
Jeremy Rickard

Using Open Policy Agent
to Meet Evolving
Policy Requirements

About Me

https://twitter.com/jrrickard

https://github.com/jeremyrickard

jeremy.r.rickard@gmail.com

jerickar

https://twitter.com/jrrickard
https://github.com/jeremyrickard

VMware Developer Platform

“The VMware Developer Platform (VDP) is a collection of infrastructure and software services available to internal
VMware engineering teams to assist with deploying and operating VMware SaaS applications in a stable, secure,
efficient and consistent way. ”

AWS VPC

Management
Cluster

Shared
Cluster

kubectl apply -f

vdp namespace create

VDP User

Grow Pains….

AWS VPC

Management
Cluster

Shared
Cluster

kubectl apply -f

vdp namespace create

Non-
Shared
Cluster

Non-
Shared
Cluster

VDP User
Another VDP User
(basically cluster admin)

kubectl create namespace

Challenges!

Tenants have
Cluster Admin

Resources We
Want To Protect

Webhooks!

We built a
webhook

Our scope grows…

AWS VPC

Management
Cluster

Shared
Cluster

Non-
Shared
Cluster

Non-
Shared
Cluster

Commercial

AWS VPC

Management
Cluster

Shared
Cluster

Non-
Shared
Cluster

Non-
Shared
Cluster

Gov Cloud

FedRamp

AWS VPC

Management
Cluster

Shared
Cluster

Non-
Shared
Cluster

Non-
Shared
Cluster

Regulated Commercial

PCI

More Grow Pains….

• Each of these new environments brings new requirements
• FedRAMP High: > 400 controls
• PCI: Similar…but different.

Compensating controls may be considered for most PCI DSS requirements when an entity cannot meet a
requirement explicitly as stated, due to legitimate technical or documented business constraints, but has
sufficiently mitigated the risk associated with the requirement through implementation of other, or
compensating, controls.

Policies per cluster seems like a good idea.

(we also don’t want users to hate us)

Some policy wants...

• Something that doesn’t require new “code”
• Easy for the team to learn
• Testable….

Enforcing Policy….

It’s Admission Control,
I know this

package kubernetes.validating

deny[msg] {
contains(input.request.object.metadata.labels.pants, "sweatpants")
msg := "you can't sit with us"

}

policy.rego

Adventures In Rego

USE OF EXTERNAL INFORMATION SYSTEMS

information systems that are outside of the
authorization boundary

Let’s restrict registries!
package kubernetes.admission

deny[msg] {
input.request.kind.kind == "Pod"
some i
image := input.request.object.spec.containers[i].image
not is_gov_image(image)

msg := sprintf("Pod's container %q is not allowed to use image from non approved repo in gov", [image])
}

is_gov_image(image) {
startswith(image, "vmware-is-awesome/")

}

Let’s restrict registries!

$ kubectl run mq-test --image=jeremyrickard/mq-test-cli:version4

kubectl run --generator=deployment/apps.v1 is DEPRECATED and will be removed in a future version. Use kubectl run --
generator=run-pod/v1 or kubectl create instead.
deployment.apps/mq-test created

$ kubectl get events | grep openpolicyagent
47s Warning FailedCreate replicaset/mq-test-79d5465bb4 Error creating: admission webhook "validating-
webhook.openpolicyagent.org" denied the request: Pod's container "jeremyrickard/mq-test-cli:version4" is not allowed
to use image from non approved repo in gov

But now…..

Great, now I have to
update my chart and
keep more values files
per environment

Can we help…..

MutatingAdmissionWebhook

package kubernetes.admission

vdp_repo = "vmware-repo.io"
gov_repo = ”secrets.io”

patch[patchCode] {
is_deployment_mutation_allowed
some i
image := input.request.object.spec.template.spec.containers[i].image
updated_image_repo := update_public_image_repo(image)
count(updated_image_repo) > 0
update_path := concat("/", ["/spec/template/spec/containers", format_int(i, 10), "image"])
patchCode := make_image_patch("replace", update_path, updated_image_repo)

}

PCI Requirement 6: Develop and maintain secure systems and applications

6.1 - Establish a process to identify security vulnerabilities, using
reputable outside sources, and assign a risk ranking (e.g. “high,”
“medium,” or “low”) to newly discovered security vulnerabilities.

