
THE CLOUD NATIVE JOURNEY AT

Carlos Sanchez / / csanchez.org @csanchez

http://adobe.com/
http://csanchez.org/
http://twitter.com/csanchez

Cloud Engineer

Author of Jenkins Kubernetes plugin

Long time OSS contributor at Jenkins X, Apache Maven, Eclipse,
Puppet,…

Adobe Experience Manager Cloud Service

https://www.adobe.com/marketing/experience-manager/cloud-service.html

ADOBE EXPERIENCE
MANAGER

DISCLAIMER
This applies to my team inside Adobe Experience Manager Cloud Service

There are many teams in AEM

There are maaany teams in Adobe

Content Management System

Digital Asset Management

Digital Enrollment and Forms

Used by many Fortune 100 companies

An existing distributed Java application

Author instances for authors

Publish instances for web visitors

Both can scale horizontally

STACK
Java using OSGi for modules

Using OSS components from Apache So�ware Foundation

A huge market of extension developers

Writing modules that run in-process on AEM

AEM ON KUBERNETES

Running on Azure

10+ clusters and growing

Multiple regions: US, Europe, Australia, more coming

Adobe has a dedicated team managing clusters for multiple products

AEM ENVIRONMENTS
Customers can have multiple AEM environments that they can self-
serve
Each customer: 3+ Kubernetes namespaces (dev, stage, prod
environments)
Sandboxes, evaluation-like environments

Customers interact through Cloud Manager, a separate service with web
UI and API

ENVIRONMENTS
Namespaces provide a scope

network isolation
quotas
permissions

ENVIRONMENTS
Using init containers and (many) sidecars to apply division of concerns

SIDECARS
Storage initialization
httpd fronting the Java app
Exporting metrics
fluent-bit to send logs
Java threaddump collection

SIDECARS
Custom developed (threaddump collector, storage initialization)
OSS (fluent-bit)
Extended from OSS (httpd)

SCALING
100s of customers

1000s of sandboxes

SCALING
⚠ Azure API rate limits can be hit on upgrades, so we limit each
cluster to a few hundred nodes

You could have bigger nodes too

Using Kubernetes Vertical and Horizontal Pod Autoscaler

SCALING: VPA
We use VPA to scale up/down on memory and CPU

JVM footprint is hard to reduce

Changes to requests need pod restarts to become effective

⚠ Do not set VPA to auto if you don't want random pod restart

SCALING: HPA
HPA scales up on requests/minute

⚠ Do not use same metrics as VPA

SCALING: HIBERNATION

For engineering environments and sandboxes that are seldomly used

Allows overbooking clusters and $$$ savings

SCALING: HIBERNATION
Kubernetes job checks Prometheus metrics
If no activity in n hours, scale deployment to 0
Customer is shown a message to de-hibernate by clicking a button

Ideally it would de-hibernate automatically on new request, more like
Function as a Service, but JVM takes ~5 min to start

NETWORKING

NETWORKING
Kubernetes networking is complex

Multitenancy is even more

Services cannot connect to other namespaces

Everything blocked by default, open on each service case by case

NETWORKING
Everything is virtual

Allows flexibility
Introduces complexity

NETWORKING:
eBPF instead of iptables
More efficient and performant
Custom network policies at level 7 (path, header, method,...)

CILIUM

https://cilium.io/

NETWORKING: CILIUM
NetworkPolicy to block/allow traffic

Block access to other namespaces
Allow outgoing https and other common ports

Customers may also want to allow specific ingress ips only, ie. for
dev/stage

NETWORKING: INGRESS
Using a Contour fork

With more features than standard Kubernetes Ingress object
blocklist/allowlist, path based routing,...
Uses Envoy proxy behind the scenes

NETWORKING: ENVOY

⚠ Missconfigurations can cause cluster wide issues
⚠ Restarting it when config is wrong will clear all routes
⚠ Locks when the rate of changes is too high

NETWORKING: ENVOY
We had to do work to fix issues and use it correctly

ie. Validation of all configs both at build and runtime

LOGGING
Using fluent-bit sidecars to send logs to centralized store

 for log aggregationGrafana loki

https://grafana.com/oss/loki/

MONITORING AND ALERTING

Multiple Prometheus and Grafana
Aggregating all clusters data
Alerts coming from Prometheus AlertManager

CUSTOMER LOGGING
Customers also need access to some logs

fluent-bit sends logs to logstash/loki service
Customer can view them in Cloud Manager
⚠ logstash is heavy, 2GB+ memory needed, loki a better option

RESILIENCY AND SELF HEALING

 so services are marked unavailable
and restarted automatically

 to ensure a number of replicas on
rollouts and cluster upgrades

 to distribute service across nodes and
availability zones

Readiness and liveness probes

PodDisruptionBudget

podAntiAffinity

https://cloud.google.com/blog/products/gcp/kubernetes-best-practices-setting-up-health-checks-with-readiness-and-liveness-probes
https://kubernetes.io/docs/tasks/run-application/configure-pdb/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity

MULTITENANCY
Limit blast radius

Customers are namespace isolated

⚠ All deployments must have CPU/memory requests and limits

RUNNING CUSTOMER CODE

Pods that run customer code are a higher risk

Started testing Kata Containers, pod runs in a VM transparently

Contributing improvements upstream

EXTERNAL SERVICES

PERSISTENCE
External MongoDB
Azure Blob Storage

PERSISTENCE
Kubernetes Persistent Volumes are a bit risky in Azure

⚠ Can get the cluster in a bad state due to Azure API rate limitting at
100s of Persistent Volumes
It is supposed to improve with new versions of the Azure Kubernetes
cluster controller

DATA PROCESSING
Using Kafka based service to sync data between author and publish

Works worldwide, when publishers are in multiple regions

CDN: FASTLY

Fastly in front of the Load Balancer
Binary content stored in Azure blobs

EGRESS DEDICATED IP
Dedicated ip requested by some customers for firewall configuration

Or to avoid being throttled/blocked by other tenants

EGRESS DEDICATED IP
Scale set of proxies dedicated per customer
Dedicated egress load balancer that sets the outgoing ip
Using network policies to allow only the customer to access its proxy

CONTINUOUS DELIVERY

AEM: From yearly to daily release

Using Jenkins for CI/CD

Using queues to trigger some jobs

GITOPS
Most configuration is stored in git and reconciled on each commit

Pull vs Push model to scale

KUBERNETES DEPLOYMENTS
Combination of

Helm: AEM application
Plain Kubernetes files: ops services
Kustomize: some new microservices

HELM
⚠ Don't mix application and infra in the same package
Need to push to all namespaces, would be easier pulling
Moving to Helm operator that can be an improvement

KUBEVAL
Kubeval to validate Kubernetes schemas

We added schema validation of some custom CRDs

CONFTEST
Conftest to validate policies while allowing developer autonomy

security recommendations
labelling standards
image sources

csanchez.org

csanchez

carlossg

http://csanchez.org/
http://twitter.com/csanchez
https://github.com/carlossg
http://adobe.com/

