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1 What is “optimization”?

The word “optimization” generally means “the action of making the best or most effective
use of a situation or resource” (Google’s dictionary). In data science, this could refer to
two different things:

1. Streamlining some sort of automated process

(a) e.g. “We optimized the web scraping script so that it now runs in half the time
and has 40% fewer lines of code.”

2. Finding the optimum of an objective function (or “selecting the best element from
some set of available alternatives,” according to Wikipedia)

(a) e.g. “Our preferred model estimate is the set of parameters that optimizes the
sum of the squared distance between the data and the model.” [in this case,
“optimize” would mean “minimize”]

The second of these two definitions is what you should think of when you hear “opti-
mization” in a data science context.

2 Ways to optimize

There are many different ways we can optimize a particular objective function. The two
most common ways—which we will discuss today—are known as minimum distance
estimation and maximum likelihood estimation. These are two different but related
ways of expressing the objective function.

In any optimization problem, the data scientist must also choose an algorithm with
which to optimize, if the optimum cannot be expressed in a math formula. The three
most popular optimization algorithms are:

1. gradient descent
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2. stochastic gradient descent

3. L-BFGS

We’ll talk about these algorithms a bit later in the course.

3 Math: the classical linear model

Let’s suppose we have the classical linear model:

yi = x′i β + εi (1)

where yi is the outcome for observation (equiv. training example) i, xi are the covariates
(equiv. features) of observation i, β are parameters to be estimated, and εi is the error
term.

We can rewrite (1) in vector form:

y = Xβ + ε (2)

where now y is a vector (i.e. column of data), X is a matrix (i.e. a table of data), β are
exactly the same as before, and ε is an (unobservable) error term vector.

3.1 Optimization method 1: least squares

We can define our objective function so that we minimize the (squared) distance between
Xβ and y. In this sense, minimizing the distance will give us the best fit (i.e. optimum) of
the model given the data. In formal terms, we want to

min
β

∑
i

(
yi − x′i β

)2

=min
β

∑
i

ε2
i

=min
β

ε′ε (3)

=min
β

(y − Xβ)′ (y − Xβ)

Note that the four equations above are all equivalent. We can conserve on notation by
utilizing vector and matrix notation (e.g. ε′ε is the dot product of the ε vector with itself).1

1A related objective function to the one above is to minimize the absolute value of the distance between
y and Xβ. This model is known as least absolute deviations and the parameter estimates at the optimum
correspond to the median regression model rather than the OLS regression model (the linear prediction of
which passes through the mean).
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3.1.1 Using calculus to solve for the least squares estimator

We can solve this optimization problem using calculus:

min
β

(y − Xβ)′ (y − Xβ)

=min
β

(
y′y − β′X′y − y′Xβ + β′X′Xβ

)

How do we use calculus to find an optimum? Take first-order conditions and set them
equal to zero:

[β] : − ∂

∂β
β′X′y − ∂

∂β
y′Xβ +

∂

∂β
β′X′Xβ (4)

0 =− X′y − X′y + 2
(
X′X

)
β̂

0 =− 2X′y + 2
(
X′X

)
β̂

X′y =
(
X′X

)
β̂

β̂ =
(
X′X

)−1
X′y

which is known as the OLS estimator.

3.1.2 Checking second-order conditions

How do we know if our optimum is a minimum or a maximum? We need to check that
the second-order conditions are satisfied. For a minimum, we need the second derivative
to be positive. Taking the derivative of our first-order condition with respect to beta, we
get:

0 <
∂2

∂β∂β′ (y − Xβ)′ (y − Xβ) (5)

0 <
∂

∂β′
[
−X′y − X′y + 2

(
X′X

)
β̂
]

0 < 2
(
X′X

)

(
X′X

)
> 0

This condition is satisfied so long as the following conditions hold:

1. X has more rows than columns (i.e. N ≥ K, where N is the number of observations
and K is the number of columns in X)

2. X cannot have perfectly collinear columns

In linear algebra parlance, if these conditions are met, then we say that the matrix (X′X)
has full rank, or that (X′X) is nonsingular.
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3.2 Optimization method 2: maximum likelihood

Another option for finding the optimum of our linear model is by using what is called
maximum likelihood. Let’s review what maximum likelihood is and then derive it for
this simple linear model.

