
Linus Arver (Google)
Stephen Augustus (VMware)

The Great “k8s.gcr.io”
Vanity Domain Flip

Who We Are

Linus Arver

Container Image Promoter Maintainer
WG K8s Infra contributor
Software Engineer, Google

Stephen Augustus

SIG Release Chair
Kubernetes Release Manager
Senior OSS Engineer, VMware

The Great “k8s.gcr.io” VDF

Overview

● Historical context & rationale

● Infrastructural changes

○ How the promoter works

○ How it’s tested

● Lessons learned

The Great “k8s.gcr.io” VDF

What is “k8s.gcr.io”?

● Vanity domain: essentially, it’s a human-friendly name to a folder
that contains container (Docker) images.

○ google-containers (old)

○ k8s-artifacts-prod (new)

● The “k8s.gcr.io” name is widely used throughout the Kubernetes
codebase and configuration logic.

● The flip that happened this July made the name point from
google-containers to k8s-artifacts-prod.

The Great “k8s.gcr.io” VDF

Summary of the vanity domain flip

google-containers

k8s.gcr.io

k8s-artifacts-prod

✅��

The Great “k8s.gcr.io” VDF

Is that it?

● Infrastructure improvements (e.g., the promoter) were not trivial

● This gave us an opportunity to improve production (and testing!)
hygiene, such as:

○ Security

○ Auditability

○ Backups

The Great “k8s.gcr.io” VDF

Historical timeline

● 2018: Internal image promoter released for Googlers

● Early 2020: OSS Container Image Promoter is an improved version of
the internal promoter

○ Same idea as internal promoter, but with added infrastructure

○ Auditing + backups!

● July 24, 2020: Domain flipped to use k8s-artifacts-prod!

The Great “k8s.gcr.io” VDF

Why did Google need an internal promoter?

● Tighten security posture

● Reduce risk of human error

● Make production changes auditable

The Great “k8s.gcr.io” VDF

A long time ago (circa 2018), Googlers manually copied images to
production (for the community)

ProductionStaging

Docker
Image

(copy)

Docker
Image

The Great “k8s.gcr.io” VDF

Questionable
security
overbroad production access

No history
cannot tell who promoted which image

Manual
Incurs human toil for pushing images

PRO
D KEY

Docker
Image

Docker
Image

Production

Docker
Image

Docker
Image

Staging

Docker
Image

Docker
Image

Docker
Image

Docker
Image

Docker
Image

Why the old (manual way) was problematic…!

The Great “k8s.gcr.io” VDF

Promoter to the rescue!

ProductionStaging

Docker
Image

PROD KEYDocker
Image (copy)

The Great “k8s.gcr.io” VDF

Promoter to the rescue!

More secure
only the promoter has access to prod key

Full history
promoter manifest kept in version control

Automatic
runs as a postsubmit

ProductionStaging

PROD KEY

The Great “k8s.gcr.io” VDF

The OSS Promoter

● It’s the open-source rewrite (Golang) of the internal promoter (Python)

● Performance-oriented

○ Promoter manifests specify ~30K images to promote, or 90K if
you consider the 3 target regions

○ We take ~30 seconds to read all 90K (30K * 3 regions) image
metadata from GCR

● “Edge” data structure for simplicity and correctness

The Great “k8s.gcr.io” VDF

The OSS Promoter: Performance optimizations

Promoter
Manifests Production

● Read images in promoter manifests

● Read images in production GCR

● Remove unnecessary promotions (purple)

● Only promote what's left (blue)

The Great “k8s.gcr.io” VDF

The OSS Promoter: “Edge” data structure

● A promotion “edge” represents the idea of a “copy”, but without the
notion of time

● "Edge" has 3 parts = staging GCR "vertex", digest "edge", production

GCR "vertex"

DIGEST (DATA)STAGING
NAME

PRODUCTION
NAME

The Great “k8s.gcr.io” VDF

The OSS Promoter: “Edge” data structure

Promote gcr.io/staging/foo@sha256:0xabc to

gcr.io/production/path/to/foo:1.0

DIGEST
sha256:0xabc

STAGING
NAME

gcr.io/stagi
ng/foo

PRODUCTION
NAME

gcr.io/produ
ction/path/t
o/foo:1.0

”“

The Great “k8s.gcr.io” VDF

The OSS Promoter: “Edge” data structure

● Checking against tag overwrites, where "overwrite" means putting a
different image into a production name

