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Run hyperparameter optimization with the click of a button, and serve
the best result using KF Serving and Kale

Why is this important?

✓ Simplify your HP tuning and Serving workflows using intuitive UIs
✓ Accelerate your time to production. You can now reduce the training time and 

the time needed from training to serving
✓ Collaborate faster, reducing the friction between the data science team and 

the MLOps team

What You’ll Learn In This Session

3

Don’t forget, you can grab the slides right now 

at arrik.to/kubeconBOS as well as enter the 

draw to win a fabulous prize

Get your questions answered live on      

Twitter and LinkedIn using the three hashtags 

#kubecon #ml #arrikto

http://arrik.to/kubeconBOS
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What is Kubeflow
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The Kubeflow project is dedicated to making 

deployments of machine learning (ML) workflows on 

Kubernetes: simple, portable and scalable.
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Use cases

● Deployment and management of a complex ML system at scale

● Rapid experimentation

● Hyperparameter tuning

● Hybrid and multi-cloud workloads

● Continuous integration and deployment (CI/CD)

5
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ML workflow

10

Identify problem 
and collect and 
analyse data

Choose an ML 
algorithm and 
code your model

Experiment with 
data and model 
training

Tune the model 
hyperparameters
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Interacting with Kubeflow

11

User interface (UI)  

kfctl  CLI

kubectl CLI

APIs and SDKs
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Interacting with Kubeflow
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User interface (UI)

kfctl CLI

kubectl CLI

APIs and SDKs

kfctl apply -V -f ${CONFIG_URI}

kubectl -n kubeflow get all
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Interacting with Kubeflow

14

User interface (UI)

kfctl CLI

kubectl CLI

APIs and SDKs

Examples:

• Pipelines SDK

• Katib API

• Metadata SDK
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ML Applications are Distributed Systems

15

Credit: Hidden Technical Debt of Machine Learning Systems, D. Sculley, et al.
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CI/CD for ML

16

How can data scientists continually improve 

and validate models?

● Develop models and pipelines in Jupyter

● Convert notebook to pipeline using Kale

● Run pipeline using Kubeflow Pipelines

● Explore and debug pipelines using Rok

Develop
(Jupyter)

Explore Pipeline
(Rok)

Create Pipeline
(Kale)

Run Pipeline
(KF Pipelines)

N2P CUJ
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Step 1
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Step 4
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Agenda
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Go to arrik.to/democ2p to find the 

Codelab with the step-by-step 

instructions for this tutorial

Notebook to Katib 
User Journey

Install MiniKF Notebook to Pipelines 
User Journey

Notebook to Serving 
User Journey

Summary

     
2

     
1

     
3

     
5

     
4

     
6

Q&A

http://arrik.to/democ2p
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Agenda
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What is MiniKF

26

● Kubeflow on GCP, your laptop, or on-prem infrastructure in just a few minutes

● All-in-one, single-node, Kubeflow distribution

● Very easy to spin up on your own environment on-prem or in the cloud

● MiniKF = MiniKube + Kubeflow + Arrikto’s Rok Data Management Platform
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Demo - Install MiniKF

27
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Agenda
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Data Science with Kubeflow

29

This workshop will focus on two essential 
aspects:

• Low barrier to entry: deploy a Jupyter 

Notebook to Kubeflow Pipelines in the 
Cloud using a fully GUI-based approach

• Reproducibility: automatic data 

versioning to enable reproducibility and 
better collaboration between data 
scientists

Kubeflow Pipelines exists because Data Science 
and ML are inherently pipeline processes

Building
a

Model

Logging

Data
Ingestion

Data
Analysis

Data
Transform

-ation

Data
Validation

Data 
Splitting

Trainer Model
Validation

Training
At Scale

Roll-out Serving Monitoring
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Benefits of running a Notebook as a Pipeline

● The steps of the workflow are clearly defined

● Parallelization & isolation 

○ Hyperparameter tuning

● Data versioning

● Different infrastructure requirements

○ Different hardware (GPU/CPU)

31
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Before

Amend your ML code?

Write your ML code

Create Docker images

Write DSL KFP code

Compile DSL KFP

Upload pipeline to KFP

Run the Pipeline

Workflow

32
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After

Amend your ML code?

Write your ML code

Tag your Notebook cells

Run the Pipeline at the click of a button

Just edit your Notebook! 

Before

Amend your ML code?

Write your ML code

Create Docker images

Write DSL KFP code

Compile DSL KFP

Upload pipeline to KFP

Run the Pipeline

Workflow
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After

Amend your ML code?

