
Data Science for Economists
Lecture 3: Learning to love the shell

Grant McDermott
University of Oregon | EC 607

https://github.com/uo-ec607

Table of contents
�. Prologue

�. Introduction

�. Bash shell basics

�. Files and directories

�. Working with text �les

�. Redirecting and pipes

�. Iteration (for loops)

�. Scripting

�. User roles and �le permissions

��. Next steps

��. Appendix (Windows users only)

2 / 81

Prologue

3 / 81

Student presentation: Git GUI
As I said in our previous lecture, I think the Git + RStudio (and/or the shell) work�ow will be
optimal for most of you.

But here are some nice standalone Git GUIs that you might want to consider:

Gitkraken
SourceTree
GitHub Desktop
Atom
VS Code

4 / 81

https://www.gitkraken.com/
https://www.sourcetreeapp.com/
https://desktop.github.com/
https://github.atom.io/
https://code.visualstudio.com/docs/introvideos/versioncontrol

Checklist
☑ Have you cloned the course lecture repo to your local machine?

☑ Once that's done, pull to get the latest lecture slides.

☑ Do you have Bash-compatible shell? (Windows users: see here before continuing.)

5 / 81

https://github.com/uo-ec607/lectures

Checklist
☑ Have you cloned the course lecture repo to your local machine?

☑ Once that's done, pull to get the latest lecture slides.

☑ Do you have Bash-compatible shell? (Windows users: see here before continuing.)

I'm also going to recommend that you spruce up your GitHub pro�les.

Add your full name, a pro�le picture, link to website, etc.
No-one wants to work with (or hire) a barcode.

5 / 81

https://github.com/uo-ec607/lectures

Checklist
☑ Have you cloned the course lecture repo to your local machine?

☑ Once that's done, pull to get the latest lecture slides.

☑ Do you have Bash-compatible shell? (Windows users: see here before continuing.)

I'm also going to recommend that you spruce up your GitHub pro�les.

Add your full name, a pro�le picture, link to website, etc.
No-one wants to work with (or hire) a barcode.

Today's lecture is the last detour before we get back to data analyis with R and RStudio.

Laying proper foundations with Git and the shell will put us in a strong positon for
advanced data science work as the course develops.

5 / 81

https://github.com/uo-ec607/lectures

Introduction

6 / 81

The Unix philosophy
The shell tools that we're going to be using today have their roots in the Unix family of
operating systems originally developed at Bells Labs in the 1970s.

Besides paying homage, acknowledging the Unix lineage is important because these tools still
embody the "Unix philosophy":

Do One Thing And Do It Well

7 / 81

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix_philosophy

The Unix philosophy
The shell tools that we're going to be using today have their roots in the Unix family of
operating systems originally developed at Bells Labs in the 1970s.

Besides paying homage, acknowledging the Unix lineage is important because these tools still
embody the "Unix philosophy":

Do One Thing And Do It Well

By pairing and chaining well-designed individual components, we can build powerful and
much more complex larger systems.

You can see why the Unix philosophy is also referred to as "minimalist and modular".

Again, this philosophy is very clearly expressed in the design and functionality of the Unix
shell.

7 / 81

https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix_philosophy

De�nitions
Don't be thrown off by terminology: shell, terminal, tty, command prompt, etc.

These are all basically just different names for the same thing.1

They are all referring to a command line interface (CLI).

1 Truth be told, there are some subtle and sometimes important differences, as well as some
interesting history behind the names. But we can safely ignore these here.

8 / 81

https://unix.stackexchange.com/questions/4126/what-is-the-exact-difference-between-a-terminal-a-shell-a-tty-and-a-con

De�nitions
Don't be thrown off by terminology: shell, terminal, tty, command prompt, etc.

These are all basically just different names for the same thing.1

They are all referring to a command line interface (CLI).

There are many shell variants, but we're going to focus on Bash (i.e. Bourne again shell).

Included by default on Linux and MacOS.
Windows users need to install a Bash-compatible shell �rst (again, see here).

1 Truth be told, there are some subtle and sometimes important differences, as well as some
interesting history behind the names. But we can safely ignore these here.

8 / 81

https://www.gnu.org/software/bash/
https://unix.stackexchange.com/questions/4126/what-is-the-exact-difference-between-a-terminal-a-shell-a-tty-and-a-con

De�nitions
Don't be thrown off by terminology: shell, terminal, tty, command prompt, etc.

These are all basically just different names for the same thing.1

They are all referring to a command line interface (CLI).

There are many shell variants, but we're going to focus on Bash (i.e. Bourne again shell).

Included by default on Linux and MacOS.
Windows users need to install a Bash-compatible shell �rst (again, see here).

(For the record, I primarily use zsh (i.e. the "Z shell") — which is now also the default shell on
MacOS. As a result, my shell might look slightly different to yours during live coding sessions.
The commands will stay the same, though.)

1 Truth be told, there are some subtle and sometimes important differences, as well as some
interesting history behind the names. But we can safely ignore these here.

8 / 81

https://www.gnu.org/software/bash/
https://ohmyz.sh/
https://support.apple.com/en-us/HT208050
https://unix.stackexchange.com/questions/4126/what-is-the-exact-difference-between-a-terminal-a-shell-a-tty-and-a-con

Why bother with the shell?
�. Power

Both for executing commands and for �xing problems. There are some things you just
can't do in an IDE or GUI.
It also avoids memory complications associated with certain applications and/or
IDEs. We'll get to this issue later in the course.

�. Reproducibility
Scripting is reproducible, while clicking is not.

�. Interacting with servers and super computers
The shell is often the only game in town for high performance computing. We'll get
to this later in the course.

�. Automating work�ow and analysis pipelines
Easily track and reproduce an entire project (e.g. use a Make�le to combine multiple
programs, scripts, etc.)

9 / 81

Why bother with the shell?
�. Power

Both for executing commands and for �xing problems. There are some things you just
can't do in an IDE or GUI.
It also avoids memory complications associated with certain applications and/or
IDEs. We'll get to this issue later in the course.

�. Reproducibility
Scripting is reproducible, while clicking is not.

�. Interacting with servers and super computers
The shell is often the only game in town for high performance computing. We'll get
to this later in the course.

�. Automating work�ow and analysis pipelines
Easily track and reproduce an entire project (e.g. use a Make�le to combine multiple
programs, scripts, etc.)

We're going to focus on 1, 2 and 3 in this course. That's not to say that 4 is unimportant (far
from it!), but we just won't have time to cover it.

Here, here, and here are great places to start learning about automation on your own.

9 / 81

https://stat545.com/automation-overview.html
https://books.ropensci.org/drake/index.html
https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf

Things that I use the shell for
Git
Renaming and moving �les en masse
Finding things on my computer
Combining and manipulating PDFs
Installing and updating software
Scheduling tasks
Monitoring system resources
Connecting to cloud environments
Running analyses ("jobs") on super computers
etc.

10 / 81

Things that I use the shell for
Git
Renaming and moving �les en masse
Finding things on my computer
Combining and manipulating PDFs
Installing and updating software
Scheduling tasks
Monitoring system resources
Connecting to cloud environments
Running analyses ("jobs") on super computers
etc.

Personal aside: One of the (many) nice things about being a Linux user is that it demysti�es
the shell. You end up using the shell for various day-to-day operations and so inevitably
become very comfortable using it. Every year I manage to convince at least one student to
switch...

I recommend Endeavour OS, though Ubuntu and Elementary are good places to start
too.

10 / 81

https://endeavouros.com/
https://ubuntu.com/
https://elementary.io/

Bash shell basics

11 / 81

First look
Let's open up our Bash shell.

A convenient way to do this is through RStudio's built-in Terminal.

Hitting Shift + Alt + T will cause a "Terminal" tab to open up in the bottom-left window
pane (i.e. next to the "Console" tab).
This should run Bash by default if it is installed on your system. (Windows users: Once
again, see here.)

12 / 81

https://support.rstudio.com/hc/en-us/articles/115010737148-Using-the-RStudio-Terminal

First look
Let's open up our Bash shell.

A convenient way to do this is through RStudio's built-in Terminal.

Hitting Shift + Alt + T will cause a "Terminal" tab to open up in the bottom-left window
pane (i.e. next to the "Console" tab).
This should run Bash by default if it is installed on your system. (Windows users: Once
again, see here.)

