
Econ 5253 - Spring 2024 Problem Set 4

Due: Feb. 20

beginning of class

This problem set will provide an opportunity for you to continue practicing with the

command line and executing batch jobs on the OSCER cluster. You will also get practice

importing data and working in Spark.

As with the previous problem sets, you will submit this problem set by pushing the

document to your (private) fork of the class repository. You will put this and all other

problem sets in the path /DScourseS24/ProblemSets/PS4/ and name the file PS4_LastName.*.

Your OSCER home directory and GitHub repository should be perfectly in sync, such that

I should be able to find these materials by looking in either place. Your directory should

contain four files:

• PS4a_LastName.R (first R exercise; though you can also do this in Python or Julia if

you prefer)

• PS4b_LastName.R (sparkR exercise)

• PS4_LastName.tex

• PS4_LastName.pdf

1. Log in to OSCER, change to the directory where you cloned your forked GitHub

repository (probably ~/DScourseS24), and make sure the OSCER version of your

repository is synchronized with what is listed on GitHub by issuing a pull. That

is, type git pull origin master from your OSCER DScourseS24 folder.

2. Synchronize your fork with the class repository by either clicking the “sync fork”

button on GitHub or by typing git pull upstream master from your terminal.

• Before doing this, make sure that you have set your default git text editor to

Nano (and not Vim) by typing the following at the command line: git config

--global core.editor "nano"

Making your SLURM job scripts visible from any directory — Note that we did

this in class earlier in the semester so you may not need to do anything for this

question

3. In class last week, you practiced running simple R or Python scripts on the OSCER

cluster using the Rbatch, Pythonbatch, and juliabatch scripts located in the SLURM/

folder of our course GitHub repository. Recall that the syntax for these commands

was (assuming you are in the SLURM/ directory): ./Rbatch rscript.R rscriptoutput.log

1:00 my-email@address.com, where the “1:00” argument is a number indicating how

long the job should run for.

Econ 5253 - Spring 2024 Problem Set 4

Due: Feb. 20

beginning of class

Now, I’d like you to move these files to a place in your OSCER directory tree where

they can be executed from any folder (not just the SLURM/ folder). To do so, follow

these steps:

1. Change to your home directory: cd ~

2. Create a new directory called bin/ by typing mkdir bin

3. Copy the *batch files from your SLURM/ folder to the ~/bin/ folder using cp.

4. Change to the bin/ folder and do a listing and make sure that the files copied suc-

cessfully, and that they are executable (the filenames should be colored green).1

5. Go back to your home folder (cd ~) and type which Rbatch. It should return

with ~/bin/Rbatch. Now you can execute the Rbatch script from wherever you

are on OSCER!2

(a) Note that, when executing these scripts from now on, you don’t need to

prepend them with “./” because “./” is telling Linux to execute the file

that’s in the current directory. So in the future, execute these scripts by sim-

ply typing Rbatch myfile.R and not ./Rbatch myfile.R.

Making Spark executables visible from any directory — again, we did this in class

but please make sure you’ve got it set up properly

4. This follows a bit on the previous question. What you will now do is edit your

~/.bash_profile file to make it so you can simply type sparkR or pyspark to au-

tomatically open the Spark API of your choice.

To do this, open in nano the .bash_profile file which is located in your home direc-

tory.

Near the bottom of the file, you should see the phrase EXPORT PATH. Just above this

line, type module load Spark/2.0.0. Save and close the file, and then log out of

OSCER.

Once you’ve logged back in to OSCER, verify that your modification worked by typ-

ing which sparkR at the command line. The command prompt should reply with a

long file path.

1If they are not green, issue a chmod 774 filename command on each file.
2For those curious about what’s going on “under the hood,” there is a Linux variable called $PATH

which tells the system where to look for executable files. This $PATH variable is loaded whenever you log
in because it is contained in the file ~/.bash_profile. By making changes to your .bash_profile file, you
can change your login envrionment without having to repeat commands every time you log in.

Econ 5253 - Spring 2024 Problem Set 4

Due: Feb. 20

beginning of class

Practice with JSON files (R exercise part 1)

5. This question will help you get comfortable working with (and converting from)

JSON data, which is the most common data format for APIs that house web data.

(a) Download the following file from within R, Python, or Julia: "https://www.

vizgr.org/historical-events/search.php?format=json&begin_date=00000101&

end_date=20240209&lang=en"

This website lists historical events from Jan 1, 0000 until Feb 9, 2024.

The way to do this is to call wget (which is a system command) from inside

R/Python/Julia. Note that we want to specify the local name of this file (call it

dates.json). To do that, we say wget -O filename.extension "urlpath" (note:

that’s a letter O, not a number 0; also pay attention to the quotation marks).

• R sytnax is: system(’linux shell command’)

• Python sytnax is: call([”linux”, ”shell”, ”command”])3

• Julia sytnax is: run(`linux shell command`)

(b) Now print your file to the console by typing cat dates.json (or whatever you

choose to name the file) within the system call.

(c) This file is ugly, so let’s make it a little easier to deal with by converting it to a

data frame.

• If you use R, you will need to call the libraries jsonlite and tidyverse. You

may need to install them first. The code to convert to a dataframe requires

two steps. First, convert the JSON to a list: mylist <- fromJSON(’dates.json’).

(Make sure you call the file by whatever you called it in part (b).) Second,

convert the list to a data frame (and remove the first element, since in this

case it is not useful): mydf <- bind_rows(mylist$result[-1])

(d) Check what type of object mydf is. What type of an object is mydf$date?

