
i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 15 — #25 i
i

i
i

i
i

Chapter 3

Using Git and GitHub.com

In technical terms, Git is a distributed version control system (DVCS). This means that

users have complete copies of a source repository on their local hard drive. Git is valuable

as a local version control system (LVCS) in that it can allow you to track changes in files

and directories on your local computer without any connectedness to the internet or to

other collaborators. However, Git ’s most powerful characteristics come from its ability to

carefully allow multiple users to collaborate on the same files and record the changes in an

ordered, structured, hierarchical way.

Git is the software on your local machine that executes the commands and takes the

snapshots that track the changes in marked files on your local machine and integrates those

changes with remote repositories. The remote repositories are hosted by companies like

GitHub.com or Bitbucket.org. This chapter will focus on GitHub.com, but Bitbucket.org is

a good alternative with slightly different strengths and weaknesses.

Git software was born out of a dispute between the Linux kernel developers and the

original version control provider for that group. The developers ended up creating their

own free distributed version control sytem, which is Git .1 GitHub.com currently hosts

thousands of open source repositories with virtually unlimited numbers of contributors to

each repository. The GitHub repository for the Linux kernel has over 200 contributors.

Figure 3.1 shows a snapshot of the contributors page of the Linux repository on GitHub. This

1See a short history of Git in Chacon and Straub (2014, p.5), which is also freely available online at
https://git-scm.com/book/en/v2/.

15

https://git-scm.com/
https://github.com/
https://bitbucket.org/
https://github.com/torvalds/linux
https://git-scm.com/book/en/v2/Getting-Started-A-Short-History-of-Git
https://git-scm.com/book/en/v2/

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 16 — #26 i
i

i
i

i
i

16 CHAPTER 3. USING GIT AND GITHUB.COM

Figure 3.1: Screenshot of Linux Contributors

This snapshot was taken on September 28, 2016.

page shows exactly who has contributed, when they contributed, and what they contributed.

Some employers are more interested in a potential employee’s GitHub page than they are in

that person’s resume.

3.1 Why Not Use Dropbox or Google Docs?

Easy and commonly used alternatives to Git as your version control and collaboration plat-

form are Google Docs and Dropbox. These two Git alternatives are file storage systems that

sync changes to files across multiple storage locations of a single user or across many users.

For simple file sharing, storage, and syncing, Google Docs and Dropbox are often preferred

to Git . But for projects in which hierarchical permissions of who can edit, careful tracking

of contribution attribution, and version history are important, Git is preferred.

Dropbox is nice because changes to a shared document on one person’s machine are au-

tomatically updated on another person’s machine. Dropbox offers some storage of previous

https://www.dropbox.com/

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 17 — #27 i
i

i
i

i
i

3.2. INSTALLING GIT AND SETTINGS 17

versions of files. But it does not have detailed description and does not go back very far.

Furthermore, Dropbox has trouble merging changes to a document that happen simulta-

neously. Suppose that you and your collaborator open a shared document simultaneously

on your respective machines, and you both make changes to that document. Dropbox does

not know whose changes dominate, so it updates the main document with the changes of

whoever saves first and then makes a “conflicted copy” from the saved changes of whoever

saves last. It is then up to the user to figure out how to manually merge those two files.

Google Docs have no merging problem because the document is automatically updated

in real time on each user’s computer, regardless of whether the document has been opened or

not. This is made possible because a Google Doc resides primarily on remote Google servers.

Despite this remote predominance, Google Docs do allow users to store copies of the files on

their local drives to be able to use the documents while off-line. To a slightly greater degree

than Dropbox, Google Docs allow some version history of who made changes, as well as a

nice chat and comment interface for collaboration. But in Google Docs, everybody often has

the same level of permission on making changes.

Git requires more deliberate decisions and effort about what gets merged, what does

not get merged. And git has more specific rules about who decides what gets incorporated

into the code and what does not. But with this extra complexity comes extra order, which

is essential for large projects with lots of contributors. Additionally, Git provides a more

specific version history with more refined ability to revert your code to a particular point in

that history.

Git , Dropbox, and Google Docs each have different strengths and weaknesses. But

Git is the standard for large projects with many contributors and a need for careful version

control, changelog history, and contribution attribution.