P.S. Of course, it's always possible to open up the Bash shell directly if you prefer.

Linux
Mac
Windows

12 / 81

https://support.rstudio.com/hc/en-us/articles/115010737148-Using-the-RStudio-Terminal
https://www.wikihow.com/Open-a-Terminal-Window-in-Ubuntu
https://www.techwalla.com/articles/how-to-open-terminal-on-a-macbook
https://www.howtogeek.com/265900/everything-you-can-do-with-windows-10s-new-bash-shell/

First look (cont.)
You should see something like:

 username@hostname:~$

13 / 81

First look (cont.)
You should see something like:

 username@hostname:~$

This is shell-speak for: "Who am I and where am I?"

13 / 81

First look (cont.)
You should see something like:

 username@hostname:~$

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

13 / 81

First look (cont.)
You should see something like:

 username@hostname:~$

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

@hostname denotes the name of the computer or server.

13 / 81

First look (cont.)
You should see something like:

 username@hostname:~$

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

@hostname denotes the name of the computer or server.

:~ denotes the directory path (where ~ signi�es the user's home directory).

13 / 81

First look (cont.)
You should see something like:

 username@hostname:~$

This is shell-speak for: "Who am I and where am I?"

username denotes a speci�c user (one of potentially many on this computer).

@hostname denotes the name of the computer or server.

:~ denotes the directory path (where ~ signi�es the user's home directory).

$ denotes the start of the command prompt.

We'll get to this later, but for a special "superuser" called root, the dollar sign will
change to a # .

13 / 81

Useful keyboard shortcuts
Tab completion.

Use the ↑ (and ↓) keys to scroll through previous commands.

Ctrl + → (and Ctrl + ←) to skip whole words at a time.

Ctrl + a moves the cursor to the beginning of the line.

Ctrl + e moves the cursor to the end of the line.

Ctrl + k deletes everything to the right of the cursor.

Ctrl + u deletes everything to the left of the cursor.

Ctrl + Shift + c to copy and Ctrl + Shift + v to paste.

clear to clear your terminal.

14 / 81

Syntax
All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls �lh ~/Documents/

 $ sort �u myfile.txt

15 / 81

Syntax
All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls �lh ~/Documents/

 $ sort �u myfile.txt

15 / 81

Syntax
All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls �lh ~/Documents/

 $ sort �u myfile.txt

15 / 81

Syntax
All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls �lh ~/Documents/

 $ sort �u myfile.txt

15 / 81

Syntax
All Bash commands have the same basic syntax:

command option(s) argument(s)

Examples:

 $ ls �lh ~/Documents/

 $ sort �u myfile.txt

commands

You don't always need options or arguments. (E.g. $ ls ~/Documents/ and $ ls �lh are
both valid commands that will yield output.)
However, you always need a command.

16 / 81

Syntax (cont.)
options (also called �ags)

Start with a dash.
Usually one letter.
Multiple options can be chained together under a single dash.

$ ls �l �a �h /var/log �� This works
$ ls �lah /var/log �� So does this

An exception is with (rarer) options requiring two dashes.

$ ls ��group�directories�first ��human�readable /var/log

arguments

Tell the command what to operate on.
Usually a �le, path, or a set of �les and folders.

17 / 81

Help: man
The man command ("manual pages") is your friend if you ever need help.

Tip: Hit spacebar to scroll down a page at a time, "h" to see the help notes of the man
command itself and "q" to quit.

$ man ls

�� LS(1) User Commands LS(1)
��
�� NAME
�� ls - list directory contents
��
�� SYNOPSIS
�� ls [OPTION]��� [FILE]���
��
�� DESCRIPTION
�� List information about the FILEs (the current directory by default).
�� Sort entries alphabetically if none of �cftuvSUX nor ��sort is speci‐
�� fied.
��
�� Mandatory arguments to long options are mandatory for short options
�� too.
�� 18 / 81

Help: man (cont.)
A useful feature of man is quick pattern searching with "/pattern".

Try this now by running $ man ls again and then typing "/human" and hitting the return
key.
To continue on to the next case, hit n . (It won't work here because the pattern "human"
only occurs once in the manual �le.)

19 / 81

Help: man (cont.)
A useful feature of man is quick pattern searching with "/pattern".

Try this now by running $ man ls again and then typing "/human" and hitting the return
key.
To continue on to the next case, hit n . (It won't work here because the pattern "human"
only occurs once in the manual �le.)

Again, this and other man tricks tricks are detailed in the help pages (hit "h").

19 / 81

Help: cheat
I also like the cheat utility, which provides a more readable summary / cheatsheet of various
command. You'll need to install it �rst. (Linux and MacOS only.)

$ cheat ls

�� # Displays everything in the target directory
�� ls path/to/the/target/directory
��
�� # Displays everything including hidden files
�� ls �a
��
�� # Displays all files, along with the size (with unit suffixes) and timestamp
�� ls �lh
��
�� # Display files, sorted by size
�� ls -S
��
�� # Display directories only
�� ls �d ��
��
�� # Display directories only, include hidden
�� ls �d .�� ��

20 / 81

https://github.com/chrisallenlane/cheat

Files and directories

21 / 81

Navigation
Key navigation commands:

pwd to print (the current) working directory.

cd to change directory.

$ pwd

�� /home/grant/Documents/Teaching/EC607/lectures/03-shell

22 / 81

Navigation
Key navigation commands:

pwd to print (the current) working directory.

cd to change directory.

$ pwd

�� /home/grant/Documents/Teaching/EC607/lectures/03-shell

You can use absolute paths, but it's better to use relative paths and invoke special symbols for
a user's home folder (~), current directory (.), and parent directory (��) as needed.

$ cd examples �� Move into the "examples" sub�directory of this lecture directory.
$ cd ��/�� �� Now go back up two directories.
$ pwd

�� /home/grant/Documents/Teaching/EC607/lectures

22 / 81

Navigation (cont.)
Beware of directory names that contain spaces. Say you have a directory called "My
Documents". (I'm looking at you, Windows.)

Why won't $ cd My Documents work?

23 / 81

Navigation (cont.)
Beware of directory names that contain spaces. Say you have a directory called "My
Documents". (I'm looking at you, Windows.)

Why won't $ cd My Documents work?

Answer: Bash syntax is super pedantic about spaces and ordering. Here it thinks that "My" and
"Documents" are separate arguments.

23 / 81

Navigation (cont.)
Beware of directory names that contain spaces. Say you have a directory called "My
Documents". (I'm looking at you, Windows.)

Why won't $ cd My Documents work?

Answer: Bash syntax is super pedantic about spaces and ordering. Here it thinks that "My" and
"Documents" are separate arguments.

Small brain: Use quotation marks: $ cd "My Documents" .

Big brain: Use Tab completion to automatically "escape" the space: $ cd My\ Documents .

Galaxy brain: Don't use spaces in �le and folder names.

23 / 81

Navigation (cont.)

24 / 81

Listing �les and their properties
We're about to go into more depth about the ls command.

To do this effectively, it will be helpful if we're all working off the same group of �les and
folders.
Navigate to the directory containing these lecture notes (i.e. 03-shell). Now list the
contents of the examples/ sub-directory with the �lh option ("long format", "human
readable").

$ # cd PathWhereYouClonedThisRepo/lectures/03-shell �� change as needed
$ ls �lh examples

�� total 148K
�� drwxr�xr�x 2 grant users 4.0K May 25 20�28 ABC
�� drwxr�xr�x 2 grant users 4.0K Sep 10 2020 Bad folder name
�� �rw�r��r�� 1 grant users 149 Feb 24 12�48 hello.R
�� �rwxr�xr�x 1 grant users 37 Jan 14 2019 hello.sh
�� drwxr�xr�x 2 grant users 4.0K May 25 20�28 meals
�� �rw�r��r�� 1 grant users 32 May 25 20�28 nursery.txt
�� �rwxrwxrwx 1 grant users 153 Jan 12 2019 reps.txt
�� �rw�r��r�� 1 grant users 120K Jan 12 2019 sonnets.txt

25 / 81

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

26 / 81

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

26 / 81

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1)
owner, 2) the owner's group, and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

26 / 81

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1)
owner, 2) the owner's group, and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

The number of hard links to the object.

26 / 81

http://www.giannistsakiris.com/2011/04/15/counting-and-listing-hard-links-on-linux/

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1)
owner, 2) the owner's group, and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

The number of hard links to the object.
We also see the identity of the object's owner and their group.

