
Econ 5253 - Spring 2025 Problem Set 4
Due: Feb. 18

beginning of class

This problem set will provide an opportunity for you to continue practicing with the
command line and executing batch jobs on the OSCER cluster. You will also get practice
importing data and working in Spark. As with the previous problem sets, you will submit
this problem set by pushing the document to your (private) fork of the class repository.
You will put this and all other problem sets in the path /DScourseS25/ProblemSets/PS4/
and name the file PS4_LastName.*. Your OSCER home directory and GitHub repository
should be perfectly in sync, such that I should be able to find these materials by looking
in either place. Your directory should contain four files:

• PS4a_LastName.R (first R exercise; though you can also do this in Python or Julia if
you prefer)

• PS4b_LastName.R (sparkR exercise)

• PS4_LastName.tex

• PS4_LastName.pdf

1. Log in to OSCER, change to the directory where you cloned your forked GitHub
repository (probably ~/DScourseS25), and make sure the OSCER version of your
repository is synchronized with what is listed on GitHub by issuing a pull. That
is, type git pull origin master from your OSCER DScourseS25 folder.

2. Synchronize your fork with the class repository by either clicking the “sync fork”
button on GitHub or by typing git pull upstream master from your terminal.

• Before doing this, make sure that you have set your default git text editor to
Nano (and not Vim) by typing the following at the command line: git config
--global core.editor "nano"

Making your SLURM job scripts visible from any directory — Note that we did
this in class earlier in the semester so you may not need to do anything for this
question

3. In class last week, you practiced running simple R or Python scripts on the OSCER
cluster using the Rbatch, Pythonbatch, and juliabatch scripts located in the SLURM/
folder of our course GitHub repository. Recall that the syntax for these commands
was (assuming you are in the SLURM/ directory): ./Rbatch rscript.R rscriptoutput.log
1:00 my-email@address.com, where the “1:00” argument is a number indicating how
long the job should run for. Now, I’d like you to move these files to a place in your

Econ 5253 - Spring 2025 Problem Set 4
Due: Feb. 18

beginning of class

OSCER directory tree where they can be executed from any folder (not just the SLURM/
folder). To do so, follow these steps:

1. Change to your home directory: cd ~

2. Create a new directory called bin/ by typing mkdir bin

3. Copy the *batch files from your SLURM/ folder to the ~/bin/ folder using cp.

4. Change to the bin/ folder and do a listing and make sure that the files copied suc-
cessfully, and that they are executable (the filenames should be colored green).1

5. Go back to your home folder (cd ~) and type which Rbatch. It should return
with ~/bin/Rbatch. Now you can execute the Rbatch script from wherever you
are on OSCER2

(a) Note that, when executing these scripts from now on, you don’t need to
prepend them with “./” because “./” is telling Linux to execute the file
that’s in the current directory. So in the future, execute these scripts by sim-
ply typing Rbatch myfile.R and not ./Rbatch myfile.R.

Making Spark executables visible from any directory — again, we did this in class
but please make sure you’ve got it set up properly

4. This follows a bit on the previous question. What you will now do is edit your
~/.bash_profile file to make it so you can simply type sparkR or pyspark to automat-
ically open the Spark API of your choice. To do this, open in nano the .bash_profile
file which is located in your home directory. Near the bottom of the file, you should
see the phrase EXPORT PATH. Just above this line, type module load Spark/2.0.0.
Save and close the file, and then log out of OSCER. Once you’ve logged back in to
OSCER, verify that your modification worked by typing which sparkR at the com-
mand line. The command prompt should reply with a long file path.

Practice with JSON files (R exercise part 1)

5. This question will help you get comfortable working with (and converting from)
JSON data, which is the most common data format for APIs that house web data.

1If they are not green, issue a chmod 774 filename command on each file.
2For those curious about what’s going on “under the hood,” there is a Linux variable called $PATH

which tells the system where to look for executable files. This $PATH variable is loaded whenever you log
in because it is contained in the file ~/.bash_profile. By making changes to your .bash_profile file, you
can change your login envrionment without having to repeat commands every time you log in.

Econ 5253 - Spring 2025 Problem Set 4
Due: Feb. 18

beginning of class

(a) Download the following file from within R, Python, or Julia: "https://www.
vizgr.org/historical-events/search.php?format=json&begin_date=00000101&
end_date=20240209&lang=en" This website lists historical events from Jan 1, 0000
until Feb 9, 2024. The way to do this is to call wget (which is a system command)
from inside R/Python/Julia. Note that we want to specify the local name of
this file (call it dates.json). To do that, we say wget -O filename.extension
"urlpath" (note: that’s a letter O, not a number 0; also pay attention to the quo-
tation marks).

• R sytnax is: system(’linux shell command’)

• Python sytnax is: call([”linux”, ”shell”, ”command”])3

• Julia sytnax is: run(`linux shell command`)

(b) Now print your file to the console by typing cat dates.json (or whatever you
choose to name the file) within the system call.

(c) This file is ugly, so let’s make it a little easier to deal with by converting it to a
data frame.

• If you use R, you will need to call the libraries jsonlite and tidyverse. You
may need to install them first. The code to convert to a dataframe requires
two steps. First, convert the JSON to a list: mylist <- fromJSON(’dates.json’).
(Make sure you call the file by whatever you called it in part (b).) Second,
convert the list to a data frame (and remove the first element, since in this
case it is not useful): mydf <- bind_rows(mylist$result[-1])

(d) Check what type of object mydf is. What type of an object is mydf$date?

• In R, this is done with class().

• In Python, this is class().

• In Julia, this is typeof().

(e) List the first n rows of the mydf dataframe.

