
Data Science for Economists
Lecture 2: Version control with Git(Hub)

Grant McDermott
University of Oregon | EC 607

https://github.com/uo-ec607


Table of contents
1. Prologue

2. Git and GitHub

3. Git(Hub) + RStudio

4. Git from the shell

5. Merge con�icts

6. Branches and forking

7. Other tips

8. Summary

9. Appendix: FAQ

2 / 53



Prologue

3 / 53



Student presentation: R Markdown
Resources:

Website: https://rmarkdown.rstudio.com
Cheatsheat: https://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf
Book: R Markdown: The De�nitive Guide (Yihui Xie, JJ Allaire, and Garrett Grolemund)

Other points:

You will be submitting all of your assignments as R Markdown documents.
FWIW, my lecture slides and notes are all written in R Markdown too. (E.g. This slide
deck is built using the xaringan package with the metropolis theme.)

4 / 53

https://rmarkdown.rstudio.com/
https://github.com/rstudio/cheatsheets/raw/master/rmarkdown-2.0.pdf
https://bookdown.org/yihui/rmarkdown
https://github.com/yihui/xaringan/wiki


Before we start
We went through a software installation check during the previous lecture. By now you
should have:

☑ Installed R.

☑ Installed RStudio.

☑ Installed Git.

☑ Created an account on GitHub

☑ Accepted an invitation to EC 607 course repo (quarter speci�c).

If in doubt about software, please consult Jenny Bryan's amazing guide:
http://happygitwithr.com.

5 / 53

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/preview/
https://git-scm.com/downloads
https://github.com/
http://happygitwithr.com/


Git and GitHub

6 / 53



Why bother?

7 / 53



Git(Hub) solves this problem

Git
Git is a distributed version control system. (Wait, what?)
Okay, try this: Imagine if Dropbox and the "Track changes" feature in MS Word had a
baby. Git would be that baby.
In fact, it's even better than that because Git is optimised for the things that
economists and data scientists spend a lot of time working on (e.g. code).
There is a learning curve, but I promise you it's worth it.

GitHub
It's important to realise that Git and GitHub are distinct things.
GitHub is an online hosting platform that provides an array of services built on top of
the Git system. (Similar platforms include Bitbucket and GitLab.)
Just like we don't need Rstudio to run R code, we don't need GitHub to use Git... But it
will make our lives so much easier.

8 / 53



Git(Hub) for scienti�c research

From software development...
Git and GitHub's role in global software development is not in question.

There's a high probability that your favourite app, program or package is built using Git-
based tools. (RStudio is a case in point.)

... to scienti�c research
Scientists and academic researchers are cottoning on too.

Bene�ts of VC and collaboration tools aside, Git(Hub) helps to operationalise the ideals
of open science and reproducibility.
Journals have increasingly strict requirements regarding reproducibility and data access.
GH makes this easy (DOI integration, off-the-shelf licenses, etc.)
I host all of the code and data for my papers on GH. Same for teaching materials. I
even use it to host and maintain my website.
Nature: "Democratic databases: science on GitHub" (Perkel, 2016).

9 / 53

http://grantmcdermott.com/research/
https://github.com/grantmcdermott/grantmcdermott.github.io
https://www.nature.com/news/democratic-databases-science-on-github-1.20719


Git(Hub) + RStudio

10 / 53



Seamless integration
One of the (many) great features of RStudio is how well it integrates version control into
your everyday work�ow.

Even though Git is a completely separate program to R, they feel like part of the same
"thing" in RStudio.
This next section is about learning the basic Git(Hub) commands and the recipe for
successful project integration with RStudio.

11 / 53



Seamless integration
One of the (many) great features of RStudio is how well it integrates version control into
your everyday work�ow.

Even though Git is a completely separate program to R, they feel like part of the same
"thing" in RStudio.
This next section is about learning the basic Git(Hub) commands and the recipe for
successful project integration with RStudio.

I also want to bookmark a general point that we'll revisit many times during this course:

The tools that we're using all form part of a coherent data science ecosystem.
Greatly reduces the cognitive overhead ("aggregation") associated with traditional
work�ows, where you have juggle multiple programs and languages at the same time.

