
Data Science for Economists
Lecture 1: Introduction

Grant McDermott
University of Oregon | EC 607

https://github.com/uo-ec607

Table of contents
1. Prologue

2. Syllabus highlights

3. Getting started

4. R for data science

5. Data visualization with ggplot2

2 / 48

Prologue

3 / 48

Introductions

Course
 https://github.com/uo-ec607

You'll soon receive access to a quarter-speci�c copy of this repo, where we submit
assignments, upload presentations, etc.

Me
 Grant McDermott

 grantmcd@uoregon.edu

 Assistant Professor (environmental economics and data science)

You
A quick roundtable of names, �elds/interests, and coding background.

4 / 48

https://github.com/uo-ec607
https://grantmcdermott.com/
mailto:grantmcd@uoregon.edu

Syllabus highlights

(Read the full document here.)

5 / 48

https://github.com/uo-ec607/syllabus/blob/master/syllabus.pdf

Why this course?
Fill in the gaps left by traditional econometrics and methods classes.

Practical skills that tools that will bene�t your dissertation and future career.
Neglected skills like how to actually �nd datasets in the wild and clean them.

Data science skills are largely distinct from (and complementary to) the core 'metrics oeuvre
familiar to economists.

Data viz, cleaning and wrangling; programming; cloud computation; relational
databases; machine learning; etc.

"In short, we will cover things that I wish someone had taught me when I was
starting out in graduate school."

6 / 48

You, at the end of this course

7 / 48

Grading

Component Weight

4 × homework assignments (20% each) 80%

2 × short presentations (5% each) 10%

1 × OSS contribution 10%

You can swap out one homework assignment for an (approved) �nal presentation of
your own research.
Short presentations summarize either a key lecture reading, or an (approved) software
package/platform.
We'll get to OSS contribution later in the course, but I particularly encourage
contributions to LOST.

PS — I'll also award a class participation bonus (2.5%) at my discretion.

8 / 48

https://github.com/uo-ec607/presentations
http://127.0.0.1:7192/lost-stats.github.io/

Lecture outline

Data science basics
Introduction: Motivation, software installation, and data visualization
Version control with Git(Hub)
Learning to love the shell
R language basics
Data cleaning and wrangling: 1) tidyverse and 2) data.table
Webscraping: (1) Server-side and CSS
Webscraping: (2) Client-side and APIs

Analysis and programming
Regression analysis in R
Spatial analysis in R
Functions in R: (1) Introductory concepts
Functions in R: (2) Advanced concepts
Parallel programming

9 / 48

Lecture outline (cont.)

Scaling up: Big data and cloud computation
Docker
Cloud computing with Google Compute Engine
High performance computing (Talapas cluster)
Databases: SQL(ite) and BigQuery
Spark
Options

Project work�ow and automation
Machine learning
Peer-review and student project presentations (demand dependent)

10 / 48

Getting started

11 / 48

Software installation and registration
1. Download R.

2. Download RStudio.

3. Download Git.

4. Create an account on GitHub and register for a student/educator discount.

You will soon receive an invitation to the quarter-speci�c course org. on GitHub, as
well as GitHub classroom, which is how we'll disseminate and submit assignments,
receive feedback and grading, etc.

If you had trouble completing any of these steps, please raise your hand.

My go-to place for installation guidance and troubleshooting is Jenny Bryan's
http://happygitwithr.com.

12 / 48

https://www.r-project.org/
https://www.rstudio.com/products/rstudio/download/preview/
https://git-scm.com/downloads
https://github.com/
https://education.github.com/discount_requests/new
https://classroom.github.com/
http://happygitwithr.com/

Some OS-speci�c extras
I'll detail further software requirements as and when the need arises. However, to help
smooth some software installation issues further down the road, please also do the
following (depending on your OS):

Windows: Install Rtools. I also recommend that you install Chocolately.
Mac: Install Homebrew. I also recommend that you con�gure/open your C++ toolchain
(see here.)
Linux: None (you should be good to go).

13 / 48

https://cran.r-project.org/bin/windows/Rtools/
https://chocolatey.org/
https://brew.sh/
https://github.com/rmacoslib/r-macos-rtools#installer-package-for-macos-r-toolchain-

Checklist
☑ Do you have the most recent version of R?

 version$version.string

 �� [1] "R version 4.0.4 (2021-02-15)"

☑ Do you have the most recent version of RStudio? (The preview version is �ne.)

☑ Have you updated all of your R packages?

 update.packages(ask = FALSE, checkBuilt = TRUE)

 RStudio.Version()$version
 �� Requires an interactive session but should return something like "[1] ‘1.4.11

14 / 48

https://www.rstudio.com/products/rstudio/download/preview/

Checklist (cont.)
Open up the shell.