3.2 Installing Git and Settings

A good set of instructions for installing Git is available on the Git website.2 This Git site

states, “Even if it’s already installed, its probably a good idea to update to the latest version.”

2See https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 18 — #28 i
i

i
i

i
i

18 CHAPTER 3. USING GIT AND GITHUB.COM

This textbook recommends that you follow this instruction and update Git on your local

machine. It is worth noting that Git comes installed on every Mac OSX.

Once Git is installed on your machine, you should update the settings in the git config

tool. The git config tool controls how Git looks and operates and customizes Git with

your information. The obvious starting place is to enter your user name with which you

contributions will be associated as well as your e-mail address at which collaborators can

contact you.

>>> git config --global user.name "FirstName LastName"

>>> git config --global user.email youremail@example.com

The --global option tells Git that these values are the default values that only need to be

entered once. You can see all of the --global settings in git config by typing the --list

command.

>>> git config --list

3.3 Git and GitHub Structure, Workflow

A number of different Git workflows are used in open source projects, but most recommended

flows include some form of fork→branch→pull request. This textbook suggests the workflow

displayed in Figure 3.2. At first glance, this workflow looks very complicated and might

make the user wish for the ease of Dropbox or a Google Doc. But the workflow depicted

in Figure 3.2 exhibits some important principles and rules that protect code integrity and

allow for many organized contributors.

The first characteristic to note from the workflow displayed in Figure 3.2 is the protected

sanctity of the main code repository, labeled A©. There is only one arrow 10© leading into the

main repository. Submitting a pull request is the only way for foreign code to be incorporated

into the main repository. Related to this point is the characteristic that all work on the

main repository A© is performed in separate and separated repositories, both remote and

local. This is highlighted by the horizontal dotted line in Figure 3.2 that separates the main

repository from everything else in the figure.

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 19 — #29 i
i

i
i

i
i

3.3. GIT AND GITHUB STRUCTURE, WORKFLOW 19

Figure 3.2: Flow diagram of Git and GitHub workflow

Table 3.1: List of common Git commands

Fig. 3.2

reference Git command

1© Click “Fork” button at https://github.com/main acct/main repo name

2© git clone https://github.com/fork acct/main repo name.git

3© git checkout -b [BranchName]

4© git fetch upstream and git merge upstream/master

5© git push origin master

6© git merge master/[BranchName]

7© git add [FileName] or git add -A

8© git commit -m "[descriptive commit message]"

9© git push origin [BranchName]

10© Click “New pull request” button at

https://github.com/fork acct/main repo name

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 20 — #30 i
i

i
i

i
i

20 CHAPTER 3. USING GIT AND GITHUB.COM

One last introductory distinction to make with Git is the difference between remote

repositories and local repositories. The horizontal line in Figure 3.2 separates these two

concepts. Every object above the line in the figure is remote and is located on a GitHub server

somewhere in the cloud. Of the remote repositories (A©, B©, and E© above the horizontal line),

the two branches of your fork of the main repository (B© and E©) to the left of the horizontal

line will be called origin and the main repository A© will be called upstream. Section 3.3.3

discusses the significance of the upstream reference.

3.3.1 Create a fork and clone it

Assume that the main repository is a GitHub repository. The first step one takes in the

Git workflow when joining a project is to “fork” the main repository. This is shown in step

1© in Figure 3.2. This is done by going to the URL of the main repository on GitHub.com

and clicking on the “Fork” button toward the upper-right corner of the screen as shown in

Figure 3.3. GitHub will then give you the option to choose a GitHub account in which to

place your fork of the main repository.

Figure 3.3: Main repository GitHub main page

A fork is a copy of the main repository that is placed in your remote GitHub account.

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 21 — #31 i
i

i
i

i
i

3.3. GIT AND GITHUB STRUCTURE, WORKFLOW 21

The name of your fork is the same as the name of the main repository. The remote forked

repository is labeled B© in Figure 3.2. The only difference at this point is that the main

repository is in a different account than your fork. It is important in the Git workflow that

all changes that are made to the code from the main repository are made is a completely

quarantined copy—the user’s fork.