11 / 53



Link a GitHub repo to an RStudio Project
The starting point for our work�ow is to link a GitHub repository (i.e. "repo") to an RStudio
Project. Here are the steps we're going to follow:

1. Create the repo on GitHub and initialize with a README.
2. Copy the HTTPS/SSH link (the green "Clone or Download" button).1

3. Open up RStudio.
4. Navigate to File -> New Project -> Version Control -> Git.
5. Paste your copied link into the "Repository URL:" box.
6. Choose the project path ("Create project as subdirectory of:") and click Create Project.

1 It's easiest to start with HTTPS, but SSH is advised for more advanced users.

12 / 53

http://happygitwithr.com/ssh-keys.html#ssh-keys


Link a GitHub repo to an RStudio Project
The starting point for our work�ow is to link a GitHub repository (i.e. "repo") to an RStudio
Project. Here are the steps we're going to follow:

1. Create the repo on GitHub and initialize with a README.
2. Copy the HTTPS/SSH link (the green "Clone or Download" button).1

3. Open up RStudio.
4. Navigate to File -> New Project -> Version Control -> Git.
5. Paste your copied link into the "Repository URL:" box.
6. Choose the project path ("Create project as subdirectory of:") and click Create Project.

Now, I want you to practice by these steps by creating your own repo on GitHub — call it
"test" — and cloning it via an RStudio Project.

See my GIF walkthrough on the next slide...

1 It's easiest to start with HTTPS, but SSH is advised for more advanced users.

12 / 53

http://happygitwithr.com/ssh-keys.html#ssh-keys


Link a GitHub repo to an RStudio Project

13 / 53



Make some local changes
Look at the top-right panel in your RStudio IDE. Do you see the "Git" tab?

Click on it.
There should already be some �les in there, which we'll ignore for the moment.1

Now open up the README �le (see the "Files" tab in the bottom-right panel).

Add some text like "Hello World!" and save the README.
Do you see any changes in the "Git" panel? Good. (Raise your hand if not.)

Again, see my GIF walkthrough on the next slide...

1 They're important, but not for the purposes of this section.

14 / 53



Make some local changes

15 / 53



Main Git operations
Now that you've cloned your �rst repo and made some local changes, it's time to learn the
four main Git operations.

1. Stage (or "add")
Tell Git that you want to add changes to the repo history (�le edits, additions,
deletions, etc.)

2. Commit
Tell Git that, yes, you are sure these changes should be part of the repo history.

3. Pull
Get any new changes made on the GitHub repo (i.e. the upstream remote), either
by your collaborators or you on another machine.

4. Push
Push any (committed) local changes to the GitHub repo

16 / 53



Main Git operations
Now that you've cloned your �rst repo and made some local changes, it's time to learn the
four main Git operations.

1. Stage (or "add")
Tell Git that you want to add changes to the repo history (�le edits, additions,
deletions, etc.)

2. Commit
Tell Git that, yes, you are sure these changes should be part of the repo history.

3. Pull
Get any new changes made on the GitHub repo (i.e. the upstream remote), either
by your collaborators or you on another machine.

4. Push
Push any (committed) local changes to the GitHub repo

For the moment, it will be useful to group the �rst two operations and last two operations
together. (They are often combined in practice too, although you'll soon get a sense of
when and why they should be split up.)

16 / 53



Main Git operations
Now that you've cloned your �rst repo and made some local changes, it's time to learn the
four main Git operations.

1. Stage (or "add")
Tell Git that you want to add changes to the repo history (�le edits, additions,
deletions, etc.)

2. Commit
Tell Git that, yes, you are sure these changes should be part of the repo history.

3. Pull
Get any new changes made on the GitHub repo (i.e. the upstream remote), either
by your collaborators or you on another machine.

4. Push
Push any (committed) local changes to the GitHub repo

For the moment, it will be useful to group the �rst two operations and last two operations
together. (They are often combined in practice too, although you'll soon get a sense of
when and why they should be split up.)

Ready for more GIFs?
16 / 53



Stage and Commit

17 / 53



Stage and Commit

Note the helpful commit message to ourselves. 17 / 53



Push and Pull

18 / 53



Push and Pull

See here if you get Error: unable to read askpass response from 'rpostback�askpass' .18 / 53

https://ohi-science.org/manual/#rpostback-askpass-error


Recap
Here's a step-by-step summary of what we just did.