3.2.1 Maximum likelihood estimation of the mean and variance of the normal distri-
bution

Suppose we have N observations of a random variable, call it X, which we know to be
independently and identically distributed (iid) according to the Normal distribution. This
means that, for any given observation xi, we will have the following probability density
function:

f (xi; µ, σ) =
1√

2πσ2
exp

(

− (xi − µ)2

2σ2

)

(6)

where we put µ, σ on the right hand side of the semicolon to denote that we are interested
in estimating these parameters from our N observations of variable X.

Why do we care about the probability density function? We want to use our data to
find what the mean and variance would be if we assume that our collected data follows a
normal distribution.

The likelihood function We define what is called the likelihood function, which in plain
terms is the likelihood that—given our data and assumption of normal distribution of
that data—the mean is equal to µ and the standard deviation is equal to σ.

L (µ, σ; x1, x2, . . . , xN) =
N

∏
i=1

f (xi; µ, σ) (7)

= f (x1; µ, σ) f (x2; µ, σ) · · · f (xN; µ, σ)

where here ∏ is the Greek capital π, which is known as the product operator. ∏ is the
multiplication analog of the summation operator ∑. We can do a little bit of simplifying:

L (µ, σ; x1, x2, . . . , xN) =
N

∏
i=1

f (xi; µ, σ)

= f (x1; µ, σ) f (x2; µ, σ) · · · f (xN; µ, σ)

=

[

1√
2πσ2

exp

(

− (x1 − µ)2

2σ2

)]

× · · · ×
[

1√
2πσ2

exp

(

− (xN − µ)2

2σ2

)]

(8)
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Figure 1: Illustration of a likelihood function

Source: reliawiki.org

If you recall properties of exponents, we can simplify (8) as follows:

L (µ, σ; x1, x2, . . . , xN) =

(
1√

2πσ2

)N

exp

(

−∑
N
i=1 (xi − µ)2

2σ2

)

=






1
(√

2πσ2
)N




 exp

(

−∑
N
i=1 (xi − µ)2

2σ2

)

(9)

What does the likelihood function look like? See Figure 1 for an example where there
are two parameters (e.g. µ and σ2 in the example above).

The log likelihood function Recall that, when ordering a set, one can take a monotonic
transformation of the set and preserve the ordering. It turns out that we can apply such
a transformation to (9) by taking the natural logarithm (ln) of both sides. This leaves us
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with:

lnL (µ, σ; x1, x2, . . . , xN) = ln











1
(√

2πσ2
)N




 exp

(

−∑
N
i=1 (xi − µ)2

2σ2

)





ℓ (µ, σ; x1, x2, . . . , xN) = ln






1
(√

2πσ2
)N




+ ln

(

exp

(

−∑
N
i=1 (xi − µ)2

2σ2

))

= ln (1)
︸ ︷︷ ︸

=0

− ln

((

2πσ2
)N/2

)

− 1

2σ2

N

∑
i=1

(xi − µ)2

=− N

2
ln
(

2πσ2
)

− 1

2σ2

N

∑
i=1

(xi − µ)2 (10)

Equation (10) is known as the log likelihood function. Our goal is find the estimated µ
and σ that maximize this function.2

Finding the maximum of the log likelihood function To find the maximum likeli-
hood estimates (MLEs) of the log likelihood function, we take the first derivative of
ℓ (µ, σ; x1, . . . , xN) with respect to µ and σ:

∂

∂µ
ℓ (µ, σ; x1, x2, . . . , xN) =

∂

∂µ

[

−N

2
ln
(

2πσ2
)

− 1

2σ2

N

∑
i=1

(xi − µ)2

]

=− 1

2σ2

∂

∂µ

N

∑
i=1

(xi − µ)2 . . . (need to use the chain rule)

0 =− 2 · (−1)

2σ2

N

∑
i=1

(xi − µ̂) (11)

0 =
1

σ2

(
N

∑
i=1

xi − Nµ̂

)

µ̂ =
1

N

N

∑
i=1

xi

Now with respect to σ2 (it’s easier than with respect to σ):