26 / 81

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1)
owner, 2) the owner's group, and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

The number of hard links to the object.
We also see the identity of the object's owner and their group.
Finally, we see some descriptive elements about the object:

Size, date and time of creation, and the object name.

26 / 81

Listing �les and their properties (cont.)
What does this all mean? Let's focus on the top line.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

The �rst column denotes the object type:
d (directory or folder), l (link), or - (�le)

Next, we see the permissions associated with the object's three possible user types: 1)
owner, 2) the owner's group, and 3) all other users.

Permissions re�ect r (read), w (write), or x (execute) access.
- denotes missing permissions for a class of operations.

The number of hard links to the object.
We also see the identity of the object's owner and their group.
Finally, we see some descriptive elements about the object:

Size, date and time of creation, and the object name.

Note: We'll return to �le permissions and ownership at the end of the lecture.

26 / 81

Create: touch and mkdir
One of the most common shell tasks is object creation (�les, directories, etc.)

We use mkdir to create directories. E.g. To create a new "testing" directory:

$ mkdir testing

We use touch to create (empty) �les. E.g. To add some �les to our new directory:

$ touch testing/test1.txt testing/test2.txt testing/test3.txt

27 / 81

Create: touch and mkdir
One of the most common shell tasks is object creation (�les, directories, etc.)

We use mkdir to create directories. E.g. To create a new "testing" directory:

$ mkdir testing

We use touch to create (empty) �les. E.g. To add some �les to our new directory:

$ touch testing/test1.txt testing/test2.txt testing/test3.txt

Check that it worked:

$ ls testing

�� test1.txt
�� test2.txt
�� test3.txt

27 / 81

Remove: rm and rmdir
Let's delete the objects that we just created. Start with one of the .txt �les, by using rm .

We could delete all the �les at the same time, but you'll see why I want to keep some.

$ rm testing/test1.txt

The equivalent command for directories is rmdir .

$ rmdir testing

�� rmdir: failed to remove 'testing': Directory not empty

28 / 81

Remove: rm and rmdir
Let's delete the objects that we just created. Start with one of the .txt �les, by using rm .

We could delete all the �les at the same time, but you'll see why I want to keep some.

$ rm testing/test1.txt

The equivalent command for directories is rmdir .

$ rmdir testing

�� rmdir: failed to remove 'testing': Directory not empty

Uh oh... It won't let us delete the directory while it still has �les inside of it. The solution is to
use the rm command again with the "recursive" (�r or -R) and "force" (�f) options.

Excluding the �f option is safer, but will trigger a con�rmation prompt for every �le,
which I'd rather avoid here.

$ rm �rf testing �� Success

28 / 81

Copy: cp
The syntax for copying is $ cp object path/copyname

If you don't provide a new name for the copied object, it will just take the old name.
However, if there is already an object with the same name in the target destination, then
you'll have to use �f to force an overwrite.

$ �� Create new "copies" sub�directory
$ mkdir examples/copies
$ �� Now copy across a file (with a new name)
$ cp examples/reps.txt examples/copies/reps�copy.txt
$ �� Show that we were successful
$ ls examples/copies

�� reps�copy.txt

29 / 81

Copy: cp
The syntax for copying is $ cp object path/copyname

If you don't provide a new name for the copied object, it will just take the old name.
However, if there is already an object with the same name in the target destination, then
you'll have to use �f to force an overwrite.

$ �� Create new "copies" sub�directory
$ mkdir examples/copies
$ �� Now copy across a file (with a new name)
$ cp examples/reps.txt examples/copies/reps�copy.txt
$ �� Show that we were successful
$ ls examples/copies

�� reps�copy.txt

You can use cp to copy directories, although you'll need the �r (or -R) �ag if you want to
recursively copy over everything inside of it to.

Try this by copying over the meals/ sub-directory to copies/ .

29 / 81

Move (and rename): mv
The syntax for moving is $ mv object path/newobjectname

$ �� Move the abc.txt file and show that it worked
$ mv examples/ABC/abc.txt examples
$ ls examples/ABC �� empty

$ �� Move it back again
$ mv examples/abc.txt examples/ABC
$ ls examples/ABC �� not empty

�� abc.txt

30 / 81

Move (and rename): mv
The syntax for moving is $ mv object path/newobjectname

$ �� Move the abc.txt file and show that it worked
$ mv examples/ABC/abc.txt examples
$ ls examples/ABC �� empty

$ �� Move it back again
$ mv examples/abc.txt examples/ABC
$ ls examples/ABC �� not empty

�� abc.txt

Note that "moving" an object within the same directory, but with the (newobjectname) option,
is effectively the same as renaming it.

$ �� Rename reps�copy to reps2 by "moving" it with a new name
$ mv examples/copies/reps�copy.txt examples/copies/reps2.txt
$ ls examples/copies

�� reps2.txt

30 / 81

Rename en masse: rename
Speaking of renaming, a more convenient way to do this is with rename .

The syntax is pattern replacement file(s)

For example, say we want to change the �le type (i.e. extension) of a particular �le in the
examples/meals directory.

$ rename csv TXT examples/meals/monday.csv
$ ls examples/meals

�� friday.csv
�� monday.TXT
�� saturday.csv
�� sunday.csv
�� thursday.csv
�� tuesday.csv
�� wednesday.csv

31 / 81

Rename en masse: rename (cont.)
Where rename really shines, however, is in conjunction with regular expressions and wildcards
(more on the next slide).

This works especially well for dealing with a whole list of �les or folders.

For example, let's change all of the �le extensions in the examples/meals directory.

$ rename csv TXT examples/meals��
$ ls examples/meals

�� friday.TXT
�� monday.TXT
�� saturday.TXT
�� sunday.TXT
�� thursday.TXT
�� tuesday.TXT
�� wednesday.TXT

32 / 81

Rename en masse: rename (cont.)
Where rename really shines, however, is in conjunction with regular expressions and wildcards
(more on the next slide).

This works especially well for dealing with a whole list of �les or folders.

For example, let's change all of the �le extensions in the examples/meals directory.

$ rename csv TXT examples/meals��
$ ls examples/meals

�� friday.TXT
�� monday.TXT
�� saturday.TXT
�� sunday.TXT
�� thursday.TXT
�� tuesday.TXT
�� wednesday.TXT

Better change them back before we continue. (Con�rm that this worked for yourself.)

$ rename TXT csv examples/meals��

32 / 81

Wildcards
Wildcards are special characters that can be used as a replacement for other characters. The
two most important ones are:

�. Replace any number of characters with * .

Convenient when you want to copy, move, or delete a whole class of �les.

�. Replace a single character with ?

Convenient when you want to discriminate between similarly named �les.

$ ls examples/meals/��nday.csv
$ ls examples/meals/?onday.csv

�� examples/meals/monday.csv
�� examples/meals/sunday.csv
�� examples/meals/monday.csv

$ cp examples��.sh examples/copies �� Copy any file with an .sh extension to "
$ rm examples/copies�� �� Delete everything in the "copies" directory

33 / 81

http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm

Find
The last command that I want to mention w.r.t. navigation is find .

This can be used to locate �les and directories based on a variety of criteria; from pattern
matching to object properties.

$ find examples �iname "monday.csv" �� will automatically do recursive

�� examples/meals/monday.csv

$ find . �iname "*.txt" �� must use "." to indicate pwd

�� ./examples/nursery.txt
�� ./examples/sonnets.txt
�� ./examples/reps.txt
�� ./examples/ABC/abc.txt

$ find . �size +100k �� find files larger than 100 KB

�� ./examples/sonnets.txt
�� ./03-shell.html
�� ./03-shell.pdf
�� ./pics/wsl�rstudio-2.png 34 / 81

Working with text �les

35 / 81

Motivation
Economists and other (data) scientists spend a lot of time working with text, including scripts,
Markdown documents, and delimited text �les like CSVs.

It therefore makes sense to spend a few slides showing off some Bash shell capabilities for
working with text �les.

We'll only scratch the surface, but hopefully you'll get an idea of how powerful the shell is
in the text domain.

36 / 81

Counting text: wc
You can use the wc command to count: 1) lines of text, 2) the number of words, and 3) the
number of characters.