Made same changes to a �le and saved them locally.
Staged these local changes.
Committed these local changes to our Git history with a helpful message.
Pulled from the GitHub repo just in case anyone else made changes too (not expected
here, but good practice).
Pushed our changes to the GitHub repo.

NB aside: Always pull from the upstream repo before you push any changes. Seriously, do
this even on solo projects; making it a habit will save you headaches down the road.

19 / 53



Recap
Here's a step-by-step summary of what we just did.

Made same changes to a �le and saved them locally.
Staged these local changes.
Committed these local changes to our Git history with a helpful message.
Pulled from the GitHub repo just in case anyone else made changes too (not expected
here, but good practice).
Pushed our changes to the GitHub repo.

NB aside: Always pull from the upstream repo before you push any changes. Seriously, do
this even on solo projects; making it a habit will save you headaches down the road.

PS — You were likely challenged for your GitHub credentials at some point. Learn how to
cache these here.

19 / 53

https://happygitwithr.com/credential-caching.html


Recap
Here's a step-by-step summary of what we just did.

Made same changes to a �le and saved them locally.
Staged these local changes.
Committed these local changes to our Git history with a helpful message.
Pulled from the GitHub repo just in case anyone else made changes too (not expected
here, but good practice).
Pushed our changes to the GitHub repo.

NB aside: Always pull from the upstream repo before you push any changes. Seriously, do
this even on solo projects; making it a habit will save you headaches down the road.

PS — You were likely challenged for your GitHub credentials at some point. Learn how to
cache these here.

PPS — Speaking of credentials, an even better approach is to switch to SSH. I recommend
you do this once you feel comfortable with the main Git operations.

19 / 53

https://happygitwithr.com/credential-caching.html
https://happygitwithr.com/ssh-keys.html


Why this work�ow?
Creating the repo on GitHub �rst means that it will always be "upstream" of your (and any
other) local copies.

In effect, this allows GitHub to act as the central node in the distributed VC network.
Especially valuable when you are collaborating on a project with others — more on this
later — but also has advantages when you are working alone.
If you would like to move an existing project to GitHub, my advice is still to create an
empty repo there �rst, clone it locally, and then copy all your �les across.

RStudio Projects are great.

Again, they interact seamlessly with Git(Hub), as we've just seen.
They also solve absolute vs. relative path problems, since the .Rproj �le acts as an
anchor point for all other �les in the repo.1

1 You know that calling �les from YourComputer/YourName/Documents/Special-Subfolder/etc  in
your scripts makes you a bad person, right?

20 / 53



Git from the shell

21 / 53



Why bother with the shell?
The GitHub + RStudio Project combo is ideal for new users.

RStudio's Git integration and built-in GUI cover all the major operations.
RStudio Projects FTW.

However, I want to go over Git shell commands so that you can internalise the basics.

The shell is more powerful and �exible. Does some things that the RStudio Git GUI
can't.
Potentially more appropriate for projects that aren't primarily based in R. (Although, no
real harm in using RStudio Projects to clone a non-R repo.)
Also, I'm kinda tired of screen recording animated GIFs.

22 / 53

http://happygitwithr.com/ssh-keys.html#shell


Why bother with the shell?
The GitHub + RStudio Project combo is ideal for new users.

RStudio's Git integration and built-in GUI cover all the major operations.
RStudio Projects FTW.

However, I want to go over Git shell commands so that you can internalise the basics.

The shell is more powerful and �exible. Does some things that the RStudio Git GUI
can't.
Potentially more appropriate for projects that aren't primarily based in R. (Although, no
real harm in using RStudio Projects to clone a non-R repo.)
Also, I'm kinda tired of screen recording animated GIFs.

(Yes, we're going to cover the shell in depth next lecture, but think of this as a sneak
preview.)

22 / 53

http://happygitwithr.com/ssh-keys.html#shell


Main Git shell commands
Clone a repo.

$ git clone REPOSITORY-URL

See the commit history (hit spacebar to scroll down or q to exit).

$ git log

What has changed?

$ git status

23 / 53



Main Git shell commands (cont.)
Stage ("add") a �le or group of �les.