CVSS
CVSS Score Severity Level Pass/Fail

7.0 through 10.0 High Severity Fail

4.0 through 6.9 Medium Severity Fail

0.0 through 3.9 Low Severity Pass

$ twistlock iamge scan <redacted>

Scan results for image <redacted>:14213
sha256:8cf2ff8a024a37780af0d24d3408e7503225fbded1455c6f117b58dac319d8ae

Vulnerabilities found for image <redacted>:14213: total - 12, critical - 2, high - 3, medium
- 4, low - 3 {

"id": "CVE-2019-17571",
"cvss": 9.8,
"vector":

"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H",
"description": "Included in Log4j 1.2 is a SocketServer…. ”
"severity": "critical",
"packageName": "log4j_log4j",
"packageVersion": "1.2.17",

….
}

We made a process…

Base Image
(with vulns)

New Tag!
(w/o vulns)

deploy
New Dockerfile

We automated…sorta

“Image inventory”
(it’s a yaml file)

New Tag!
(w/o vulns)

update Deploy?

Policies can be loaded into OPA dynamically via ConfigMap objects using the kube-mgmt sidecar container.
The kube-mgmt sidecar container can also load any other Kubernetes object into OPA as JSON under data.
This lets you enforce policies that rely on an eventually consistent snapshot of the Kubernetes cluster as context.

https://github.com/open-policy-agent/kube-mgmt

$ kubectl get configmap vdp-images –n opa –o yaml
apiVersion: v1
data:

images.json: |
{"addon-resizer":"1.8.8-20201014-0200","admission-webhook":"v1.0.3-20201014-

0200","alertmanager":"v0.18.0-20201014-0200","am2jira-webhook":"v1.0-20201014-0200","authn-
webhook":"v1.0.1-20201014-0200",……….

How’s that work?

data.opa["vdp-images"]["images.json"]

More mutation!!
package kubernetes.admission

patch[patchCode] {
some i
inventory := data.opa["vdp-images"]["images.json"]
updated_image := update_image_version(input.request.object.spec.initContainers[i].image, inventory)
update_path := concat("/", ["/spec/containers", format_int(i, 10), "image"])
patchCode := make_image_patch("replace", update_path, updated_image)

}
update_image_version(image_spec_path, inventory) = updated_image {

image_ref_minus_sha := getRef(image_spec_path)
image_tag = getTag(image_ref_minus_sha)
image_inventory_tag := inventory[image_name]
updated_image := replace(image_ref_minus_sha, image_tag, image_inventory_tag)

}

“Image inventory”
(it’s a yaml file)

deploy

Update pipeline

MutatingWebHook
Updates

Tags

New Tag!
(w/o vulns)

Update Deployment Labels

Enforce running as non-root

Pod Security Policies!

My pods won’t start!!

Did you specify
securityContext
in your YAML?

Ugh, I have to update
my chart again?

Hello again, Mutation.
package kubernetes.admission

patch[patchCode] {
is_mutation_allowed
not input.request.object.spec.template.spec.securityContext.runAsUser
patchCode = makeSecurityContextPatch("add", "runAsUser", 1000, "")

}

patch[patchCode] {
is_mutation_allowed
not input.request.object.spec.template.spec.securityContext.fsGroup
patchCode = makeSecurityContextPatch("add", "fsGroup", 2000, "")

}

Recapping.

• Open Policy Agent is very flexible
• Validation can get you pretty far
• Mutation can get you even further

• We were able to use it to balance
• Security needs
• User experience

• Rego
• Declarative nature makes policies easy to read
• Pretty easy for team members to learn

Some thoughts…

Links!

https://www.fedramp.gov/fedramp-releases-high-baseline/
https://www.pcisecuritystandards.org/document_library

https://play.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/kubernetes-tutorial/

Gatekeeper mutating webhook support:
https://github.com/open-policy-agent/gatekeeper/issues/588

https://www.fedramp.gov/fedramp-releases-high-baseline/
https://www.pcisecuritystandards.org/document_library
https://play.openpolicyagent.org/
https://www.openpolicyagent.org/docs/latest/kubernetes-tutorial/
https://github.com/open-policy-agent/gatekeeper/issues/588

Questions?