Let's demonstrate with a text �le containing all of Shakespeare's Sonnets.1

$ wc examples/sonnets.txt

�� 3029 20701 122780 examples/sonnets.txt

1 Courtesy of Project Gutenburg.

37 / 81

http://www.gutenberg.org/cache/epub/1041/pg1041.txt

Counting text: wc
You can use the wc command to count: 1) lines of text, 2) the number of words, and 3) the
number of characters.

Let's demonstrate with a text �le containing all of Shakespeare's Sonnets.1

$ wc examples/sonnets.txt

�� 3029 20701 122780 examples/sonnets.txt

PS — You couldn't tell here, but the character count is actually higher than we'd get if we
(bothered) counting by hand, because wc counts the invisible newline character "\n".

1 Courtesy of Project Gutenburg.

37 / 81

http://www.gutenberg.org/cache/epub/1041/pg1041.txt

Reading text

Read everything: cat
The simplest way to read in text is with the cat ("concatenate") command. Note that cat will
read in all of the text. You can scroll back up in your shell window, but this can still be a pain.

Again, let's demonstrate using Shakespeare's Sonnets. (This will over�ow the slide.)

I'm also going to use the �n �ag because I want to show line numbers.

38 / 81

Reading text

Read everything: cat
The simplest way to read in text is with the cat ("concatenate") command. Note that cat will
read in all of the text. You can scroll back up in your shell window, but this can still be a pain.

Again, let's demonstrate using Shakespeare's Sonnets. (This will over�ow the slide.)

I'm also going to use the �n �ag because I want to show line numbers.

$ cat �n examples/sonnets.txt

�� 1 The Project Gutenberg EBook of Shakespeare's Sonnets, by William Shakespea
�� 2
�� 3 This eBook is for the use of anyone anywhere at no cost and with
�� 4 almost no restrictions whatsoever. You may copy it, give it away or
�� 5 re�use it under the terms of the Project Gutenberg License included
�� 6 with this eBook or online at ���.gutenberg.org
�� 7
�� 8
�� 9 Title: Shakespeare's Sonnets
�� 10
�� 11 Author: William Shakespeare 38 / 81

Reading text (cont.)

Scroll: more and less
The more and less commands provide extra functionality over cat . For example, they allow
you to move through long text one page at a time.

Try this yourself with $ more examples/sonnets.txt
You can move forward and back using the "f" and "b" keys, and quit by hitting "q".

Preview: head and tail
The head and tail commands let you limit yourself to a preview of the text, down to a
speci�ed number of rows. (The default is 10 rows if you don't specify a number.)

$ head �n 3 examples/sonnets.txt �� First 3 rows
$ # head examples/sonnets.txt �� First 10 rows (default)

�� The Project Gutenberg EBook of Shakespeare's Sonnets, by William Shakespeare
��
�� This eBook is for the use of anyone anywhere at no cost and with

39 / 81

Reading text (cont.)

Preview: head and tail (cont.)
tail works very similarly to head , but starting from the bottom. For example, we can see the
very last row of a �le as follows

$ tail �n 1 examples/sonnets.txt �� Last row

�� subscribe to our email newsletter to hear about new eBooks.

40 / 81

Reading text (cont.)

Preview: head and tail (cont.)
tail works very similarly to head , but starting from the bottom. For example, we can see the
very last row of a �le as follows

$ tail �n 1 examples/sonnets.txt �� Last row

�� subscribe to our email newsletter to hear about new eBooks.

However, there's one other neat option that I want to show you. By using the �n +N option, we
can specify that we want to preview all lines starting from row N and after. E.g.

$ tail �n +3024 examples/sonnets.txt �� Show everything from line 3024

�� ���.gutenberg.org
��
�� This Web site includes information about Project Gutenberg�tm,
�� including how to make donations to the Project Gutenberg Literary
�� Archive Foundation, how to help produce our new eBooks, and how to
�� subscribe to our email newsletter to hear about new eBooks.

40 / 81

Find patterns: grep
To �nd patterns in text, we can use regular expression-type matching with grep .

For example, say we want to �nd the famous opening line to Shakespeare's Sonnet 18.

I'm going to include the �n ("number") �ag to get the line that it occurs on.

$ grep �n "Shall I compare thee" examples/sonnets.txt

�� 336� Shall I compare thee to a summer's day?

41 / 81

https://en.wikipedia.org/wiki/Sonnet_18

Find patterns: grep
To �nd patterns in text, we can use regular expression-type matching with grep .

For example, say we want to �nd the famous opening line to Shakespeare's Sonnet 18.

I'm going to include the �n ("number") �ag to get the line that it occurs on.

$ grep �n "Shall I compare thee" examples/sonnets.txt

�� 336� Shall I compare thee to a summer's day?

By default, grep returns all matching patterns.

What happens if you run $ grep �n "summer" examples/sonnets.txt ?
Or, for that matter, $ grep �n "the" examples/sonnets.txt ?

41 / 81

https://en.wikipedia.org/wiki/Sonnet_18

Find patterns: grep (cont.)
Note that grep can be used to identify patterns in a group �les (e.g. within a directory) too.

This is particularly useful if you are trying to identify a �le that contain, say, a function
name.

Here's a simple example: Which days will I eat pasta this week?

I'm using the R (recursive) and l (just list the �les; don't print the output) �ags.

$ grep -Rl "pasta" examples/meals

�� examples/meals/monday.csv

42 / 81

Find patterns: grep (cont.)
Note that grep can be used to identify patterns in a group �les (e.g. within a directory) too.

This is particularly useful if you are trying to identify a �le that contain, say, a function
name.

Here's a simple example: Which days will I eat pasta this week?

I'm using the R (recursive) and l (just list the �les; don't print the output) �ags.

$ grep -Rl "pasta" examples/meals

�� examples/meals/monday.csv

What about muesli? And pizza?

42 / 81

Find patterns: grep (cont.)
Note that grep can be used to identify patterns in a group �les (e.g. within a directory) too.

This is particularly useful if you are trying to identify a �le that contain, say, a function
name.

Here's a simple example: Which days will I eat pasta this week?

I'm using the R (recursive) and l (just list the �les; don't print the output) �ags.

$ grep -Rl "pasta" examples/meals

�� examples/meals/monday.csv

What about muesli? And pizza?

Take a look at the grep man or cheat �le for other useful examples and �ags (e.g. �i for
ignore case).

PS — Another cool (and very fast) shell utility along these lines is the silver searcher. Check it
out.

42 / 81

https://github.com/ggreer/the_silver_searcher

Manipulate text: sed and awk
There are two main commands for manipulating text in the shell, namely sed and awk .

Both of these are very powerful and �exible (awk is particularly good with CSVs).

I'm going to show two basic examples without going into depth, but I strongly encourage you
to explore more on your own. (Mac users: See here.)

43 / 81

https://unix.stackexchange.com/questions/13711/differences-between-sed-on-mac-osx-and-other-standard-sed

Manipulate text: sed and awk
There are two main commands for manipulating text in the shell, namely sed and awk .

Both of these are very powerful and �exible (awk is particularly good with CSVs).

I'm going to show two basic examples without going into depth, but I strongly encourage you
to explore more on your own. (Mac users: See here.)

Example 1. Replace one text pattern with another.

$ cat examples/nursery.txt

�� Jack and Jill
�� Went up the hill

Now, change "Jack" to "Bill".

$ sed �i 's/Jack/Bill/g' examples/nursery.txt
$ cat examples/nursery.txt

�� Bill and Jill
�� Went up the hill

43 / 81

https://unix.stackexchange.com/questions/13711/differences-between-sed-on-mac-osx-and-other-standard-sed

Manipulate text: sed and awk (cont.)
Example 2. Find and count the 10 most commonly used words in Shakespeare's Sonnets.

Note: We'll learn more about the pipe operator (|) in a few slides.

$ sed �e 's/\s/\n/g' < examples/sonnets.txt | sort | uniq �c | sort �nr | head -10

�� 8884
�� 513 the
�� 456 of
�� 401 to
�� 341 my
�� 338 in
�� 327 I
�� 316 and
�� 252 thy
�� 248 that

44 / 81

Manipulate text: sed and awk (cont.)
Example 2. Find and count the 10 most commonly used words in Shakespeare's Sonnets.

Note: We'll learn more about the pipe operator (|) in a few slides.