$ git add NAME-OF-FILE-OR-FOLDER

You can use wildcard characters to stage a group of �les (e.g. sharing a common pre�x).
There are a bunch of useful �ag options too:

Stage all �les.

$ git add -A

Stage updated �les only (modi�ed or deleted, but not new).

$ git add �u

Stage new �les only (not updated).

$ git add .

24 / 53

https://ryanstutorials.net/linuxtutorial/wildcards.php


Main Git shell commands (cont.)
Commit your changes.

$ git commit �m "Helpful message"

Pull from the upstream repository (i.e. GitHub).

$ git pull

Push any local changes that you've committed to the upstream repo (i.e. GitHub).

$ git push

25 / 53



Merge con�icts

26 / 53



Collaboration time
Turn to the person next to you. You are now partners. (Congratulations.)

P1: Invite P2 to join you as a collaborator on the "test" GitHub repo that you created
earlier. (See the Settings tab of your repo.)

P2: Clone P1's repo to your local machine.1 Make some edits to the README (e.g. delete
lines of text and add your own). Stage, commit and push these changes.

P1: Make your own changes to the README on your local machine. Stage, commit and
then try to push them (after pulling from the GitHub repo �rst).

1 Change into a new directory �rst or give it a different name to avoid con�icts with your own
"test" repo. Don't worry, Git tracking will still work if you change the repo name locally.

27 / 53



Collaboration time
Turn to the person next to you. You are now partners. (Congratulations.)

P1: Invite P2 to join you as a collaborator on the "test" GitHub repo that you created
earlier. (See the Settings tab of your repo.)

P2: Clone P1's repo to your local machine.1 Make some edits to the README (e.g. delete
lines of text and add your own). Stage, commit and push these changes.

P1: Make your own changes to the README on your local machine. Stage, commit and
then try to push them (after pulling from the GitHub repo �rst).

Did P1 encounter a merge conflict  error?

Good, that's what we were trying to trigger.
Now, let's learn how to �x them.

1 Change into a new directory �rst or give it a different name to avoid con�icts with your own
"test" repo. Don't worry, Git tracking will still work if you change the repo name locally.

27 / 53



Merge con�icts
Let's con�rm what's going on.

$ git status

As part of the response, you should see something like:

Unmerged paths:
  (use "git add <file>���" to mark resolution)

   * both modified:   README.md

Git is protecting P1 by refusing the merge. It wants to make sure that you don't accidentally
overwrite all of your changes by pulling P2's version of the README.

In this case, the source of the problem was obvious. Once we start working on bigger
projects, however, git status  can provide a helpful summary to see which �les are in
con�ict.

28 / 53



Merge con�icts (cont.)
Okay, let's see what's happening here by opening up the README �le. RStudio is a good
choice, although your preferred text editor is �ne.1

You should see something like:

# README
Some text here.
<<<<<<< HEAD
Text added by Partner 2.
=======
Text added by Partner 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

1 Other good choices are VS Code or Atom, which both support native Git(Hub) integration. You can
set your preferred default editor with $ git config ��global core.editor "PREFERRED_EDITOR" .

29 / 53

https://code.visualstudio.com/
https://atom.io/


Merge con�icts (cont.)
What do these symbols mean?

# README
Some text here.
<<<<<<< HEAD
Text added by Partner 2.
=======
Text added by Partner 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

30 / 53



Merge con�icts (cont.)
What do these symbols mean?

# README
Some text here.
<<<<<<< HEAD
Text added by Partner 2.
=======
Text added by Partner 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

<<<<<<< HEAD  Indicates the start of the merge con�ict.

30 / 53



Merge con�icts (cont.)
What do these symbols mean?

# README
Some text here.
<<<<<<< HEAD
Text added by Partner 2.
=======
Text added by Partner 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

<<<<<<< HEAD  Indicates the start of the merge con�ict.
=======  Indicates the break point used for comparison.

30 / 53



Merge con�icts (cont.)
What do these symbols mean?

# README
Some text here.
<<<<<<< HEAD
Text added by Partner 2.
=======
Text added by Partner 1.
>>>>>>> 814e09178910383c128045ce67a58c9c1df3f558.
More text here.

<<<<<<< HEAD  Indicates the start of the merge con�ict.
=======  Indicates the break point used for comparison.
>>>>>>> <long string>  Indicates the end of the lines that had a merge con�ict.