● However, copying the same image from multiple locations into the
same production endpoint is OK (redundancy!)

a
x

b
x

✘

a x

b y

✔

ar x

as x

✔

The Great “k8s.gcr.io” VDF

The OSS Promoter: How it really works

1. Gather set of promoter manifests

2. Convert desired promotions as promotion edges

3. Remove edges that are illegal (tag overwrite) or unnecessary
(redundant)

4. "Actuate" each promotion edge with an image copy

The Great “k8s.gcr.io” VDF

The OSS Promoter: Supporting Cast

● Additional infrastructure:

○ Image auditing

○ Backups

The Great “k8s.gcr.io” VDF

Image auditing

Production

Pub/Sub

Cloud Run

Error Reporting

AuditorDocker
Image

1

2

3

The Great “k8s.gcr.io” VDF

Backups!

Regular
runs every 12 hours, full copy

Simple
Single job

Secure
uses a different key PRO

D KEY

Production

BACKUP KEY

Production
BACKUP

The Great “k8s.gcr.io” VDF

Infrastructure review ...but what about tests?

Staging
Production

Pub/Sub

Cloud Run

Error
Reporting

Auditor

Promoter

Production
BACKUP

Backup Job

The Great “k8s.gcr.io” VDF

The OSS Promoter: Tests

● Standard unit tests (no extra sauce, just the standard “testing”
package)

● Custom E2E test framework

○ Fully replicated promotion stack against real GCR endpoints

○ Fully replicated auditing stack with Pub/Sub, Cloud Run, Error
Reporting

○ Fully replicated backup stack

The Great “k8s.gcr.io” VDF

E2E tests have fully
replicated environments!

Staging
Production

Pub/Sub

Cloud Run

Error
Reporting

Auditor

Promoter

Production
BACKUP

Backup Job

E2E

TEST

E2E

TEST

E2E

TEST

The Great “k8s.gcr.io” VDF

History of flip attempts

● 1st attempt: April 1, 2020

○ Rolled back due to a Google configuration issue

● 2nd attempt: June 22, 2020

○ Rolled back due to billing error

● 3rd attempt: July 24, 2020

○ ...it worked!

The Great “k8s.gcr.io” VDF

Summary of the vanity domain flip

google-containers

k8s.gcr.io

k8s-artifacts-prod

✅��

The Great “k8s.gcr.io” VDF

Is that it? Nope!

● Develop tooling for creating staging projects

● Enable image pushing to staging projects via GCB and GitHub
postsubmit

● Lots of bash script cleanup

● Migrating portions of the Kubernetes release process to Community
infra

The Great “k8s.gcr.io” VDF

What’s Next?

● Create a tool that does both image and file promotion

● Deduplicate common Release Engineering libraries

● Support Google Cloud Artifact Registry (the next generation of
Container Registry)

● Grow the set of promotion tool maintainers (help us!)

● Improve vulnerability scanning for images

The Great “k8s.gcr.io” VDF

Lessons learned

● Infrastructural changes (esp. changing legacy code) takes time, but
the rewards are worth it

● “If it is not tested, it is broken” -- Tim Hockin

● It takes a village

The Great “k8s.gcr.io” VDF

Getting involved!

The container image promoter (and other artifact promotion tools) are
maintained by SIG Release’s Release Engineering subproject and WG
K8s Infra.

● Promotion tooling:
○ https://sigs.k8s.io/k8s-container-image-promoter
○ https://git.k8s.io/release

● SIG Release: https://git.k8s.io/community/sig-release
● WG K8s Infra: https://git.k8s.io/community/wg-k8s-infra
● SIG Release repo: https://git.k8s.io/sig-release
● Promoter manifests location: https://git.k8s.io/k8s.io

https://sigs.k8s.io/k8s-container-image-promoter
https://git.k8s.io/release
https://git.k8s.io/community/sig-release
https://git.k8s.io/community/wg-k8s-infra
https://git.k8s.io/sig-release
https://git.k8s.io/k8s.io

