
gRPC Communication Patterns –
A Deep Dive

Kasun Indrasiri
Author “gRPC Up and Running”,
and “Microservices for Enterprise”

Danesh Kuruppu
Author “gRPC Up and Running”,
Associate Tech Lead @WSO2

gRPC in a nutshell
● What is gRPC?

○ Modern inter-process communication
technology.

○ Invoking remote functions as easy as making
a local function invocation.

○ Contract First.
○ Using Protocol Buffers IDL
○ Binary Messaging on the wire on top of

HTTP2.

● Why gRPC?
○ Efficient, Strongly Typed, Polyglot, Duplex

Streaming.

gRPC with other technologies
• Typical deployment, gRPC need to coexistent

with transport protocol like REST, GraphQL and
also with messaging protocol like NATS, Kafka.

• External client facing APIs are normally
controlled by API Gateway.

• gRPC can exists in any place in the
deployment.

RPC Flow

ProductInfo service

gRPC over HTTP/2

Request/Response Message

● Request Message contains:
○ Header frame
○ Framed message which spans one

or more data frames
○ End of Stream(EOS) flag in the last

data frame.

● Response Message contains
○ a Header frame,
○ one or more framed messages
○ Trailer headers carrying the status of

the request at the end.

● Client sends a single request to the server
and gets a single response.

● Request Message contains a Header
frame, a framed message which spans
one or more data frames and End of
Stream(EOS) flag in the last data frame.

● Response Message contains a Header
frame, a framed message and Trailer
headers carrying the status of the request.

Unary/Simple RPC

● Server sends back a sequence of
responses(stream) after getting the client’s
request message.

● After sending all the responses server marks
the end of stream.

● Request Message contains a Header frame,
a framed message which spans one or more
data frames and End of Stream(EOS) flag in
the last data frame.

● Response Message contains a Header
frame, one or more framed messages and
Trailer headers carrying the status of the
request.

Server Streaming RPC

● Client sends multiple messages to the
server instead of a single request.

● Server sends back a single response to the
client.

● Request Message contains a Header frame,
one or more framed messages which spans
one or more data frames and End of
Stream(EOS) flag in the last data frame.

● Response Message contains a Header
frame, a framed message and Trailer
headers carrying the status of the request.

Client Streaming RPC

● Client is sending a request to the server
as a stream of messages.

● Server also responds with a stream of
messages.

● Client has to initiated the RPC.
● Request Message contains a Header

frame, one or more framed messages
which spans one or more data frames
and End of Stream(EOS) flag in the last
data frame.

● Response Message contains a Header
frame, one or more framed messages
and at the end Trailer headers carrying
the status of the request.

Bidirectional Streaming RPC

Request/Response Headers
Header key Header value

:method POST

:scheme http

:path /ProductInfo/getProduct

:authority abc.com

te trailers

grpc-timeout 1s

content-type application/grpc

grpc-encoding gzip

authorization(custom) Bearer xxxxx

● There are two types of headers used in gRPC
○ Call-definition headers
○ Custom metadata

● Call-definition headers are predefined headers
supported by HTTP/2.

● Header names starting with `:` are called reserved
headers. HTTP/2 requires these headers to appear
before.

● Custom Metadata is an arbitrary set of key-value
pair defined by the application layer.

● Use Metadata to share information about the RPC
calls that are not related to the business context of
the RPC (e.g. Security Headers)

● When defining custom metadata. avoid prefix
`grpc-`. It is reserved for gRPC core.

Length-Prefixed Message

● Message-framing approach constructs information
such that the intended audience can easily extract
the information.

● gRPC uses a message-framing technique called
length-prefix framing.

● Length-prefixed approach writes the size of the
message before writing the message itself.

● In gRPC, 4 bytes are allocated to set the size of the
message and size is written as Big-endian integer.

Encoded Binary Message

● By default gRPC uses Protocol Buffers to encode the
message.