30 / 53



Merge con�icts (cont.)
Fixing these con�icts is a simple matter of (manually) editing the README �le.

Delete the lines of the text that you don't want.
Then, delete the special Git merge con�ict symbols.

Once that's done, you should be able to stage, commit, pull and �nally push your changes
to the GitHub repo without any errors.

31 / 53



Merge con�icts (cont.)
Fixing these con�icts is a simple matter of (manually) editing the README �le.

Delete the lines of the text that you don't want.
Then, delete the special Git merge con�ict symbols.

Once that's done, you should be able to stage, commit, pull and �nally push your changes
to the GitHub repo without any errors.

Caveats

P1 gets to decide what to keep because they �xed the merge con�ict.
OTOH, the full commit history is preserved, so P2 can always recover their changes if
desired.
A more elegant and democratic solution to merge con�icts (and repo changes in
general) is provided by Git branches. We'll get there next.

31 / 53



Aside: Line endings and different OSs

Problem
During your collaboration, you may have encountered a situation where Git is highlighting
differences on seemingly unchanged sentences.

If that is the case, check whether your partner is using a different OS to you.

The "culprit" is the fact that Git evaluates an invisible character at the end of every line.
This is how Git tracks changes. (More info here and here.)

For Linux and MacOS, that ending is "LF"
For Windows, that ending is "CRLF" (of course it is...)

Solution
Open up the shell and enter

$ git config ��global core.autocrlf input

(Windows users: Change input  to true ).
32 / 53

https://help.github.com/articles/dealing-with-line-endings/
https://en.wikipedia.org/wiki/Newline


Branches and forking

33 / 53



What are branches and why use them?
Branches are one of Git's coolest features.

Allow you to take a snapshot of your existing repo and try out a whole new idea
without affecting your main (i.e. "master") branch.
Only once you (and your collaborators) are 100% satis�ed, would you merge it back into
the master branch.1

This is how most new features in modern software and apps are developed.
It is also how bugs are caught and �xed.
But researchers can easily — and should! — use it to try out new ideas and
analysis (e.g. robustness checks, revisions, etc.)

If you aren't happy, then you can just delete the experimental branch and continue as
if nothing happened.

1 You can actually have branches of branches (of branches). But let's not get ahead of ourselves.

34 / 53



What are branches and why use them?
Branches are one of Git's coolest features.

Allow you to take a snapshot of your existing repo and try out a whole new idea
without affecting your main (i.e. "master") branch.
Only once you (and your collaborators) are 100% satis�ed, would you merge it back into
the master branch.1

This is how most new features in modern software and apps are developed.
It is also how bugs are caught and �xed.
But researchers can easily — and should! — use it to try out new ideas and
analysis (e.g. robustness checks, revisions, etc.)

If you aren't happy, then you can just delete the experimental branch and continue as
if nothing happened.

I use branches all the time for my own research projects.

1 You can actually have branches of branches (of branches). But let's not get ahead of ourselves.

34 / 53



Create a new branch in RStudio

35 / 53



Branch shell commands
Create a new branch on your local machine and switch to it:

$ git checkout �b NAME-OF-YOUR-NEW-BRANCH

Push the new branch to GitHub:

$ git push origin NAME-OF-YOUR-NEW-BRANCH

List all branches on your local machine:

$ git branch

Switch back to (e.g.) the master branch:

$ git checkout master

Delete a branch

$ git branch �d NAME-OF-YOUR-FAILED-BRANCH
$ git push origin �NAME-OF-YOUR-FAILED-BRANCH

36 / 53



Merging branches + Pull requests
You have two options:

1. Locally
Commit your �nal changes to the new branch (say we call it "new-idea").
Switch back to the master branch: $ git checkout master
Merge in the new-idea branch changes: $ git merge new�idea
Delete the new-idea branch (optional): $ git branch �d new�idea

2. Remotely (i.e. pull requests on GitHub)
PRs are a way to notify collaborators — or yourself! — that you have completed a
feature.
You write a summary of all the changes contained in the branch.
You then assign suggested reviewers of your code — including yourself potentially —
who are then able to approve these changes ("Merge pull request") on GitHub.
Let's practice this now in class...