• In R, this is done with class().

• In Python, this is class().

• In Julia, this is typeof().

(e) List the first n rows of the mydf dataframe.

(f) Put all of these commands into an R, Python, or Julia script and then run it from

your PS4/ directory using Rbatch, Pythonbatch, or juliabatch. Remember the

correct syntax which is listed in Question 3 of this homework.

3This requires the call function from the import library. Also note that spaces in the command need to
be in separate strings.

"https://www.vizgr.org/historical-events/search.php?format=json&begin_date=00000101&end_date=20240209&lang=en"
"https://www.vizgr.org/historical-events/search.php?format=json&begin_date=00000101&end_date=20240209&lang=en"
"https://www.vizgr.org/historical-events/search.php?format=json&begin_date=00000101&end_date=20240209&lang=en"

Econ 5253 - Spring 2024 Problem Set 4

Due: Feb. 20

beginning of class

What I wanted you to take away from this exercise is that there is no one-to-one

mapping from JSON/YAML files to tabular data. So creating a tabular data frame

from a JSON requires a little extra work. The same holds true for other data types like

XML and HTML (though these may be closer to a one-to-one tabular representation).

Also, note that the fromJSON and other functions can accept a URL as an argument.

I had you use the shell just so you can get comfortable with accessing the shell from

within R/Julia/Python.

Practice with sparklyr (R exercise part 2)

6. This exercise will familiarize yourself with sparklyr which is how one can use Spark

through R. The walkthrough that I am giving you can also be found at https://

spark.rstudio.com/. Please create an R script called PS4b_LastName.R which con-

tains all of your sparklyr commands (so that you could easily reproduce your work

whenever called upon).

1. Open an R session on OSCER by typing R at the command prompt.

2. Make sure you have installed the sparklyr and tidyverse packages.

3. Load sparklyr and tidyverse packages.

4. Set up a connection to Spark by issuing the following commands:

sc <- spark_connect(master = "local")

5. Create a tibble called df1 that loads in the iris data.4

6. Now copy this tibble into Spark, calling it df. The command for this is df <-

copy_to(sc, df1).

7. Verify that the two dataframe are different types: type class(df1) and class(df).

What is the class of each?

8. Are the column names any different across the two objects? If so, why might that

be?

9. Next, we will apply the common RDD/SQL operation: select

(a) List the first 6 rows of the Sepal_Length and Species columns of df. This

can be done by typing df %>% select(Sepal_Length,Species) %>% head

%>% print.

10. Now let’s do another common RDD operation: filter

4Hint: use the command as_tibble().

https://spark.rstudio.com/
https://spark.rstudio.com/

Econ 5253 - Spring 2024 Problem Set 4

Due: Feb. 20

beginning of class

(a) List the first 6 rows of all columns of df where Sepal_Length is larger than

5.5. This can be done by typing df %>% filter(Sepal_Length>5.5) %>%

head %>% print.

11. Combine the two previous exercises into one line (that is, put both the select

and filter operations into one line using the dplyr pipeline.

12. Another useful RDD operation is “group_by.” We can compute the average sepal

length, as well as the number of observations, by each of the three iris species:

df2 <- df %>% group_by(Species) %>% summarize(mean = mean(Sepal_Length),

count = n()) %>% head %>% print.

13. Finally, a common RDD operation is to sort. We can sort (arrange()) the above

“grouped by” RDD by any of the three variables it contains.

(a) Re-execute the previous call, this time assigning df2 to the output.

(b) Now use the arrange() function to sort the result ascending by species

name: df2 %>% arrange(Species) %>% head %>% print

Note: I got an error when using arrange() so you may not get this step to

work

7. Go to www.overleaf.com and create another .tex document, this time naming it PS4_LastName.tex.

In it, tell me about some data sources that you would be interested in scraping from.

These could be, for example: classical texts from Project Gutenberg, tweets that in-

clude a particular hashtag, college or professional sports statistics, financial market

data, etc. For anything you are interested in, there is almost surely data that is freely

available on the internet, and most data sources come with highly accessible APIs for

R or Python.

In another part of your .tex file, answer the questions raised in the various parts of

the previous question.

8. Compile your .tex file, download the PDF and .tex file, and transfer it to your cloned

repository on OSCER. There are many ways to do this; you may ask an AI chatbot

or simply drag-and-drop using VS Code. Do not put these files in your fork on your

personal laptop; otherwise git will detect a merge conflict and that will be a painful

process to resolve.

9. You should turn in the following files: .tex, .pdf, and two .R scripts. Make sure that

these files each have the correct naming convention (see top of this problem set for di-

rections) and are located in the correct directory (i.e. ~/DScourseS24/ProblemSets/PS4).

www.overleaf.com

Econ 5253 - Spring 2024 Problem Set 4

Due: Feb. 20

beginning of class

10. Synchronize your local git repository (in your OSCER home directory) with your

GitHub fork by using the commands in Problem Set 2 (i.e. git add, git commit -m

”message”, and git push origin master). More simply, you may also just go to your

fork on GitHub and click the button that says “Sync fork” or “Fetch upstream.” Then

make sure to pull any changes to your local copy of the fork. Once you have done

this, issue a git pull from the location of your other local git repository (e.g. on your

personal computer). Verify that the PS4 files appear in the appropriate place in your

other local repository.