(f) Put all of these commands into an R, Python, or Julia script and then run it from
your PS4/ directory using Rbatch, Pythonbatch, or juliabatch. Remember the
correct syntax which is listed in Question 3 of this homework.

What I wanted you to take away from this exercise is that there is no one-to-one
mapping from JSON/YAML files to tabular data. So creating a tabular data frame
from a JSON requires a little extra work. The same holds true for other data types like

3This requires the call function from the import library. Also note that spaces in the command need to
be in separate strings.

"https://www.vizgr.org/historical-events/search.php?format=json&begin_date=00000101&end_date=20240209&lang=en"
"https://www.vizgr.org/historical-events/search.php?format=json&begin_date=00000101&end_date=20240209&lang=en"
"https://www.vizgr.org/historical-events/search.php?format=json&begin_date=00000101&end_date=20240209&lang=en"

Econ 5253 - Spring 2025 Problem Set 4
Due: Feb. 18

beginning of class

XML and HTML (though these may be closer to a one-to-one tabular representation).
Also, note that the fromJSON and other functions can accept a URL as an argument.
I had you use the shell just so you can get comfortable with accessing the shell from
within R/Julia/Python.

Practice with sparklyr (R exercise part 2)

NOTE: THE INSTRUCTIONS IN THIS EXERCISE MAY NOT WORK FOR YOU.
I ENCOURAGE YOU TO GIVE THEM A TRY, BUT IF THEY DON’T WORK ON
THE FIRST TRY, YOU WILL NOT BE PENALIZED. I DON’T WANT YOU TO
WASTE VERY MUCH TIME TRYING TO GET IT TO WORK IF IT DOESN’T
WORK IMMEDIATELY.

6. This exercise will familiarize yourself with sparklyr which is how one can use Spark
through R. The walkthrough that I am giving you can also be found at https://
spark.rstudio.com/. Please create an R script called PS4b_LastName.R which con-
tains all of your sparklyr commands (so that you could easily reproduce your work
whenever called upon).

1. Open an R session on OSCER by typing R at the command prompt.

2. Make sure you have installed the sparklyr and tidyverse packages.

3. Load sparklyr and tidyverse packages.

4. Set up a connection to Spark by issuing the following commands:

sc <- spark_connect(master = "local")

5. Create a tibble called df1 that loads in the iris data.4

6. Now copy this tibble into Spark, calling it df. The command for this is df <-
copy_to(sc, df1).

7. Verify that the two dataframe are different types: type class(df1) and class(df).
What is the class of each?

8. Are the column names any different across the two objects? If so, why might that
be?

9. Next, we will apply the common RDD/SQL operation: select

(a) List the first 6 rows of the Sepal_Length and Species columns of df. This
can be done by typing df %>% select(Sepal_Length,Species) %>% head
%>% print.

4Hint: use the command as_tibble().

https://spark.rstudio.com/
https://spark.rstudio.com/

Econ 5253 - Spring 2025 Problem Set 4
Due: Feb. 18

beginning of class

10. Now let’s do another common RDD operation: filter

(a) List the first 6 rows of all columns of df where Sepal_Length is larger than
5.5. This can be done by typing df %>% filter(Sepal_Length>5.5) %>%
head %>% print.

11. Combine the two previous exercises into one line (that is, put both the select
and filter operations into one line using the dplyr pipeline.

12. Another useful RDD operation is “group_by.” We can compute the average sepal
length, as well as the number of observations, by each of the three iris species:
df2 <- df %>% group_by(Species) %>% summarize(mean = mean(Sepal_Length),
count = n()) %>% head %>% print.

13. Finally, a common RDD operation is to sort. We can sort (arrange()) the above
“grouped by” RDD by any of the three variables it contains.

(a) Re-execute the previous call, this time assigning df2 to the output.

(b) Now use the arrange() function to sort the result ascending by species
name: df2 %>% arrange(Species) %>% head %>% print ECHO is off. Note:
I got an error when using arrange() so you may not get this step to work

7. Go to www.overleaf.com and create another .tex document, this time naming it PS4_LastName.tex.
In it, tell me about some data sources that you would be interested in scraping from.
These could be, for example: classical texts from Project Gutenberg, tweets that in-
clude a particular hashtag, college or professional sports statistics, financial market
data, etc. For anything you are interested in, there is almost surely data that is freely
available on the internet, and most data sources come with highly accessible APIs
for R or Python. In another part of your .tex file, answer the questions raised in the
various parts of the previous question.

8. Compile your .tex file, download the PDF and .tex file, and transfer it to your cloned
repository on OSCER. There are many ways to do this; you may ask an AI chatbot
or simply drag-and-drop using VS Code. Do not put these files in your fork on your
personal laptop; otherwise git will detect a merge conflict and that will be a painful
process to resolve.

9. You should turn in the following files: .tex, .pdf, and two .R scripts. Make sure that
these files each have the correct naming convention (see top of this problem set for di-
rections) and are located in the correct directory (i.e. ~/DScourseS25/ProblemSets/PS4).

10. Synchronize your local git repository (in your OSCER home directory) with your
GitHub fork by using the commands in Problem Set 2 (i.e. git add, git commit -m

www.overleaf.com

Econ 5253 - Spring 2025 Problem Set 4
Due: Feb. 18

beginning of class

”message”, and git push origin master). More simply, you may also just go to your
fork on GitHub and click the button that says “Sync fork” or “Fetch upstream.” Then
make sure to pull any changes to your local copy of the fork. Once you have done
this, issue a git pull from the location of your other local git repository (e.g. on your
personal computer). Verify that the PS4 files appear in the appropriate place in your
other local repository.