$ sed �e 's/\s/\n/g' < examples/sonnets.txt | sort | uniq �c | sort �nr | head -10

�� 8884
�� 513 the
�� 456 of
�� 401 to
�� 341 my
�� 338 in
�� 327 I
�� 316 and
�� 252 thy
�� 248 that

PS — You can also use double quotes (") instead of single ones (') for sed and awk
commands. This can sometimes run you into trouble with special symbols or patterns in the

44 / 81

Sorting and removing duplicates: sort
We can remove duplicate lines in various ways in Bash, but I'll demonstrate using sort .

$ cat examples/reps.txt

�� Sometimes I repeat myself.
�� Sometimes I repeat myself.
�� Other times not so much.
�� But I try to be good.
�� Other times not so much.
�� Sometimes I repeat myself.

There's a fair bit of repetition in this �le (and a double entendre). Let's �x that.

Note the use of the �u ("unique") �ag to remove duplicates. I'll also add a �r ("reverse")
�ag, but only because sort orders alphabetically and this makes less sense for this
simple example.

$ sort �ur examples/reps.txt

�� Sometimes I repeat myself.
�� Other times not so much.
�� But I try to be good. 45 / 81

Redirecting and pipes

46 / 81

Redirect: >
You can send output from the shell to a �le using the redirect operator >

For example, let's print a message to the shell using the echo command.

$ echo "At first, I was afraid, I was petrified"

�� At first, I was afraid, I was petrified

47 / 81

Redirect: >
You can send output from the shell to a �le using the redirect operator >

For example, let's print a message to the shell using the echo command.

$ echo "At first, I was afraid, I was petrified"

�� At first, I was afraid, I was petrified

If you wanted to save this output to a �le, you need simply redirect it to the �lename of
choice.

$ echo "At first, I was afraid, I was petrified" > survive.txt
$ find survive.txt �� Show that it now exists

�� survive.txt

47 / 81

Redirect: > (cont.)
If you want to append text to an existing �le, then you should use �� .

Using > will try to overwrite the existing �le contents.

$ echo "'Kept thinking I could never live without you by my side" �� survive.txt
$ cat survive.txt

�� At first, I was afraid, I was petrified
�� 'Kept thinking I could never live without you by my side

48 / 81

Redirect: > (cont.)
If you want to append text to an existing �le, then you should use �� .

Using > will try to overwrite the existing �le contents.

$ echo "'Kept thinking I could never live without you by my side" �� survive.txt
$ cat survive.txt

�� At first, I was afraid, I was petrified
�� 'Kept thinking I could never live without you by my side

(Don't be shy. You can hum the rest of the song to yourself now.)

48 / 81

Redirect: > (cont.)
If you want to append text to an existing �le, then you should use �� .

Using > will try to overwrite the existing �le contents.

$ echo "'Kept thinking I could never live without you by my side" �� survive.txt
$ cat survive.txt

�� At first, I was afraid, I was petrified
�� 'Kept thinking I could never live without you by my side

(Don't be shy. You can hum the rest of the song to yourself now.)

Aside: I often use this sequence when adding �les to my .gitignore. E.g. $ echo "*.csv" ��
.gitignore .

48 / 81

Pipes: |
The pipe operator | is one of the coolest features in Bash.

It lets you send (i.e. "pipe") intermediate output to another command.
In other words, it allows us to chain together a sequence of simple operations and
thereby implement a more complex operation. (Remember the Unix philosophy!)

Let me demonstrate using a very simple example.

$ cat �n examples/sonnets.txt | head �n100 | tail �n10

�� 91 Despite of wrinkles this thy golden time.
�� 92 But if thou live, remember'd not to be,
�� 93 Die single and thine image dies with thee.
�� 94
�� 95 IV
�� 96
�� 97 Unthrifty loveliness, why dost thou spend
�� 98 Upon thy self thy beauty's legacy?
�� 99 Nature's bequest gives nothing, but doth lend,
�� 100 And being frank she lends to those are free:

49 / 81

Pipes: | (cont.)
An exercise: Say I want to pull out all of text from (but limited to) Sonnet 18.

How might you go about this task using the pipe and other Bash commands?
Tip: Use your knowledge of the starting line (i.e. 336) and the fact that sonnets are 14 lines
long.

50 / 81

Pipes: | (cont.)
An exercise: Say I want to pull out all of text from (but limited to) Sonnet 18.

How might you go about this task using the pipe and other Bash commands?
Tip: Use your knowledge of the starting line (i.e. 336) and the fact that sonnets are 14 lines
long.

$ tail �n +336 examples/sonnets.txt | head �n14

�� Shall I compare thee to a summer's day?
�� Thou art more lovely and more temperate:
�� Rough winds do shake the darling buds of May,
�� And summer's lease hath all too short a date:
�� Sometime too hot the eye of heaven shines,
�� And often is his gold complexion dimm'd,
�� And every fair from fair sometime declines,
�� By chance, or nature's changing course untrimm'd:
�� But thy eternal summer shall not fade,
�� Nor lose possession of that fair thou ow'st,
�� Nor shall death brag thou wander'st in his shade,
�� When in eternal lines to time thou grow'st,
�� So long as men can breathe, or eyes can see,
�� So long lives this, and this gives life to thee. 50 / 81

Pipes: | (cont.)
A �nal aside about pipe the friends: You can use it to search through your Bash command
history.

Every shell command you type is stored in a ~/.bash_history �le.1

What happens if you type $ cat ~/.bash_history | grep head ?

1 The �le might change depending on your preferred shell. E.g. For Zsh it's ~/.zhistory .

51 / 81

Pipes: | (cont.)
A �nal aside about pipe the friends: You can use it to search through your Bash command
history.

Every shell command you type is stored in a ~/.bash_history �le.1

What happens if you type $ cat ~/.bash_history | grep head ?

FWIW, I use this approach often to remind myself of certain shell commands that I tend to
forget. A related and extremely useful command is Ctrl + R , which lets you search and cycle
through your shell history.

1 The �le might change depending on your preferred shell. E.g. For Zsh it's ~/.zhistory .

51 / 81

https://unix.stackexchange.com/questions/73498/how-to-cycle-through-reverse-i-search-in-bash

Iteration (for loops)

52 / 81

for loop syntax
for loops in Bash work similarly to other programming languages that you are probably
familiar with.

The basic syntax is

for i in LIST
do
 OPERATION $i �� the $ sign indicates a variable in bash
done

53 / 81

for loop syntax
for loops in Bash work similarly to other programming languages that you are probably
familiar with.

The basic syntax is

for i in LIST
do
 OPERATION $i �� the $ sign indicates a variable in bash
done

We can also condense things into a single line by using ";" appropriately.

for i in LIST; do OPERATION $i; done

53 / 81

for loop syntax
for loops in Bash work similarly to other programming languages that you are probably
familiar with.

The basic syntax is

for i in LIST
do
 OPERATION $i �� the $ sign indicates a variable in bash
done

We can also condense things into a single line by using ";" appropriately.

for i in LIST; do OPERATION $i; done

I �nd the top approach more readable, but I may use single line approach in these slides to
save vertical space.

Note: Using ";" isn't limited to for loops. Semicolons are a standard way to denote line
endings in Bash.

53 / 81

Example 1: Print a sequence of numbers
To help make things concrete, here's a simple for loop in action.

$ for i in 1 2 3 4 5; do echo $i; done

�� 1
�� 2
�� 3
�� 4
�� 5

54 / 81

Example 1: Print a sequence of numbers
To help make things concrete, here's a simple for loop in action.

$ for i in 1 2 3 4 5; do echo $i; done

�� 1
�� 2
�� 3
�� 4
�� 5

FWIW, we can use bash's brace expansion ({1��n}) to save us from having to write out a long
sequence of numbers.

$ for i in {1��5}; do echo $i; done

�� 1
�� 2
�� 3
�� 4
�� 5

54 / 81

Example 2: Combine CSVs
Here's a more realistic for loop use-case that I use quite often: Combining (i.e. concatenating)
multiple CSVs.

55 / 81

Example 2: Combine CSVs
Here's a more realistic for loop use-case that I use quite often: Combining (i.e. concatenating)
multiple CSVs.

