
Econ 5253 - Spring 2025 Problem Set 10
Due: Apr. 15

beginning of class

This problem set will give you practice in using cross-validation to tune classifica-
tion models using four of the Five Tribes of Machine Learning: trees, neural networks,
naive Bayes, and k-nearest neighbor / support vector machines. As with the previous
problem sets, you will submit this problem set by pushing the document to your (pri-
vate) fork of the class repository. You will put this and all other problem sets in the path
/DScourseS25/ProblemSets/PS10/ and name the file PS10_LastName.*. Your OSCER
home directory and GitHub repository should be perfectly in sync, such that I should
be able to find these materials by looking in either place. Your directory should contain
at least three files:

• PS10_LastName.R (you can also do this in Python or Julia if you prefer, but I think it
will be much more difficult to use either of those alternatives for this problem set)

• PS10_LastName.tex

• PS10_LastName.pdf

1. Type git pull origin master from your OSCER DScourseS25 folder to make sure
your OSCER folder is synchronized with your GitHub repository.

2. Synchronize your fork with the class repository by doing a git fetch upstream and
then merging the resulting branch. (git merge upstream/master -m “commit message”)

3. Install the following machine learning packages if you haven’t already:

• rpart

• e1071

• kknn

• nnet

• kernlab

4. Start your code file by importing the starter code I have provided you at https://
github.com/tyleransom/DScourseS25/blob/master/ProblemSets/PS10/PS10starter.
R. This starter code reads in the adult income data from the UC Irvine datasets repos-
itory. The goal of this problem set is to compare the 5 Tribes in terms of their ability
to classify whether someone is high-income or not. Thus, the target variable for this
exercise will be income$high.earner.

5. Using the tidymodels library (or a similar resource in Python or Julia), train, cross-
validate and compute the accuracy of the predicted “high earner” variable in the test

https://github.com/tyleransom/DScourseS25/blob/master/ProblemSets/PS10/PS10starter.R
https://github.com/tyleransom/DScourseS25/blob/master/ProblemSets/PS10/PS10starter.R
https://github.com/tyleransom/DScourseS25/blob/master/ProblemSets/PS10/PS10starter.R

Econ 5253 - Spring 2025 Problem Set 10
Due: Apr. 15

beginning of class

set. We will dispatch with recipes since we won’t do any feature engineering in this
problem set. Assume the following architecture in parsnip:

• classification mode

• 3-fold cross-validation

• various “specifications” and “engines” (algorithms):

1. Logistic regression: logistic_reg() with engine ”glmnet”

2. Trees: decison_tree() with engine ”rpart”

3. Neural network: mlp() with engine ”nnet”

4. kNN: nearest_neighbor() with engine ”kknn”

5. SVM: svm_rbf() with engine ”kernlab”

6. Each algorithm has hyperparameters that will need to be cross validated:

• Logit model

– penalty (this is the λ of the LASSO model just like in PS9)

• Tree model

– min_n, which is an integer ranging from 10 to 50 (governs minimum sample
size for making a split)

– tree_depth, which is an integer ranging from 5 to 20 (governs maximum
tree depth)

– cost_complexity, which is a real number ranging from 0.001 to 0.2 (governs
complexity of the tree)

• Neural network model

– hidden_units, which is an integer ranging from 1 to 10 (governs number of
units in hidden layer)

– penalty, which acts like λ in the LASSO model

• kNN

– neighbors, which is an integer ranging from 1 to 30 (governs the number of
“neighbors” to consider)

• SVM

– cost, which is a real number in the set
{

2−2, 2−1, 20, 21, 22, 210} (governs how
soft the margin of classification is)

– rbf_sigma, which is also a real number in the set
{

2−2, 2−1, 20, 21, 22, 210}
(governs the shape [variance] of the Gaussian kernel)

Econ 5253 - Spring 2025 Problem Set 10
Due: Apr. 15

beginning of class

For hyperparameters that are real-valued (i.e. can take on any real number), we can
define a grid like we did with LASSO: lambda_grid <- grid_regular(penalty(),
levels = 50) but when the hyperparameters are discrete (i.e. can only take on in-

teger values), we should instead create a data frame with the values that we want it
to take on. For example, with kNN, we would set knn_grid <- tibble(neighbors =
seq(1,30)

7. Now tune the models. Use the accuracy as the criterion for tuning.

8. Once tuned, apply the optimal tuning parameters to each of the algorithms. Then
train the models, generate predictions, and assess performance. (Just like in PS9).

9. As a table in your .tex file, report the optimal values of the tuning parameters for each
of the algorithms. How does each algorithm’s out-of-sample performance compare
with each of the other algorithms?

10. Compile your .tex file, download the PDF and .tex file, and transfer it to your cloned
repository on OSCER. There are many ways to do this; you may ask an AI chatbot
or simply drag-and-drop using VS Code. Do not put these files in your fork on your
personal laptop; otherwise git will detect a merge conflict and that will be a painful
process to resolve.

11. You should turn in the following files: .tex, .pdf, and any additional scripts (e.g. .R,
.py, or .jl) required to reproduce your work. Make sure that these files each have the
correct naming convention (see top of this problem set for directions) and are located
in the correct directory (i.e. ~/DScourseS25/ProblemSets/PS10).

12. Synchronize your local git repository (in your OSCER home directory) with your
GitHub fork by using the commands in Problem Set 2 (i.e. git add, git commit -m
”message”, and git push origin master). More simply, you may also just go to your
fork on GitHub and click the button that says “Fetch upstream.” Then make sure to
pull any changes to your local copy of the fork. Once you have done this, issue a git
pull from the location of your other local git repository (e.g. on your personal com-
puter). Verify that the PS10 files appear in the appropriate place in your other local
repository.