37 / 53



Your �rst pull request
You know that "new-idea" branch we just created a few slides back? Switch over to it if you
haven't already.

Remember: $ git checkout new�idea  (or just click on the branches tab in RStudio)

Make some local changes and then commit + push them to GitHub.

The changes themselves don't really matter. Add text to the README, add some new
�les, whatever.

After pushing these changes, head over to your repo on GitHub.

You should see a new green button with "Compare & pull request". Click it.
Add a meta description of what this PR accomplishes. You can also change the title if
you want.
Click "Create pull request".
(Here's where you or your collaborators would review all the changes.)
Once satis�ed, click "Merge pull request" and then con�rm.

38 / 53



Your �rst pull request (cont.)

39 / 53



Forks
Git forks lie somewhere between cloning a repo and branching from it.

In fact, if you fork a repo then you are really creating a copy of it.

Forking a repo on GitHub is very simple; just click the "Fork" button in the top-right corner
of said repo.

This will create an independent copy of the repo under your GitHub account.
Try this now. Use one of my repos if you can't think of anyone else's.

Once you fork a repo, you are free to do anything you want to it. (It's yours.) However, forking
— in combination with pull requests — is actually how much of the world's software is
developed. For example:

Outside user B forks A's repo. She adds a new feature (or �xes a bug she's identi�ed)
and then issues an upstream pull request.
A is noti�ed and can then decide whether to merge B's contribution with the main
project.

40 / 53

https://help.github.com/articles/fork-a-repo/
https://github.com/grantmcdermott?tab=repositories
https://help.github.com/articles/creating-a-pull-request-from-a-fork/


Forks (cont.)
Creating forks is super easy as we've just seen. However, maintaining them involves some
more leg work if you want to stay up to date with the original repo.

GitHub: "Syncing a fork"
OTOH, this isn't going to be an issue for completed projects. E.g. Forking the repo that
contains the code and data of a published paper.

41 / 53

https://help.github.com/articles/syncing-a-fork/


Forks (cont.)
Creating forks is super easy as we've just seen. However, maintaining them involves some
more leg work if you want to stay up to date with the original repo.

GitHub: "Syncing a fork"
OTOH, this isn't going to be an issue for completed projects. E.g. Forking the repo that
contains the code and data of a published paper.

OSS contribution
Remember that "OSS contribution" component of the course (i.e. 10% of your �nal grade)?
Well, now is a good time to tell you that forks, branches, and pull requests are effectively
what I will be expecting of you.

Grades aside, I want to encourage you to start thinking about contributing to software
projects in general.
Seriously, it can be something as simple as correcting typos or language. Many great
programmers and data scientists are not English �rst-language speakers. Helping to
improve package documentation is a small way to say thanks. (More here.)

41 / 53

https://help.github.com/articles/syncing-a-fork/
https://yihui.name/en/2013/06/fix-typo-in-documentation


Other tips

42 / 53



README
README �les are special in GitHub because they act as repo landing pages.

For a project tied to a research paper, this is where you should be explicit about the
goal of the research paper, the software requirements, how to run the analysis, and so
forth (e.g. here).
On the other end of the scale, many GitHub repos are basically standalone README
�les. Think of these as version-controlled blog posts (e.g. here).

README �les can also be added to the sub-directories of a repo, where they will act as a
landing pages too.

Particularly useful for bigger projects. Say, where you are using multiple programming
languages (e.g. here), or want to add more detail about a dataset (e.g. here).

READMEs should be written in Markdown, which GH automatically renders.

We'll learn more about Markdown (and its close relation, R Markdown) during the
course of our homework assignments.

43 / 53

https://github.com/grantmcdermott/bycatch
https://github.com/jfiksel/github-classroom-for-teachers
https://github.com/grantmcdermott/blueparadox
https://github.com/grantmcdermott/sceptic-priors/tree/master/data
https://www.markdownguide.org/
https://rmarkdown.rstudio.com/


.gitignore
A .gitignore �le tells Git what to — wait for it — ignore.

This is especially useful if you want to exclude whole folders or a class of �les (e.g. based
on size or type).

Proprietary data �les should be ignored from the beginning if you intend to make a
repo public at some point.
Very large individual �les (>100 MB) exceed GitHub's maximum allowable size and
should be ignored regardless. See here and here.