Once you have successfully forked the main repository, you want to clone your fork. This

action is represented by 2© in Figure 3.2. Cloning is the Git terminology for making a copy

of a remote repository on your local machine, which local repository is tracked and related to

the remote repository by the Git software. The local clone of your remote fork is represented

by C© in Figure 3.2. You clone the remote fork opening your terminal on your local machine,

navigating to the directory in which you want to place the cloned repository and typing the

following command,

>>> git clone [remote fork Git URL]

where [remote fork Git URL] is the address that you copy when you click on the green

“Clone or Download” button, which is below the “Fork” button on the main page of your

remote fork B© (not the main repository A©).

3.3.2 Branching, making changes, updating your remotes

Branching is one of the most powerful functions of Git . Once you are ready to start

modifying the code, this textbook recommends that you always make those changes in a new

branch of your local fork. Each repository can have multiple branches. Branches represent

copies of the repository that need not be identical. Think of each branch as representing a

different project on the code repository.

The main branch of a repository is called master. It is automatically created with each

newly forked or cloned repository. The master branch’s purpose in this Git work flow is to

be the baseline or fundamental reference, which is kept in sync with the main repository A©

(see Section 3.3.3). Branches B© and C© in Figure 3.2 are the master branches of the remote

fork and local fork, respectively.

You can always check what branch of your repository you are in by typing the following

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 22 — #32 i
i

i
i

i
i

22 CHAPTER 3. USING GIT AND GITHUB.COM

command.

>>> git branch

This will list all the branches of your repository, and it will highlight with an “*” the branch

you are currently in. It is very important to always be sure you are working in the correct

branch.

All changes to the master branch and new work should be in a new branch. You create

a new branch off the master branch by the following command, which is action 3© in Figure

3.2.

>>> git checkout -b [NewBranchName]

This command both creates the new branch and changes your directory to the new branch,

no longer in the master branch. If you have multiple branches, you can change between

them by typing:

>>> git checkout [BranchName]

It is important to note that the files in your local Git directory change when you change

branches to the files associated with that branch. It is, therefore, important to make sure

you are making changes in the branch with which you intend those changes to be associated.

As you work on your code and change the files in your repository, there are three steps

you need to follow. You must (i) add, (ii) commit, and (iii) push changes to your branch in

your remote fork E© from your local branch D©.

You can check the status of the branch of your local repository by typing:

>>> git status

This will show you if any files or folders have been modified, added, or deleted. You choose

which of those files to track or stage for a future commit by adding them to the “staging

area” as shown in action 7© in Figure 3.2. You can add a particular file by using the following

command,

>>> git add [FileName]

or you can add all the modified, added, or deleted files with the following command.

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 23 — #33 i
i

i
i

i
i

3.3. GIT AND GITHUB STRUCTURE, WORKFLOW 23

>>> git add -A

If you type git status after adding files to the “staging area” to be tracked by Git , you

will see that the files you added are now shown with a different status.

Once you have completed an intuitive well defined set of changes is a good time to commit

those added files. A commit is a bundled group of changed files that can be summarized in

one or two short sentences. You commit all files in the staging area that have been previously

added by typing the following command. This is action 8© in Figure 3.2.

>>> git commit -m "[descriptive commit summary message]"

As mentioned above, a commit message should be no more than two sentences, but is prob-

ably better as one sentence. This implies that you should commit your work often and not

wait until you have completed whatever change your branch was created for. Never go too

long without committing. And you should always commit at the end of a coding session or

when switching branches.

A push, shown as action 9© in Figure 3.2, is an action that takes all the commits that have

not already been pushed and copies them to the remote origin repository. This textbook

recommends that commits from a project branch D© be pushed to a similar remote origin

branch E©. A push is done by typing the following command.3

>>> git push origin [BranchName]

Each push will likely contain multiple commits. Notice that your master branch and project

branch—both in your remote fork and in your local repository—will be different from each

other.

Once you feel that your changes are done and you have pushed them to your remote

branch so that D© and E© are identical, you are ready to incorporate them into the main

repository A©. This is done through a pull request, as shown in action 10© in Figure 3.2. A pull

request is made through the GitHub website. You go to the main page of the repository, make

sure you are in the project branch on the website by clicking on the “Branch:[BranchName]”

3If you leave off the BranchName in the command, your changes will default to the remote master branch
of your fork. We do not recommend this.