Say we want to combine all the "daily" �les in the examples/meals directory into a single CSV,
which I'll call mealplan.csv . Here's one attempt that incorporates various bash commands
and tricks that we've learned so far. The basic idea is:

�. Create a new (empty) CSV
�. Then, loop over the relevant input �les, appending their contents to our new CSV

�� create an empty CSV
$ touch examples/meals/mealplan.csv
�� loop over the input files and append their contents to our new CSV
$ for i in $(ls examples/meals��day.csv)
> do
> cat $i �� examples/meals/mealplan.csv
> done

55 / 81

Example 2: Combine CSVs
Here's a more realistic for loop use-case that I use quite often: Combining (i.e. concatenating)
multiple CSVs.

Say we want to combine all the "daily" �les in the examples/meals directory into a single CSV,
which I'll call mealplan.csv . Here's one attempt that incorporates various bash commands
and tricks that we've learned so far. The basic idea is:

�. Create a new (empty) CSV
�. Then, loop over the relevant input �les, appending their contents to our new CSV

�� create an empty CSV
$ touch examples/meals/mealplan.csv
�� loop over the input files and append their contents to our new CSV
$ for i in $(ls examples/meals��day.csv)
> do
> cat $i �� examples/meals/mealplan.csv
> done

Did it work? (See next slide.)

55 / 81

Example 2: Combine CSVs (cont.)
$ cat examples/meals/mealplan.csv

�� day,breakfast,lunch,dinner
�� friday,pancakes,ramen,stew
�� day,breakfast,lunch,dinner
�� monday,muesli,sandwich,pasta
�� day,breakfast,lunch,dinner
�� saturday,muesli,sandwich,pad thai
�� day,breakfast,lunch,dinner
�� sunday,muesli,roast,leftovers
�� day,breakfast,lunch,dinner
�� thursday,muesli,salad,tacos
�� day,breakfast,lunch,dinner
�� tuesday,muesli,soup,roast
�� day,breakfast,lunch,dinner
�� wednesday,muesli,sandwich,pizza

56 / 81

Example 2: Combine CSVs (cont.)
$ cat examples/meals/mealplan.csv

�� day,breakfast,lunch,dinner
�� friday,pancakes,ramen,stew
�� day,breakfast,lunch,dinner
�� monday,muesli,sandwich,pasta
�� day,breakfast,lunch,dinner
�� saturday,muesli,sandwich,pad thai
�� day,breakfast,lunch,dinner
�� sunday,muesli,roast,leftovers
�� day,breakfast,lunch,dinner
�� thursday,muesli,salad,tacos
�� day,breakfast,lunch,dinner
�� tuesday,muesli,soup,roast
�� day,breakfast,lunch,dinner
�� wednesday,muesli,sandwich,pizza

Hmmm. Sort of, but we need to get rid of the repeating header.

56 / 81

Example 2: Combine CSVs (cont.)
$ cat examples/meals/mealplan.csv

�� day,breakfast,lunch,dinner
�� friday,pancakes,ramen,stew
�� day,breakfast,lunch,dinner
�� monday,muesli,sandwich,pasta
�� day,breakfast,lunch,dinner
�� saturday,muesli,sandwich,pad thai
�� day,breakfast,lunch,dinner
�� sunday,muesli,roast,leftovers
�� day,breakfast,lunch,dinner
�� thursday,muesli,salad,tacos
�� day,breakfast,lunch,dinner
�� tuesday,muesli,soup,roast
�� day,breakfast,lunch,dinner
�� wednesday,muesli,sandwich,pizza

Hmmm. Sort of, but we need to get rid of the repeating header.

Can you think of a way?

Answer on the next slide. (Hint: tail and head ...)
56 / 81

Example 2: Combine CSVs (cont.)
Let's try again. First delete the old �le so we can start afresh.

$ rm �f examples/meals/mealplan.csv �� delete old file

57 / 81

Example 2: Combine CSVs (cont.)
Let's try again. First delete the old �le so we can start afresh.

$ rm �f examples/meals/mealplan.csv �� delete old file

Here's our adapted gameplan:

First, create the new �le by grabbing the header (i.e. top line) from any of the input �les
and redirecting it. No need for touch this time.
Next, loop over all the input �les as before, but this time only append everything after the
top line.

�� create a new CSV by redirecting the top line of any file
$ head -1 examples/meals/monday.csv > examples/meals/mealplan.csv
�� loop over the input files, appending everything after the top line
$ for i in $(ls examples/meals��day.csv)
> do
> tail �n +2 $i �� examples/meals/mealplan.csv
> done

57 / 81

Example 2: Combine CSVs (cont.)
It worked!

$ cat examples/meals/mealplan.csv

�� day,breakfast,lunch,dinner
�� friday,pancakes,ramen,stew
�� monday,muesli,sandwich,pasta
�� saturday,muesli,sandwich,pad thai
�� sunday,muesli,roast,leftovers
�� thursday,muesli,salad,tacos
�� tuesday,muesli,soup,roast
�� wednesday,muesli,sandwich,pizza

58 / 81

Example 2: Combine CSVs (cont.)
It worked!

$ cat examples/meals/mealplan.csv

�� day,breakfast,lunch,dinner
�� friday,pancakes,ramen,stew
�� monday,muesli,sandwich,pasta
�� saturday,muesli,sandwich,pad thai
�� sunday,muesli,roast,leftovers
�� thursday,muesli,salad,tacos
�� tuesday,muesli,soup,roast
�� wednesday,muesli,sandwich,pizza

We still have to sort the correct week order, but that's an easy job in R (or Stata, Python, etc.)

The explicit bene�t of doing the concatenating in the shell is it is much more ef�cient,
since all the �les don't simultaneously have to be held in memory (i.e RAM).
This doesn't matter here, but can make a dramatic difference once we start working with
lots of �les (or even a few really big ones). We'll revisit this idea later in the big data
section of the course.

58 / 81

Scripting

59 / 81

Hello World!
Writing code and commands interactively in the shell makes a lot of sense when you are
exploring data, �le structures, etc.

However, it's also possible (and often desirable) to write reproducible shell scripts that
combine a sequence of commands.

These scripts are demarcated by their .sh �le extension.

60 / 81

Hello World!
Writing code and commands interactively in the shell makes a lot of sense when you are
exploring data, �le structures, etc.

However, it's also possible (and often desirable) to write reproducible shell scripts that
combine a sequence of commands.

These scripts are demarcated by their .sh �le extension.

Let's look at the contents of a short shell script that I've included in the examples folder.

$ cat examples/hello.sh

�� ��/bin/sh
�� echo �e "\nHello World!\n"

60 / 81

Hello World!
Writing code and commands interactively in the shell makes a lot of sense when you are
exploring data, �le structures, etc.

However, it's also possible (and often desirable) to write reproducible shell scripts that
combine a sequence of commands.

These scripts are demarcated by their .sh �le extension.

Let's look at the contents of a short shell script that I've included in the examples folder.

$ cat examples/hello.sh

�� ��/bin/sh
�� echo �e "\nHello World!\n"

I'm sure that you already have a good idea of what this script is meant to do, but it will prove
useful to quickly go through some things together.

60 / 81

Hello World! (cont.)
��/bin/sh
echo �e "\nHello World!\n"

��/bin/sh is a shebang, indicating which program to run the command with (here: any
Bash-compatible shell). However, it is typically ignored (note that it begins with the hash
comment character.)

61 / 81

https://en.wikipedia.org/wiki/Shebang_(Unix

Hello World! (cont.)
��/bin/sh
echo �e "\nHello World!\n"

��/bin/sh is a shebang, indicating which program to run the command with (here: any
Bash-compatible shell). However, it is typically ignored (note that it begins with the hash
comment character.)
echo �e "\nHello World!\n" is the actual command that we want to run.

61 / 81

https://en.wikipedia.org/wiki/Shebang_(Unix

Hello World! (cont.)
��/bin/sh
echo �e "\nHello World!\n"

��/bin/sh is a shebang, indicating which program to run the command with (here: any
Bash-compatible shell). However, it is typically ignored (note that it begins with the hash
comment character.)
echo �e "\nHello World!\n" is the actual command that we want to run. The �e �ag
tells bash that we want to evaluate an expression rather than a �le.

To run this simple script, you can just type in the �le name and press enter.

$ examples/hello.sh
$ # bash examples/hello.sh �� Also works

��
�� Hello World!

61 / 81

https://en.wikipedia.org/wiki/Shebang_(Unix

Rscript
It's important to realise that we aren't limited to running shell scripts in the shell. The exact
same principles carry over to other programs and �les.

