OCC.Core.IntWalk module¶
IntWalk module, see official documentation at https://www.opencascade.com/doc/occt-7.4.0/refman/html/package_intwalk.html
-
class
IntWalk_TheFunctionOfTheInt2S(*args)¶ Bases:
OCC.Core.math.math_FunctionSetWithDerivatives- Parameters
S1 –
- type S1
opencascade::handle<Adaptor3d_HSurface> &
- param S2
- type S2
opencascade::handle<Adaptor3d_HSurface> &
- rtype
None
-
AuxillarSurface1()¶ - Return type
opencascade::handle<Adaptor3d_HSurface>
-
AuxillarSurface2()¶ - Return type
opencascade::handle<Adaptor3d_HSurface>
-
ComputeParameters()¶ - Parameters
ChoixIso –
- type ChoixIso
IntImp_ConstIsoparametric
- param Param
- type Param
TColStd_Array1OfReal &
- param UVap
- type UVap
math_Vector &
- param BornInf
- type BornInf
math_Vector &
- param BornSup
- type BornSup
math_Vector &
- param Tolerance
- type Tolerance
math_Vector &
- rtype
None
-
IsTangent()¶ - Parameters
UVap –
- type UVap
math_Vector &
- param Param
- type Param
TColStd_Array1OfReal &
- param BestChoix
- type BestChoix
IntImp_ConstIsoparametric &
- rtype
bool
-
Root()¶ - returns somme des fi*fi
- rtype
float
-
property
thisown¶ The membership flag
-
class
IntWalk_TheInt2S(*args)¶ Bases:
object- compute the solution point with the close point
- param Param
- type Param
TColStd_Array1OfReal &
- param S1
- type S1
opencascade::handle<Adaptor3d_HSurface> &
- param S2
- type S2
opencascade::handle<Adaptor3d_HSurface> &
- param TolTangency
- type TolTangency
float
- rtype
None* initialize the parameters to compute the solution point it ‘s possible to write to optimize: IntImp_Int2S inter(S1,S2,Func,TolTangency); math_FunctionSetRoot rsnld(inter.Function()); while …{ Param(1)=… Param(2)=… param(3)=… inter.Perform(Param,rsnld); }
- param S1
- type S1
opencascade::handle<Adaptor3d_HSurface> &
- param S2
- type S2
opencascade::handle<Adaptor3d_HSurface> &
- param TolTangency
- type TolTangency
float
- rtype
None
-
ChangePoint()¶ - return the intersection point which is enable for changing.
- rtype
IntSurf_PntOn2S
-
Direction()¶ - Returns the tangent at the intersection line.
- rtype
gp_Dir
-
DirectionOnS1()¶ - Returns the tangent at the intersection line in the parametric space of the first surface.
- rtype
gp_Dir2d
-
DirectionOnS2()¶ - Returns the tangent at the intersection line in the parametric space of the second surface.
- rtype
gp_Dir2d
-
Function()¶ - return the math function which is used to compute the intersection
- rtype
IntWalk_TheFunctionOfTheInt2S
-
IsDone()¶ - Returns True if the creation completed without failure.
- rtype
bool
-
IsEmpty()¶ - Returns True when there is no solution to the problem.
- rtype
bool
-
IsTangent()¶ - Returns True if the surfaces are tangent at the intersection point.
- rtype
bool
-
Perform()¶ - returns the best constant isoparametric to find the next intersection’s point +stores the solution point (the solution point is found with the close point to intersect the isoparametric with the other patch; the choice of the isoparametic is calculated)
- param Param
- type Param
TColStd_Array1OfReal &
- param Rsnld
- type Rsnld
math_FunctionSetRoot &
- rtype
IntImp_ConstIsoparametric* returns the best constant isoparametric to find the next intersection’s point +stores the solution point (the solution point is found with the close point to intersect the isoparametric with the other patch; the choice of the isoparametic is given by ChoixIso)
- param Param
- type Param
TColStd_Array1OfReal &
- param Rsnld
- type Rsnld
math_FunctionSetRoot &
- param ChoixIso
- type ChoixIso
IntImp_ConstIsoparametric
- rtype
IntImp_ConstIsoparametric
-
Point()¶ - Returns the intersection point.
- rtype
IntSurf_PntOn2S
-
property
thisown¶ The membership flag