2Because of monotonicity, the maximum of the likelihood function will be the same as the maximum of
the log likelihood function.
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∂

∂σ2
ℓ (µ, σ; x1, x2, . . . , xN) =

∂

∂σ2

[

−N

2
ln
(

2πσ2
)

− 1

2σ2

N

∑
i=1

(xi − µ)2

]

=
∂

∂σ2

[

−N

2
ln (2π)− N

2
ln
(

σ2
)

− 1

2σ2

N

∑
i=1

(xi − µ)2

]

=− N

2σ2
− ∂

∂σ2

[

1

2σ2

N

∑
i=1

(xi − µ)2

]

0 =− N

2σ̂2
+

1

2 (σ̂2)
2

N

∑
i=1

(xi − µ)2 (12)

0 =− N

2σ̂2
+

1

2σ̂4

N

∑
i=1

(xi − µ)2

0 =
1

2σ̂2

[

1

2σ̂2

N

∑
i=1

(xi − µ)2 − N

]

σ̂2 =
1

N

N

∑
i=1

(xi − µ)2

So our Maximum Likelihood Estimate (MLE) is

µ̂ =
1

N

N

∑
i=1

xi

σ̂2 =
1

N

N

∑
i=1

(xi − µ)2

and those formulas should look very familiar to you.

Second-order conditions For a maximum, we want the second order conditions to be
negative to ensure that we indeed have a maximum. It turns out that these conditions are
satisfied for the MLE of the normal distribution.

3.3 MLE optimization for linear regression

Going back to the linear model, let’s now assume that ε
iid∼ N

(
0, σ2

)
. We can write down a

likelihood function for this model, which is going to look similar to the likelihood function
we wrote before, but with a slight tweak—instead of targeting µ as a parameter, we’ll be
targeting β:
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L =∏
i

f (εi)

=∏
i

1√
2πσ2

exp

(

− ε2
i

2σ2

)

=

(
1√

2πσ2

)n

exp

(

−∑i ε2
i

2σ2

)

=

(
1√

2πσ2

)n

exp

(

− ε′ε
2σ2

)

, and, taking logs,

ℓ (y, X; β, σ) =− n

2
ln (2π)− n ln (σ)− 1

2σ2
(y − Xβ)′ (y − Xβ)

Our objective is to maximize the likelihood above with respect to β and σ:

max
β,σ

−n

2
ln (2π)− n ln (σ)− 1

2σ2
(y − Xβ)′ (y − Xβ)

∂ℓ

∂β
=

1

2σ2

∂

∂β
(y − Xβ)′ (y − Xβ)

0 =
1

2σ2

[
−2X′y + 2

(
X′X

)
β̂
]

β̂ =
(
X′X

)−1
X′y

∂ℓ

∂σ
=− n

σ
+

(y − Xβ)′ (y − Xβ)

σ3

0 =− n

σ̂
+

(y − Xβ)′ (y − Xβ)

σ̂3

n

σ̂
=
(y − Xβ)′ (y − Xβ)

σ̂3

σ̂2 =
(y − Xβ)′ (y − Xβ)

n

Second-order conditions for a maximum require that the matrix below be negative def-
inite3:

[
∂2ℓ

∂β∂β′
∂2ℓ

∂β∂σ
∂2ℓ

∂σ∂β′
∂2ℓ

∂σ2

]

=




−X′X

σ̂2
X′Xβ̂−X′y

σ̂3

β̂′X′X−y′X
σ̂3

n
σ̂2 −

3(y−Xβ̂)
′
(y−Xβ̂)

σ̂4



 (13)

3.4 Vocabulary

closed-form solution A solution to an optimization problem that can be expressed as a

mathematical formula. For example, β̂ = (X′X)−1
X′y is a closed-form solution to

3Negative definite is how we tell that a matrix is “negative.”
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the parameters of the classical linear model. This solution holds for either ordinary
least squares (OLS) minimization or maximum likelihood estimaiton (MLE)

Most optimization problems do not have a closed-form solution, in which case we
will need a computer to iteratively “guess and check” different candidate parame-
ters to find the minimum or maximum of our objective function.