The most relevant case for this class is the Rscript command for (you guessed it) executing
R scripts and expressions. For example:

$ Rscript �e "cat('Hello World, from R!')"

�� Hello World, from R!

62 / 81

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/Rscript.html

Rscript
It's important to realise that we aren't limited to running shell scripts in the shell. The exact
same principles carry over to other programs and �les.

The most relevant case for this class is the Rscript command for (you guessed it) executing
R scripts and expressions. For example:

$ Rscript �e "cat('Hello World, from R!')"

�� Hello World, from R!

Of course, the more typical Rscript use case is to execute full length R scripts. An optional,
but very useful feature here is the ability to pass extra arguments from the shell to your R
script. Consider the hello.R script that I've bundled in the examples folder.

$ cat examples/hello.R

�� args = commandArgs(trailingOnly = TRUE)
�� i = args[1]; j = args[2]
��
�� cat('Hello World, from R!\n',
�� i, '+', j, '=', as.integer(i) + as.integer(j))

62 / 81

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/Rscript.html

Rscript (cont.)
The key step for using additional Rscript arguments is held within the top two lines.

args = commandArgs(trailingOnly = TRUE)
i = args[1]; j = args[2]

These tell Rscript to capture any trailing arguments (i.e. after the �le name) and then pass
them on as objects that can be used within R.

63 / 81

Rscript (cont.)
The key step for using additional Rscript arguments is held within the top two lines.

args = commandArgs(trailingOnly = TRUE)
i = args[1]; j = args[2]

These tell Rscript to capture any trailing arguments (i.e. after the �le name) and then pass
them on as objects that can be used within R.

Let's run the script to see it in action.

$ Rscript examples/hello.R 12 9

�� Hello World, from R!
�� 12 + 9 = 21

63 / 81

Rscript (cont.)
The key step for using additional Rscript arguments is held within the top two lines.

args = commandArgs(trailingOnly = TRUE)
i = args[1]; j = args[2]

These tell Rscript to capture any trailing arguments (i.e. after the �le name) and then pass
them on as objects that can be used within R.

Let's run the script to see it in action.

$ Rscript examples/hello.R 12 9

�� Hello World, from R!
�� 12 + 9 = 21

Again, including trailing arguments is entirely optional. You could run Rscript myfile.R
without any problems. But it often proves very useful for the type of work that you'd likely be
using Rscript for (e.g. batching big jobs).

63 / 81

Editing and writing scripts in the shell
Say you want to edit my (amazing) hello.sh script.

Maybe you want to add some additional lines of text, or maybe you're bothered by the
fact that there should be a comma after "Hello". (It's a salutation!)

We have already seen how to append text lines to a �le. But when it comes to more
complicated editing work, you're better off using a dedicated shell editor.

I use vim. Extremely powerful, but a steep learning curve.
An easier starting point is nano. (Windows users , see here.)

Open up my script in nano by typing $ nano examples/hello.sh .

Note that the functionality is more limited than a normal text editor.
Once you are �nished editing, hit "Ctrl+X", then "y" and enter to exit.
Finally, run the edited version of the script.

64 / 81

https://missing.csail.mit.edu/2020/editors/
https://www.nano-editor.org/
https://stackoverflow.com/questions/36802996/bash-nano-command-not-found-at-windows-git-bash

Editing and writing scripts in the shell
Say you want to edit my (amazing) hello.sh script.

Maybe you want to add some additional lines of text, or maybe you're bothered by the
fact that there should be a comma after "Hello". (It's a salutation!)

We have already seen how to append text lines to a �le. But when it comes to more
complicated editing work, you're better off using a dedicated shell editor.

I use vim. Extremely powerful, but a steep learning curve.
An easier starting point is nano. (Windows users , see here.)

Open up my script in nano by typing $ nano examples/hello.sh .

Note that the functionality is more limited than a normal text editor.
Once you are �nished editing, hit "Ctrl+X", then "y" and enter to exit.
Finally, run the edited version of the script.

If you've been having trouble executing this script (or want to limit who else can execute it),
then you need to alter its permissions. Which takes us neatly on to our �nal section...

64 / 81

https://missing.csail.mit.edu/2020/editors/
https://www.nano-editor.org/
https://stackoverflow.com/questions/36802996/bash-nano-command-not-found-at-windows-git-bash

User roles and �le permissions

65 / 81

Disclaimer
This next section is tailored towards Unix-based operating systems, like Linux or MacOS,
which is why I have saved it for the end. Windows users: Don't be suprised if some
commands don't work, especially if you haven't installed the WSL...

Regardless, the things we learn here will become relevant to everyone (even Windows users)
once we start interacting with Linux servers, spinning up Docker containers, etc. later in the
course.

66 / 81

The superuser: root, sudo, etc.
There are two main user roles on a Linux system:

�. Normal users
�. A superuser (AKA "root")

Difference is one of priviledge.

Superusers can make system changes, install software, browse through different users'
home folders, etc. Normal users are much more restricted in what they can do.
Explains why Unix-based OS's are much more resilient to security threats like viruses.
Need superuser priviledges to install (potentially malicious) software.

67 / 81

The superuser: root, sudo, etc. (cont.)
You can log in as the superuser1... but this is generally considered very poor practice, since you
needlessly risk messing up your system.

There are no safety checks and no "undo" options.

1 Hit "p" on this slide if you really want to know how.

68 / 81

The superuser: root, sudo, etc. (cont.)
You can log in as the superuser1... but this is generally considered very poor practice, since you
needlessly risk messing up your system.

There are no safety checks and no "undo" options.

Question: How, then, can normal users perform meaningful system operations (including
installing new programs and updating software)?

1 Hit "p" on this slide if you really want to know how.

68 / 81

The superuser: root, sudo, etc. (cont.)
You can log in as the superuser1... but this is generally considered very poor practice, since you
needlessly risk messing up your system.

There are no safety checks and no "undo" options.

Question: How, then, can normal users perform meaningful system operations (including
installing new programs and updating software)?

Answer: Invoke temporary superuser status with sudo .

Stands for "superuser do".
Simply prepend sudo to whatever command you want to run.

grant@laptop:~$ ls /root �� fails
grant@laptop:~$ sudo ls /root �� works

1 Hit "p" on this slide if you really want to know how.

68 / 81

Changing permissions and ownership
Let's think back to the ABC/ directory that we saw previously while exploring the ls command.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

We can change the permissions and ownership of this folder with the chmod and chown
commands, respectively. We'll now review these in turn.

Note that I'm going to use the "recursive" option (i.e. -R) in the examples that follow, but
only because ABC/ is a directory. You can drop that when modifying individual �les.

69 / 81

Changing permissions and ownership
Let's think back to the ABC/ directory that we saw previously while exploring the ls command.

drwxr�xr�x 2 grant users 4.0K Jan 12 22�12 ABC

We can change the permissions and ownership of this folder with the chmod and chown
commands, respectively. We'll now review these in turn.

Note that I'm going to use the "recursive" option (i.e. -R) in the examples that follow, but
only because ABC/ is a directory. You can drop that when modifying individual �les.

PS — I'm going to skip writing out the full path for this next section to save on typing. Now is
a a good time to move into the examples/ directory if you want to follow along with my
commands literally.

$ cd examples

69 / 81

chmod
Changing permissions using chmod depends on how those permissions are represented.

There are two options: 1) Octal notation and 2) Symbolic notation.

We'll go into more detail on the next slide, but let's see some examples �rst.
(Test the results yourself using the ls �lh command afterwards.)

70 / 81

chmod
Changing permissions using chmod depends on how those permissions are represented.

There are two options: 1) Octal notation and 2) Symbolic notation.

We'll go into more detail on the next slide, but let's see some examples �rst.
(Test the results yourself using the ls �lh command afterwards.)

Example 1: rwxrwxrwx. Read, write and execute permission for all users.

Octal: $ chmod -R 777 ABC
Symbolic: $ chmod -R a=rwx ABC

70 / 81

chmod
Changing permissions using chmod depends on how those permissions are represented.

There are two options: 1) Octal notation and 2) Symbolic notation.

We'll go into more detail on the next slide, but let's see some examples �rst.
(Test the results yourself using the ls �lh command afterwards.)

Example 1: rwxrwxrwx. Read, write and execute permission for all users.

