You can use dev.off() to removing any (i.e. all) plots that have been generated during your
session. For example, try this in your R console:

plot(1:10)
dev.off()

You may also have noticed that RStudio has convenient buttons for clearing your workspace
environment and removing (individual) plots. Just look for these icons in the relevant window
panels:

52 / 53

Next lecture(s): Data wrangling and
cleaning

53 / 53