Windows users, make sure that you installed a Bash-compatible version of the shell. If
you installed Git for Windows, then you should be good to go.

☑ Which version of Git have you installed?

 git ��version

 �� git version 2.30.1

☑ Did you introduce yourself to Git? (Substitute in your details.)

 git config ��global user.name 'Grant McDermott'
 git config ��global user.email 'grantmcd@uoregon.edu'
 git config ��global ��list

☑ Did you register an account in GitHub?

15 / 48

http://happygitwithr.com/shell.html#shell
https://gitforwindows.org/

Checklist (cont.)
We will make sure that everything is working properly with your R and GitHub setup next
lecture.

For the rest of today's lecture, I want to go over some very basic R concepts.

PS — Just so you know where we're headed: We'll return to these R concepts (and delve
much deeper) next week after a brief, but important detour to the lands of Git(Hub) and
the shell.

Don't worry, it will all make sense. You'll see.

16 / 48

R for data science

17 / 48

Why R and RStudio? (cont.)

18 / 48

Why R and RStudio? (cont.)

Data science positivism
Alongside Python, R has become the de facto language for data science.

See: The Impressive Growth of R, The Popularity of Data Science Software
Open-source (free!) with a global user-base spanning academia and industry.

"Do you want to be a pro�t source or a cost center?"

Bridge to applied economics and other tools
Already has all of the statistics and econometrics support, and is amazingly adaptable
as a “glue” language to other programming languages and APIs.
The RStudio IDE and ecosystem allow for further, seemless integration.

Path dependency
It's also the language that I know best.
(Learning multiple languages is a good idea, though.)

19 / 48

https://stackoverflow.blog/2017/10/10/impressive-growth-r/
http://r4stats.com/articles/popularity/

Some R basics
1. Everything is an object.

2. Everything has a name.

3. You do things using functions.

4. Functions come pre-written in packages (i.e. "libraries"), although you can — and
should — write your own functions too.

Points 1. and 2. can be summarised as an object-orientated programming (OOP) approach.

This may sound super abstract now, but we'll see lots of examples over the coming
weeks that will make things clear.

20 / 48

https://en.wikipedia.org/wiki/Object-oriented_programming

R vs Stata
If you're coming from Stata, some additional things worth emphasizing:

Multiple objects (e.g. data frames) can exist happily in the same workspace.

No more keep , preserve , restore hackery. (Though, props to Stata 16.)
This is a direct consequence of the OOP approach.

You will load packages at the start of every new R session. Make peace with this.

"Base" R comes with tons of useful in-built functions. It also provides all the tools
necessary for you to write your own functions.
However, many of R's best data science functions and tools come from external
packages written by other users.

R easily and in�nitely parallelizes. For free.

Compare the cost of a Stata/MP license, nevermind the fact that you effectively
pay per core...

You don't need to tset or xtset your data. (Although you can too.)

21 / 48

https://www.stata.com/new-in-stata/multiple-datasets-in-memory/
https://www.stata.com/statamp/

R code example (linear regression)
fit = lm(mpg ~ wt, data = mtcars)
summary(fit)

��
�� Call:
�� lm(formula = mpg ~ wt, data = mtcars)
��
�� Residuals:
�� Min 1Q Median 3Q Max
�� -4.5432 -2.3647 -0.1252 1.4096 6.8727
��
�� Coefficients:
�� Estimate Std. Error t value Pr(>|t|)
�� (Intercept) 37.2851 1.8776 19.858 < 2e-16 ���
�� wt -5.3445 0.5591 -9.559 1.29e-10 ���
�� ���
�� Signif. codes: 0 '���' 0.001 '��' 0.01 '*' 0.05 '.' 0.1 ' ' 1
��
�� Residual standard error: 3.046 on 30 degrees of freedom
�� Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
�� F-statistic: 91.38 on 1 and 30 DF, p�value: 1.294e-10

22 / 48

Base R plot
par(mar = c(4, 4, 1, .1)) �� Just for nice plot margins on this slide deck
plot(mtcars$wt, mtcars$mpg)
abline(fit, col = "red")

23 / 48

ggplot2
library(ggplot2)
ggplot(data = mtcars, aes(x = wt, y = mpg)) +
 geom_smooth(method = "lm", col = "red") +
 geom_point()

24 / 48

More ggplot2

25 / 48

Install and load
Open up your laptops. For the remainder of this �rst lecture, we're going continue playing
around with ggplot2 (i.e. livecoding).

If you don't have them already, install the ggplot2 and gapminder packages via either:

Console: Enter install.packages(c("ggplot2", "gapminder"), dependencies=T) .
RStudio: Click the "Packages" tab in the bottom-right window pane. Then click "Install"
and search for these two packages.