Octal: $ chmod -R 777 ABC
Symbolic: $ chmod -R a=rwx ABC

Example 2: rwxr-xr-x. Read, write and execute permission for the main user (i.e. owner) of the
�le. For all other users, read and execute permission only.

Octal: $ chmod -R 755 ABC
Symbolic: $ chmod -R u=rwx,g=rx,o=rx ABC

70 / 81

chmod
Changing permissions using chmod depends on how those permissions are represented.

There are two options: 1) Octal notation and 2) Symbolic notation.

We'll go into more detail on the next slide, but let's see some examples �rst.
(Test the results yourself using the ls �lh command afterwards.)

Example 1: rwxrwxrwx. Read, write and execute permission for all users.

Octal: $ chmod -R 777 ABC
Symbolic: $ chmod -R a=rwx ABC

Example 2: rwxr-xr-x. Read, write and execute permission for the main user (i.e. owner) of the
�le. For all other users, read and execute permission only.

Octal: $ chmod -R 755 ABC
Symbolic: $ chmod -R u=rwx,g=rx,o=rx ABC

Now that we've seen some examples, let's get into the logic behind them.

70 / 81

chmod (cont.)

Octal notation
Takes advantage of the fact that 4 (for "read"), 2 (for "write"), and 1 (for "execute") can be
combined in unambiguous ways.

7 (= 4 + 2 + 1) means read, write and execute permission.
5 (= 4 + 0 + 1) means read and execute permission, but not write permission.
etc.
Note that Octal notation requires a number for each of the three user types: owner,
owner's group, and all others. E.g. $ chmod 777 myfile.txt

Symbolic notation
Links permissions to different symbols (i.e. abbreviations).

Users: u ("User/owner"), g ("Group"), o ("Others""), a ("All")
Permissions: r ("read"), w ("write"), x ("execute")
Changes: + ("add permissions"), - ("remove permissions"), = ("set new permissions")

71 / 81

chmod (cont.)
Here's a quick comparison table with some common permission levels.

Octal value Symbolic value Permission level

777 a+rwx rwxrwxrwx

770 u+rwx,g+rwx,o-rwx rwxrwx---

755 a+rwx,g=rw,o=rw rwxrwxrwx

700 u+rwx,g-rwx,o-rwx rwx------

644 u=rw,g=r,o=r rw-r--r--

72 / 81

chmod (cont.)
Here's a quick comparison table with some common permission levels.

Octal value Symbolic value Permission level

777 a+rwx rwxrwxrwx

770 u+rwx,g+rwx,o-rwx rwxrwx---

755 a+rwx,g=rw,o=rw rwxrwxrwx

700 u+rwx,g-rwx,o-rwx rwx------

644 u=rw,g=r,o=r rw-r--r--

PS — Note the Symbolic method allows for relative changes, which means that you don't
necessarily need to write out the whole entry in the table above. E.g. To go from the �rst line
to the second line, you'd only need $ chmod o�rwx myfile .

72 / 81

chown
Changing �le ownership is somewhat easier than changing permissions, because you don't
have to remember the different Octal and Symbolic notation mappings.

E.g. Say there is another user on your computer called "alice", then you could just assign
her ownership of the ABC subfolder using:

$ chown -R alice ABC

Things get a little more interesting when we want to add new users and groups, or change an
existing users group.

I'll save that for a later lecture on cloud servers, though.

73 / 81

Next steps

74 / 81

Things we didn't cover today
I know we covered a lot of ground today. I hope that I've given you a sense of how Bash works
and how powerful it is.

My main goal has been to "demystify" the shell, so that you aren't intimidated when we
use shell commands later on.

At the same time, there's loads that we didn't cover.

Environment variables, SSH, memory management (e.g. top and htop), GNU parallel, etc.
We'll get to some of these topics in the later lectures, but please try to work some of the
suggested exercises on the next slide and make use of the recommended readings.

75 / 81

https://ss64.com/bash/top.html
https://hisham.hm/htop/

Next steps

Exercises
Navigate to the examples/ sub-directory associated with this lecture. I want you to play
around with the contents using some of the different Bash commands we practiced today.

Change the permissions on an indivdual �le or a whole directory.
Read in (or �x) some lines of text from one �le and pipe them to another �le.
Count the number of times Shakespeare refers to "mistress" or "love" in his Sonnets.
Write a new bash script and execute it.
Etc.

Further reading
The Unix Shell (Software Carpentery)
The Unix Workbench (Sean Kross)
Data Science at the Command Line (Jeroen Janssens)
Using AWK and R to parse 25tb (Nick Strayer)

76 / 81

http://swcarpentry.github.io/shell-novice/
https://seankross.com/the-unix-workbench/
https://www.datascienceatthecommandline.com/
https://livefreeordichotomize.com/2019/06/04/using_awk_and_r_to_parse_25tb/

Next class: R language basics

77 / 81

Appendix (Windows users only)

78 / 81

Bash on Windows
Windows users have two options:

1. Git Bash
Pros: You should already have installed this as part of the previous lecture.
Cons: Functionality is limited to Git-related commands, so various things that we're going
to practice today won't work.

2. Windows Subsystem for Linux (WSL)
Pros: A self-contained Linux image (terminal) that allows full Bash functionality.
Cons: Must be installed �rst and only available to Windows 10 users.

I'm going to go out on a limb and recommend option 2 (WSL) if available to you. It's more
overhead, but I think worth it. See the next two slides for instructions and tips...

(Back to table of contents.)

79 / 81

https://gitforwindows.org/
https://docs.microsoft.com/en-us/windows/wsl/install-win10

WSL
The basic WSL installation guide is here.

Follow the guide to install your preferred Linux distro. Ubuntu is a good choice.
Then, once you've restarted your PC, come back to these slides.

After installing your chosen WSL, you need to navigate to today's lecture directory to run the
examples. You have two options:

Option (i) Access WSL through RStudio (recommended)

If you access WSL through RStudio, then it will conveniently con�gure your path to the present
working directory. So, here's how to make WSL your default RStudio Terminal:

In RStudio, navigate to: Tools > Terminal > Terminal Options.... [Screenshot.]
Click on the dropdown menu for New terminals open with and select "Bash (Windows
Subsystem for Linux)", Then click OK. [Screenshot.]
Refresh your RStudio terminal (Alt+Shift+R). [Screenshot.]
You should see the WSL Bash environment with the path automatically con�gured to the
present working director, mount point and all. [Screenshot.]

80 / 81

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.microsoft.com/en-us/p/ubuntu/9nblggh4msv6
https://support.rstudio.com/hc/en-us/articles/115010737148-Using-the-RStudio-Terminal
http://127.0.0.1:3624/pics/wsl-rstudio-1.png
http://127.0.0.1:3624/pics/wsl-rstudio-2.png
http://127.0.0.1:3624/pics/wsl-rstudio-3.png
http://127.0.0.1:3624/pics/wsl-rstudio-4.png

WSL (cont.)
Option (ii) Go directly through the WSL

Presumably, you've cloned the course repo somewhere on your C drive.

The way this work is that Windows drives are mounted on the WSL's mnt directory. (More
here.)
Say you cloned the repo to "C:\Users\Grant\ec607\lectures".
The WSL equivalent is "/mnt/c/Users/Grant/ec607/lectures".
So, then you can navigate to today's lecture through the WSL with: $ cd
/mnt/c/Users/Grant/ec607/lectures/03-shell . Adjust as needed.

(Back to table of contents.)

81 / 81

https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/

WSL (cont.)
Option (ii) Go directly through the WSL

Presumably, you've cloned the course repo somewhere on your C drive.

The way this work is that Windows drives are mounted on the WSL's mnt directory. (More
here.)
Say you cloned the repo to "C:\Users\Grant\ec607\lectures".
The WSL equivalent is "/mnt/c/Users/Grant/ec607/lectures".
So, then you can navigate to today's lecture through the WSL with: $ cd
/mnt/c/Users/Grant/ec607/lectures/03-shell . Adjust as needed.

Which option to choose?
Both are �ne, but I recommend option (i). As a Windows user, being able to access a true Bash
shell (i.e. terminal) conveniently from RStudio will make things much easier for you in my
class. You can always revert back to a different shell later if you want.

(Back to table of contents.)

81 / 81

https://www.howtogeek.com/261383/how-to-access-your-ubuntu-bash-files-in-windows-and-your-windows-system-drive-in-bash/