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 24 — #34 i
i

i
i

i
i

24 CHAPTER 3. USING GIT AND GITHUB.COM

button in the upper-left area as shown in Figure 3.3. Then click on the “New pull request

button”, which is next to the “Branch:[BranchName]” button.

Before submitting this pull request, make sure it has an intuitive, descriptive, and concise

title. Then make sure in the box below the title, that you put a detailed description of what

is in the pull request. In the end, the pull request will be the cumulative changes from all

the commits from all of the pushes since the creation of that branch. In the description,

you may want to give context to the changes, and you may even want to point out areas on

which you need an extra set of eyes.

Notice the different naming of this process. Rather than being called a push in which

the energy is coming from the source of the changes, it is called a pull request. This name

signifies that the energy comes from the destination of the change. You can think of a pull

request as an invitation for the collaborators who run the main repository to merge your

changes into the main repository. It is for this reason that this open source work flow allows

for the full democratization of coding. Anyone can take the code and make any changes

they want. But only the code that is accepted by those who manage the main repository is

incorporated.

Once you make a pull request and before someone chooses to merge that pull request,

the status of your branch is linked to the pull request. That is, you can continue to make

changes to your local branch, add/commit/push those changes to your remote branch, and

those commits will be automatically added to the pull request.

If the changes in your code are accepted, those who manage the main repository A©

will merge in your changes. They may also open a dialog in the pull request in which the

community can respond to and discuss the changes. In the end, the managers of the main

repository have the option to reject the pull request.

Once your pull request is accepted and merged into the main repository. We recommend

that you git fetch upstream the changes from the main repository A© to your local mas-

ter branch C©, git merge upstream/master those changes, and git push origin master

those changes to your remote master branch B©. You should then delete the local project

branch D© by typing,

>>> git branch -d [BranchName]

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 25 — #35 i
i

i
i

i
i

3.3. GIT AND GITHUB STRUCTURE, WORKFLOW 25

and then delete that remote project branch E© from your remote repository by typing the

following.

>>> git push origin --delete [BranchName]

3.3.3 Set the upstream remote, fetch, merge, and push

Once you have cloned your fork of the main repository, you will need a way to keep your fork

updated—both your local cloned repository C© and your remote fork B©—with any changes

that are made in the main repository A©. You will first want to designate a remote repository

from which to draw code changes. Git designates your fork B© of the main repository as

origin. Designate the main repository as the remote for your fork by opening your terminal

in your local machine, navigate to the main directory of your local clone, and type the

following code,

>>> git remote add upstream [main repo Git URL]

where [main repo Git URL] is the address that you copy when you go to the main repo

main page and click on the green “Clone or Download” button, shown in Figure 3.2 under

the “Fork” button.

Naming the main repository A© “upstream” in your local clone C© makes the commands

easier to write that execute the updating step displayed as labeled 4© and 5© in Figure 3.2.

Each time you come back to your local fork of the repository, you will want to check the

status of your fork with respect to the remote upstream main repository A© and with respect

to the remote origin fork of the repository B©. This section focuses on updating your local

fork C© with new changes in the remote upstream main repository A©.

You can tell Git to go get any changes to the remote upstream main repository by opening

your terminal, navigating to the directory of the master branch of your local fork C©, and

typing the following.

>>> git fetch upstream

This command fetches all the changes from the upstream repository and stages them for

potentially being merged into your local master branch C©. Note here that you are not

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 26 — #36 i
i

i
i

i
i

26 CHAPTER 3. USING GIT AND GITHUB.COM

staging this to be added to your new project branch D© of your local repository. The purpose

of your local master branch C© is to remain up-to-date with the remote master repository

A©.

Once these changes are staged with the git fetch upstream command, you can merge

those changes from the remote master repo A© into your local master branch C© using the

following command.

>>> git merge upstream/master

Because of the work flow that this textbook advocates in Figure 3.2, you should have no

merge conflicts with this action. Your local master branch of the forked repository C© is

meant simply as a local source that receives updates from the remote main repository A©.