26 / 48

https://ggplot2.tidyverse.org/

Install and load (cont.)
Once the packages are installed, load them into your R session with the library()
function.

library(ggplot2)
library(gapminder) �� We're just using this package for the gapminder data

Notice too that you don't need quotes around the package names any more. Reason: R now
recognises these packages as de�ned objects with given names. ("Everything in R is an
object and everything has a name.")

PS — A convenient way to combine the package installation and loading steps is with the
pacman package's p_load() function. If you run pacman��p_load(ggplot, gapminder) it
will �rst look to see whether it needs to install either package before loading them. Clever.

We'll get to this next week, but if you want to run a function from an (installed)
package without loading it, you can use the PACKAGE��package_function() syntax.

27 / 48

https://github.com/trinker/pacman

Brief aside: The gapminder dataset
Because we're going to be plotting the gapminder dataset, it is helpful to know that it
contains panel data on life expectancy, population size, and GDP per capita for 142
countries since the 1950s.

gapminder

�� # A tibble: 1,704 x 6
�� country continent year lifeExp pop gdpPercap
�� <fct> <fct> <int> <dbl> <int> <dbl>
�� 1 Afghanistan Asia 1952 28.8 8425333 779.
�� 2 Afghanistan Asia 1957 30.3 9240934 821.
�� 3 Afghanistan Asia 1962 32.0 10267083 853.
�� 4 Afghanistan Asia 1967 34.0 11537966 836.
�� 5 Afghanistan Asia 1972 36.1 13079460 740.
�� 6 Afghanistan Asia 1977 38.4 14880372 786.
�� 7 Afghanistan Asia 1982 39.9 12881816 978.
�� 8 Afghanistan Asia 1987 40.8 13867957 852.
�� 9 Afghanistan Asia 1992 41.7 16317921 649.
�� 10 Afghanistan Asia 1997 41.8 22227415 635.
�� # … with 1,694 more rows

28 / 48

https://github.com/jennybc/gapminder

Elements of ggplot2
Hadley Wickham's ggplot2 is one of the most popular packages in the entire R canon.

It also happens to be built upon some deep visualization theory: i.e. Leland Wilkinson's
The Grammar of Graphics.

There's a lot to say about ggplot2's implementation of this "grammar of graphics" approach,
but the three key elements are:

1. Your plot ("the visualization") is linked to your variables ("the data") through various
aesthetic mappings.

2. Once the aesthetic mappings are de�ned, you can represent your data in different
ways by choosing different geoms (i.e. "geometric objects" like points, lines or bars).

3. You build your plot in layers.

That's kind of abstract. Let's review each element in turn with some actual plots.

29 / 48

http://hadley.nz/
https://www.amazon.com/Grammar-Graphics-Statistics-Computing/dp/0387245448

1. Aesthetic mappings
ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
 geom_point()

30 / 48

1. Aesthetic mappings (cont.)
ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
 geom_point()

Focus on the top line, which contains the initialising ggplot() function call. This function
accepts various arguments, including:

Where the data come from (i.e. data = gapminder).
What the aesthetic mappings are (i.e. mapping = aes(x = gdpPercap, y = lifeExp)).

The aesthetic mappings here are pretty simple: They just de�ne an x-axis (GDP per capita)
and a y-axis (life expecancy).

To get a sense of the power and �exibility that comes with this approach, however,
consider what happens if we add more aesthetics to the plot call...

31 / 48

1. Aesthetic mappings (cont.)

Note that I've dropped the "mapping =" part of the ggplot call. Most people just start with
"aes(...)", since ggplot2 knows the order of the arguments.

ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp, size = pop, col = contine
 geom_point(alpha = 0.3) �� "alpha" controls transparency. Takes a value between

32 / 48

1. Aesthetic mappings (cont.)
We can specify aesthetic mappings in the geom layer too.

ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp)) + �� Applicable to all g
 geom_point(aes(size = pop, col = continent), alpha = 0.3) �� Applicable to this

33 / 48

1. Aesthetic mappings (cont.)
Oops. What went wrong here?

ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp)) +
 geom_point(aes(size = "big", col="black"), alpha = 0.3)

Answer: Aesthetics must be mapped to variables, not descriptions! 34 / 48

1. Aesthetic mappings (cont.)
At this point, instead of repeating the same ggplot2 call every time, it will prove convenient
to de�ne an intermediate plot object that we can re-use.

p = ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp))
p

35 / 48

2. Geoms
Once your variable relationships have been de�ned by the aesthetic mappings, you can
invoke and combine different geoms to generate different visulaizations.

p +
 geom_point(alpha = 0.3) +
 geom_smooth(method = "loess")

36 / 48

2. Geoms (cont.)
Aesthetics can be applied differentially across geoms.

p +
 geom_point(aes(size = pop, col = continent), alpha = 0.3) +
 geom_smooth(method = "loess")

37 / 48

2. Geoms (cont.)
The previous plot provides a good illustration of the power (or effect) that comes from
assigning aesthetic mappings "globally" vs in the individual geom layers.