● Protocol Buffers encodes the message based on the
message structure defined in service contract.

● Encoded Binary Message consists of Tag-Value pairs and
Message ends with 0

● Each Message field value is represented by tag-value in
binary format.

● Tag value is constructed using field index defined in the
contract and wire type based on field type.

Tag value = (field_index << 3) | wire_type

● Field value is encoded using different techniques based
on field type.

Error Handling

● Errors are first class concept in gRPC.
● For every RPC call, the response will be either payload

message or an error.
● The error includes status code which is unified across all

languages and the status message.
● Errors are sent as response trailing headers.
● Do not include the error details in response payload in

most cases.
● At server side, returns all errors to the caller. unless

internal state is compromised.

Header key Header value

grpc-status 0 #OK

grpc-message

Code Number Description

OK 0 Success status

CANCELLED 1 The operation cancelled

UNKNOWN 2 Unknown error

INVALID_ARGUME
NT

3 Invalid argument

DEADLINE_EXCEE
DED

4 deadline expired before
the operation complete

...

https://github.com/grpc/grpc/blob/master/doc/statuscodes.md

Deadlines

● Deadlines allow both clients and services to know
when to abort an operation.

● Clients are responsible for setting deadlines.
● Allows use deadlines.
● Deadline normally sets as an absolute time.
● If the service is talking with another service,

propagate the deadline to other services.

Interceptors
● Mechanism to execute some common logic

before or after the execution of the remote
function for server or client application.

● Server Side and Client Side interceptors.
● Unary Interceptors

○ Phases : preprocessing, invoking the RPC
method, and postprocessing

● Streaming interceptors
○ Intercepts any streaming RPC

● Useful for logging, authentication, metrics etc.

Service Versioning with gRPC
• Services should strive to remain backwards

compatible with old clients.
• Service versioning allows us to introduce

breaking changes to the gRPC service.
• gRPC package → specify a version number for

your service and its messages.

syntax = "proto3";

package ecommerce.v1;

service OrderManagement {

 rpc addOrder(Order) returns

(google.protobuf.StringValue);

 rpc getProduct(google.protobuf.StringValue) returns

(Order);

}

order_mgt.proto

:method POST
:path /<package_name>.<service_name>/<method_name>

E.g: AddOrder Remote Call:

:method POST
:path /ecommerce.v1.OrderManagement>/addOrder

Extending Service Definition
• Service level, method level and field

level options in service definition.
• Access those options at

runtime/implementation.

import "google/protobuf/descriptor.proto" ;

// custom service options

extend google.protobuf.ServiceOptions {

 string oauth2Provider = 50003;

}

service OrderManagement {

 option(oauth2Provider) =

"https://localhost:9444/oauth2/introspect";

}

S
e
r
v
i
c
e

O
p
t
i
o
n
s

import "google/protobuf/descriptor.proto" ;

// custom field options

extend google.protobuf.FieldOptions {

 bool sensitive = 50000;

}

message Order {

 string id = 1;

 string destination = 5 [(ecommerce.sensitive) = true];

}

Field Options

import "google/protobuf/descriptor.proto" ;

// custom method options

extend google.protobuf.MethodOptions {

 int32 throttling_tier_per_min = 50001;

}

service OrderManagement {

 rpc addOrder(Order) returns (google.protobuf.StringValue) {

 option(throttling_tier_per_min) = 10000;

 }

}

M
e
t
h
o
d

O
p
t
i
o
n
s

Resources
● gRPC Up and Running Book.

○ Gives you a comprehensive understanding of gRPC.
○ gRPC communication patterns and advanced concepts.
○ Running gRPC in production.
○ Dozens of samples written in Go and Java.

● Use cases and source code in Java and Go -
https://grpc-up-and-running.github.io/

● grpc.io

https://www.amazon.com/gRPC-Running-Building-Applications-Kubernetes/dp/1492058335/
https://grpc-up-and-running.github.io/
https://grpc.io/