I typically add compiled datasets to my .gitignore in the early stages of a project.

Reduces redundant version control history, where the main thing is the code that
produces the compiled dataset, not the end CSV in of itself. ("Source is real.")
Simple to remove from my .gitignore once the project is being �nalised (e.g. paper is
being submitted).

44 / 53

https://help.github.com/articles/working-with-large-files/
https://help.github.com/articles/versioning-large-files/


.gitignore (cont.)
You can create a .gitignore �le in multiple ways.

A .gitignore �le was automatically generated if you cloned your repo with an RStudio
Project.
You could also have the option of adding one when you �rst create a repo on GitHub.
Or, you can create one with your preferred text editor. (Must be saved as ".gitignore".)

Once the .gitignore �le is created, simply add in lines of text corresponding to the �les that
should be ignored.

To ignore a single a �le: FILE-I-WANT-TO-IGNORE.csv
To ignore a whole folder (and all of its contents, subfolders, etc.): FOLDER-NAME/**
The standard shell commands and special characters apply.

E.g. Ignore all CSV �les in the repo: *.csv
E.g. Ignore all �les beginning with "test": test�
E.g. Don't ignore a particular �le: !somefile.txt

45 / 53



GitHub Issues
GitHub Issues are another great way to interact with your collaborators and/or package
maintainers.

If you spot any problems with these lecture notes, please �le an issue here!

46 / 53

https://guides.github.com/features/issues/
https://github.com/uo-ec607/lectures/issues


Summary

47 / 53



Recipe (shell commands in grey)
1. Create a repo on GitHub and initialize with a README.

2. Clone the repo to your local machine. Preferably using an RStudio Project, but as you
wish. (E.g. Shell command: $ git clone REPOSITORY-URL )

3. Stage any changes you make: $ git add -A

4. Commit your changes: $ git commit �m "Helpful message"

5. Pull from GitHub: $ git pull

6. (Fix any merge con�icts.)

7. Push your changes to GitHub: $ git push

48 / 53



Recipe (shell commands in grey)
1. Create a repo on GitHub and initialize with a README.

2. Clone the repo to your local machine. Preferably using an RStudio Project, but as you
wish. (E.g. Shell command: $ git clone REPOSITORY-URL )

3. Stage any changes you make: $ git add -A

4. Commit your changes: $ git commit �m "Helpful message"

5. Pull from GitHub: $ git pull

6. (Fix any merge con�icts.)

7. Push your changes to GitHub: $ git push

Repeat steps 3—7 (but especially steps 3 and 4) often.

48 / 53



Coming up

Get the course materials
If you haven't done so already, now is a good time to clone/fork the course materials to
your local computer.

Assignment 1
Now that you've learned the necessary basics, Assignment 1 is up on GitHub Classroom.

Impress me with your ggplot2 skills.
Deadline: Due by the start of our next lecture.

Next lecture
Learning to love the shell...

49 / 53



Appendix: FAQ

50 / 53



FAQ
Q: When should I commit (and push) changes?

A: Early and often.

It's not quite as important as saving your work regularly, but it's a close second.
You should certainly push everything that you want your collaborators to see.

Q: Do I need branches if I am working on a solo project?

A: You don't need them, but they offer big advantages in maintaining a sane work�ow.

Experiment without any risk to the main project!
If you combine them with pull requests, then you can compress signi�cant additions to
your project (which may comprise many small edits) into a single branch.

51 / 53



FAQ (cont.)
Q: What's the difference between cloning and forking a repo?

A: Cloning directly ties your local version to the original repo, while forking creates a
copy on your GitHub (which you can then clone).

Cloning makes it easier to fetch updates (and is often the best choice for new GitHub
users), but forking has advantages too.

Q: What happens when something goes wrong?

A: Think: "Oh shit, Git!"

Seriously: http://ohshitgit.com/.

Q: What happens when something goes horribly wrong?

A: Burn it down and start again.

http://happygitwithr.com/burn.html
This is a great advantage of Git's distributed nature. If something goes horribly wrong,
there's usually an intact version somewhere else.

52 / 53

http://happygitwithr.com/clone.html
http://happygitwithr.com/fork.html
http://ohshitgit.com/
http://happygitwithr.com/burn.html


FAQ (cont.)

53 / 53