The only other time that your local master C© is updated from another source is when it

was created by cloning 2© the remote master B©, which action should happen only once.

Once the changes from the remote main repository A© have been fetched and merged

into your local main branch C©, you just need to push 5© those changes up to your remote

master branch of your fork B©. This is done by being in your master branch and typing the

following.

>>> git push origin master

The push command copies the changes from your local master branch C© into your remote

master branch B©. The term origin refers to the set of branches, including the master, in

your remote fork of the main repository. In Figure 3.2, repositories B© and E© are branches

of the origin remotes. At this point, your remote master branch of your fork B©, your local

master branch of your fork C©, and the main repository A© are all syncronized.

The last function we detail here is the action of merging changes from your local master

branch C© that came from the main repository A© into your local project branch D©. This is

action 6© in Figure 3.2. Go to the branch that will be the destination of the merge or the

branch where you want to incorporate the changes. In this case, that is the local project

branch D©.

>>> git checkout [ProjectBranch]

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 27 — #37 i
i

i
i

i
i

3.4. GIT CHEAT SHEET COMMANDS 27

Now merge the master branch into the project branch.

>>> git merge master/[ProjectBranch]

If the merge is nontrivial, then you will get a conflict message like the following.

Auto-merging master.txt

CONFLICT (content): Merge conflict in master.txt

Automatic merge failed; fix conflicts and then commit the result.

Now type the following to open the globally set Git mergetool (see Section 3.2 for mergetool

global setting).

>>> git mergetool

Finally, you can commit the changed files and be done.

>>> git commit -m "Description of merge commit"

3.4 Git Cheat Sheet Commands

In this section, I list a number of useful Git commands that are not as frequently used.

• List the last commit for each branch in a local repository.

>>> git branch -v

• List branches that you have or have not yet merged into your current branch.

>>> git branch --merged

>>> git branch --no-merged

• Undo erroneous commits in your local branch. Let [commit#] be the commit number to

which you want to rewind. This will usually be a reference like f2f7281451364c29c75e07ddb3be1d8d7d6c25dc.

Type the following.

>>> git reset [commit#]

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 28 — #38 i
i

i
i

i
i

28 CHAPTER 3. USING GIT AND GITHUB.COM

• Undo erroneous commits merged into your upstream repository. Note that it is usually

thought of as bad form to erase Git history.4 Let “upstream” be the name of the

repository and “BranchName” be the branch of that repository with the offending

commits. First, pull the branch with the bad commits to your local repo:

>>> git pull upstream [BranchName]

Let [commit#] be the commit number to which you want to rewind. Rewrite the

commit history on your local repo using the following command:

>>> git reset --hard [commit#]

Now push this back up to the remote repository.

>>> git push -f upstream [BranchName]

• Create a local branch that is a copy of someone’s pull request branch.

>>> git checkout -b [NewBranchName]

>>> git pull [PR sender branch git URL] [NewBranchName]

3.5 Using GitHub for Collaborative Issue Tracking

GitHub repositories have an “Issues” section that is a powerful place for collaboratively

discussing and resolving issues with the code. The issues interface of a GitHub repository is

accessed via the “Issues” tab in the upper-right area of the main page of the repository as

shown in Figure 3.3. GitHub issues create a central remote location for resolving questions

with your code. An issue creates a permanent record of what the question was, the path to

resolving it, and what was the resolution. GitHub issues also serve as a non-email method

of communicating about a project. This is valuable because resolution of issues can often

span weeks and even months.

A good example of an effective GitHub issue is issue # 237 of the OG-USA repository.

One can tag GitHub collaborators in these issues, add images and equations, and reference

4See Git Koan, “Only the Gods”.

https://github.com/open-source-economics/OG-USA/issues/237
https://github.com/open-source-economics/OG-USA
http://stevelosh.com/blog/2013/04/git-koans/

i
i

“OGtextbook” — 2016/11/1 — 0:27 — page 29 — #39 i
i

i
i

i
i

3.5. USING GITHUB FOR COLLABORATIVE ISSUE TRACKING 29

other issues and pull requests. This link and this link has some of the markdown options for

augmenting your discussion in GitHub issues.

https://help.github.com/articles/working-with-advanced-formatting/
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