Write your ML code

Tag your Notebook cells

Run the Pipeline at the click of a button

Just edit your Notebook! 

Before

Amend your ML code?

Write your ML code

Create Docker images

Write DSL KFP code

Compile DSL KFP

Upload pipeline to KFP

Run the Pipeline

Workflow

A Data Scientist can now reduce 
the time taken to write ML code 
and run a pipeline by 70%. 
 
That means you can now run 3x 
as many experiments as you did 
before.
  
What that really means is that 
you can deliver work faster to 
the business and drive more 
revenue

34



arrik.to/kubeconBOSSimplify. Accelerate. Collaborate.

TFDV TFTransform TFDV Estimators TFΜΑ TFServing

Katib 
Tuner

Arrikto Rok

35
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Arrikto Rok

36

Data Versioning, Packaging, and Sharing
Across teams and cloud boundaries for complete Reproducibility, Provenance, and Portability

36

ProductionExperimentation Training

Any Storage Any Storage Any Storage

Data-aware

PVCs

Data-aware

PVCs

Data-aware

PVCs

Arrikto Arrikto Arrikto

CSI CSI CSI
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Demo - Notebook to Pipelines

37
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Agenda
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Hyperparameter optimization

The two ways of life

● Change the parameters manually

● Use Katib

39
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What is Katib

40

Katib is a Kubernetes-based system for Hyperparameter Tuning 

and Neural Architecture Search. It supports a number of ML 

frameworks, including TensorFlow, Apache MXNet, PyTorch, 

XGBoost, and others.
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Hyperparameter optimization

Combining the N2P CUJ with Katib

● Configure parameters, search algorithm, and objectives using a GUI

● Start HP tuning with the click of a button

● Reproducibility of every pipeline and every step

● Run Katib Trials as Pipelines

● Complete visibility of every different Katib Trial

● Caching for faster computation

41
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Demo - Notebook to Katib

42
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What is KFServing

44

KFServing enables serverless inferencing on Kubernetes and provides 

performant, high abstraction interfaces for common machine 

learning (ML) frameworks like TensorFlow, XGBoost, scikit-learn, 

PyTorch, and ONNX to solve production model serving use cases.
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Serving from a notebook

Kale provides a simple to use API to serve a model

● Choose the best Trial of a HP Tuning experiment

● Restore a notebook from a Rok snapshot

● Create and deploy InferenceService CRs with a convenient API

● No need to build new Docker images

● Run predictions directly from the notebook

45
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Demo - Notebook to Serving
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Agenda
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Summary
What you have learned during this tutorial:

● Run a pipeline-based hyperparameter tuning workflow starting from your Jupyter Notebook

● Use Kale as a workflow tool to orchestrate Katib and Kubeflow Pipelines experiments

● Run and monitor model servers directly from your notebook

● Use the new and intuitive HP Tuning and Models UI

48

● Navigate between Kubeflow UIs, across 

linked entities tracked by MLMD

● Simplify your ML workflows using 

intuitive UIs

● Exploit the caching feature so that you 

accelerate your pipeline runs

● Collaborate faster and more easily, 

and have complete visibility of your 

training



arrik.to/kubeconBOSSimplify. Accelerate. Collaborate.

Just a small sample of community contributions

● Jupyter manager UI

● Pipelines volume support

● MiniKF

● Auth with Istio + Dex

● On-premise installation

● Linux Kernel

49
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Community

50

Kubeflow is open
● Open community
● Open design
● Open source
● Open to ideas

Get involved
● github.com/kubeflow
● kubeflow.slack.com
● @kubeflow
● kubeflow-discuss@googlegroups.com
● Community call on Tuesdays
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Thank you, team!
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Ilias Katsakioris,
Dimitris Poulopoulos,
Kimonas Sotirchos,
Apostolos Plakias,
Konstantinos Palaiologos,
Chris Pavlou
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Thank You
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More Info
arrik.to/kubeconBOS

Email Address:
stefano@arrikto.com

arrikto

More Info
cloud.google.com

Email Address:
kweinmeister@google.com

google

linkedin.com/in/karlweinmeister linkedin.com/in/stefanofioravanzo

https://www.arrik.to/kubeconBOS
https://twitter.com/arrikto
https://twitter.com/arrikto
https://cloud.google.com/
https://twitter.com/Google
https://twitter.com/shell
https://www.linkedin.com/in/karlweinmeister/
http://linkedin.com/company/arrikto
https://www.linkedin.com/in/stefanofioravanzo/
http://linkedin.com/company/arrikto
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Agenda
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