Compare: What happens if you run the below code chunk?

ggplot(data = gapminder, aes(x = gdpPercap, y = lifeExp, size = pop, col = contine
 geom_point(alpha = 0.3) +
 geom_smooth(method = "loess")

38 / 48

2. Geoms (cont.)
Similarly, note that some geoms only accept a subset of mappings. E.g. geom_density()
doesn't know what to do with the "y" aesthetic mapping.

p + geom_density()

�� Error: geom_density requires the following missing aesthetics: y

39 / 48

2. Geoms (cont.)
We can �x that by being more careful about how we build the plot.

ggplot(data = gapminder) + �� i.e. No "global" aesthetic mappings"
 geom_density(aes(x = gdpPercap, fill = continent), alpha=0.3)

40 / 48

3. Build your plot in layers
We've already seen how we can chain (or "layer") consecutive plot elements using the +
connector.

The fact that we can create and then re-use an intermediate plot object (e.g. "p") is
testament to this.

But it bears repeating: You can build out some truly impressive complexity and
transformation of your visualization through this simple layering process.

You don't have to transform your original data; ggplot2 takes care of all of that.
For example (see next slide for �gure).

p2 =
 p +
 geom_point(aes(size = pop, col = continent), alpha = 0.3) +
 scale_color_brewer(name = "Continent", palette = "Set1") + �� Different colour s
 scale_size(name = "Population", labels = scales��comma) + �� Different point (i.
 scale_x_log10(labels = scales��dollar) + �� Switch to logarithmic scale on x�axi
 labs(x = "Log (GDP per capita)", y = "Life Expectancy") + �� Better axis titles
 theme_minimal() �� Try a minimal (b&w) plot theme

41 / 48

3. Build your plot in layers (cont.)

42 / 48

What else?
We have barely scratched the surface of ggplot2's functionality... let alone talked about the
entire ecosystem of packages that has been built around it.

Here's are two quick additional examples to whet your appetite

Note that you will need to install and load some additional packages if you want to
recreate the next two �gures on your own machine. A quick way to do this:

if (!require("pacman")) install.packages("pacman")
pacman��p_load(hrbrthemes, gganimate)

43 / 48

What else? (cont.)
Simple extension: Use an external package theme.

library(hrbrthemes)
p2 + theme_modern_rc() + geom_point(aes(size = pop, col = continent), alpha = 0.2)

44 / 48

What else? (cont.)
Elaborate extension: Animation! (See the next slide for the resulting GIF.)

library(gganimate)
ggplot(gapminder, aes(gdpPercap, lifeExp, size = pop, colour = country)) +
 geom_point(alpha = 0.7, show.legend = FALSE) +
 scale_colour_manual(values = country_colors) +
 scale_size(range = c(2, 12)) +
 scale_x_log10() +
 facet_wrap(~continent) +
 # Here comes the gganimate specific bits
 labs(title = 'Year: {frame_time}', x = 'GDP per capita', y = 'life expectancy')
 transition_time(year) +
 ease_aes('linear')

45 / 48

What else? (cont.)

Note that this animated plot provides a much more intuitive understanding of the
underlying data. Just as Hans Rosling intended.

46 / 48

https://www.ted.com/talks/hans_rosling_the_best_stats_you_ve_ever_seen

What else? (cont.)
There's a lot more to say, but I think we'll stop now for today's lecture.

We also haven't touched on ggplot2's relationship to "tidy" data.

It actually forms part of a suite of packages collectively known as the tidyverse.
We will get back to this in Lecture 5.

Rest assured, you will be using ggplot2 throughout the rest of this course and developing
your skills along the way.

Your very �rst assignment (coming up) is a chance speci�cally to hone some of those
skills.

In the meantime, I want you to do some reading and practice on your own. Pick either of
the following (or choose among the litany of online resources) and work through their
examples:

Chapter 3 of R for Data Science by Hadley Wickham and Garett Grolemund.
Data Visualization: A Practical Guide by Kieran Healy.
Designing ggplots by Malcom Barrett.

47 / 48

https://www.tidyverse.org/
https://r4ds.had.co.nz/data-visualisation.html
https://socviz.co/makeplot.html
https://designing-ggplots.netlify.com/

Next lecture: Deep dive into Git(Hub).

48 / 48