We will talk about these in the next couple of classes.

gradient vector The gradient vector is the vector of first derivatives of the objective func-
tion. For MLE problems, it is the vector

[
∂ℓ
∂β
∂ℓ
∂σ

]

=

[
1

2σ2

[
−2X′y + 2 (X′X) β̂

]

− n
σ̂ + (y−Xβ)′(y−Xβ)

σ̂3

]

hessian matrix The hessian matrix is the matrix of second derivatives of the objective
function. For MLE problems, it is the matrix listed in (13).

Why do we need to know these three vocabulary words? Because we need to un-
derstand how the computer finds the optimum of our objective function. For the 99% of
problems that don’t have a closed-form solution, the computer tries to find the values of
the parameters that set the gradient vector equal to zero. Depending on the algorithm,
it will also check that the hessian matrix is negative definite (if we are maximizing) or
positive definite (if we are minimizing).

4 Math: logistic regression

The above examples optimized the classical linear model, which is a model where the
dependent variable is continuous and the optimization has a closed-form solution.

Now let’s look at a case where the dependent variable y is binary and (without loss of
generality) takes on values 0 and 1.

The appropriate statistical distribution to model a 0/1 outcome is known as the Bernoulli
distribution. In this distribution, y = 1 with probability p and y = 0 with probability 1− p.
You can think of a Bernoulli distribution as modeling a weighted coin flip, where heads
occurs with probabiliy p.

The probability density function (pdf) of the Bernoulli distribution is

f (y; p) = py (1 − p)1−y

Now let’s return to our classical linear model, but where y is now binary instead of
continuous. As before, we have (in matrix form)

y = Xβ + ε
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Now we want to think about the conditions under which y = 1 (which occurs with
probability p).

Pr (y = 1) =Pr (y > 0)

=Pr (Xβ + ε > 0)

=Pr (Xβ > −ε)

=Pr (ε > −Xβ)

=1 − Pr (ε < −Xβ)

=Pr (ε < Xβ) if ε has a symmetric distribution

=F (Xβ)

where F (·) denotes the cumulative distribution function of ε.

4.1 MLE of the logistic regression model

If we assume that ε is drawn from the logistic distribution (instead of the normal distri-
bution as in (8)), then we get

F (x) =
1

1 + e−x

=
ex

1 + ex

This is known as the logistic probability function, or the sigmoid function.
If we go back to the previous set of equations and think about our Bernoulli parameter

p, we have that p = Pr (y = 1) = F (Xβ) =
exp(Xβ)

1+exp(Xβ)
.

4.1.1 Logit likelihood function

Combining the above results, we get our likelihood function:

L (y, X; β) =∏
i

p
yi

i (1 − pi)
1−yi

=∏
i

(
exp (Xβ)

1 + exp (Xβ)

)yi
(

1 − exp (Xβ)

1 + exp (Xβ)

)1−yi

=∏
i

(
exp (Xβ)

1 + exp (Xβ)

)yi
(

1

1 + exp (Xβ)

)1−yi

ℓ (y, X; β) =∑
i

yi ln

(
exp (Xβ)

1 + exp (Xβ)

)

+ (1 − yi) ln

(
1

1 + exp (Xβ)

)

(14)
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4.1.2 Logit first order conditions

The first order conditions of (14) are:

∂ℓ

∂β
=

∂ℓ

∂β
y [Xβ − ln (1 + exp (Xβ))]− (1 − y) [ln (1 + exp (Xβ))]

0 =
∂ℓ

∂β
y [Xβ]− ln (1 + exp (Xβ))

0 =X′y −
[

1

1 + exp (Xβ)
X exp (Xβ)

]

0 =X′y −
[

X
exp (Xβ)

1 + exp (Xβ)

]

0 =X′y − X′p

0 =X′ (y − p)

0 =X′
(

y − exp (Xβ)

1 + exp (Xβ)

)

(15)

Now we need to solve for β:

X′y = X′
(

exp (Xβ)

1 + exp (Xβ)

)

But this does not have a closed-form solution! Hence, we need to use numerical methods
such as gradient descent or L-BFGS to iteratively “guess and check” various values of the
β vector that solve (15).
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