Service Mesh Specifications Why They Matter in Your Deployment

Lee Calcote Founder, Layer5

Kush Trivedi Maintainer, Layer5

KubeCon

CloudNativeCon

North America 2020

Virtual

Lee Calcote

cloud native and its management

@lcalcote
layer5.io
github.com/leecalcote

calcotestudios.com/talksin linkedin.com/in/leecalcote

Kush Trivedi

@kush_1814

Layer5, Maintainer

THE SERVICE MESH COMMUNITY

Join the community slack.layer5.io

Announced

7 years ago (Mar 2013)

Container

v1.0

It's meshy out there.

Strengths of Service Mesh Implementations

a sample

Different tools for different use cases

Virtual

Service mesh abstractions

to the rescue

Service Mesh Interface (SMI)

A standard interface for service meshes on Kubernetes. Multi-Vendor Service Mesh Interoperation (Hamlet)

A set of API standards for enabling service mesh federation.

Virtual

Service mesh abstractions

to the rescue

Service Mesh Performance Specification (SMPS) Multi-Vendor Service Mesh Interoperation (Hamlet)

A standard interface for service meshes on Kubernetes. A format for describing and capturing service mesh performance.

A set of API standards for enabling service mesh federation.

Decoupling at Layer 5

where Dev and Ops meet

Empowered and independent teams can iterate faster

Decoupling at Layer 5

where Dev and Ops meet

Empowered and independent teams can iterate faster

Decoupling at Layer 5

where Dev and Ops meet

Empowered and independent teams can iterate faster

Meshery Architecture

Out-of-band

telemetry

propagation

Service Mesh Interface aims to provide:

- Standard interface for service mesh on Kubernetes
- Basic feature set for most common mesh use cases
- Extensible to support new features
- Space for the ecosystem to innovate

Traffic Split Traffic Specs Traffic Metrics Traffic Access Control

APIs:

Service Mesh Iı

 Learn Layer5 sample ar used for validating test as

Defines compliant behavior.
 Produces compatibility matrix.
 Ensures provenance of results.
 Runs a set of conformance tests.

✓ Built into participating service mesh's release pipeline.

≻_ Manageme	Test	SMI Version	Service Mesh	Service Mesh Version	SMI Specification	Capability	Test Status
🌢 Istio	TA-01	v1alpha3	Linkerd	edge-20.7.5	Traffic Access	Full	Passed
蘭 Linkerd	TA-02	v1alpha3	Linkerd	edge-20.7.5	Traffic Access	Full	Failed
Octarine	TM-01	v1alpha3	Linkerd	edge-20.7.5	Traffic Metrics	Half	Passed
Citrix Serv	TM-02	v1alpha3	Linkerd	edge-20.7.5	Traffic Metrics	None	Passed
S OSM	TM-03	v1alpha3	Maesh	v1.3.2	Traffic Metrics	None	Failed
Community	TM-04	v1alpha3	Maesh	v1.3.2	Traffic Metrics	Full	Passed
					Rows per page: 10	- 1-6 of 6	< >
			mesh or SMI adapter on your		plications on/off e service mesh.	service mesh some pre-de	using ined
				+	î	opuons.	

SMI Conformance

Demo

			localhost:9081	/smi_results		Ċ			•	
MESHERY	Conformance	e							# ¢	
Performance										
Results	Service Mes	sh Interface	Conformance F	Results					III Ŧ	
Conformance										
SMI Results	— ID	Date		Se	rvice Mesh	Service M	lesh Version	% Passed	Status	
Management	∽ b749f	Thursday, O	ctober 22, 2020 8:59	PM Op	en Service Mesh	v0.3.0		0	complete	ed
Consul										
Istio	Specification	Assertions	Time	Version	Capability	Result	Reason			
Linkerd	traffic-									
Network Service Mesh	access	10	15.775600146s	alpha1/v1	Full	Passing				
Octarine	traffic-split	8	35.849463067s	alpha1/v1	Full	Passing				
Citrix Service Mesh										
Open Service Mesh	traffic-spec	12	1m 16.7s	alpha1/v1	Half	Failing	no matches for l version "access.	kind "TrafficTarg smi-spec.io/v1a	et" in Ipha1"	
Kuma										
NGINX Service Mesh	✓ e3779	Thursday, O	ctober 22, 2020 7:32	PM Op	en Service Mesh	v0.3.0		0	complete	ed
Community	Specification	Assertions	Time	Version	Capability	Result	Reason			
	traffic- access	10	17.618919267s	alpha1/v1	Full	Passing				
	traffic-split	8	35.527540243s	alpha1/v1	Full	Passing				
	traffic-spec	12	1m 17.4s	alpha1/v1	Half	Failing	no matches for H version "access.	kind "TrafficTarg smi-spec.io/v1a	et" in Ipha1"	
						Rows pe	rpage: 10 🔻	1-2 of 2	< >	
9			E	Built with 🆤	by the Layer5 Cor	nmunity				

Service Mesh Performance

Directly provides:

 a vendor neutral specification for capturing details of infrastructure capacity, service mesh configuration, and workload metadata.

Indirectly facilitates:

- benchmarking of service mesh performance
- exchange of performance information from system-tosystem / mesh-to-mesh
- apples-to-apples performance comparisons of service mesh deployments.
- MeshMark a universal performance index to gauge a service mesh's efficiency against deployments in other organizations' environments

An optimization game with many variables

Virtual

Data plane performance depends on many factors, for example:

- Number of client connections
- Target request rate
- Request size and Response size
- Number of proxy worker threads
- Protocol
- CPU cores
- Number and types of proxy filters

Latency, throughput, and the proxies' CPU and memory consumption affected by these factors

Comparing types of Data Plane filtering

KubeCon CloudNativeCon North America 2020

Comparing approaches to data plane filtering

Comparing types of functions

Path-based routing

Round robin load balancing

Context-based routing

Understanding the trade-off between power and speed

Service Mesh Performance

Demo

Performance Testing Best Practices

Use Meshery's powerful performance management features

- easily reproduce tests
- persist test results
- use different load generators
- baseline and compare over time
- test your workloads on and off the mesh
- tweak configurations and try again
- manage 9 different service meshes and counting...

Hamlet

service catalog federation

Hamlet specifies a set of API standards for enabling service mesh federation.

Specifications:

1. Federated Resource Discovery API

API to authenticate and securely distribute resources between federated service meshes.

2. Federated Service Discovery API

API to discover, reach, authenticate, and securely communicate with federated services.

https://github.com/vmware/hamlet

Service Mesh Patterns by the Book

Service Mesh Patterns

List of service mesh patterns

SIG Network: Service Mesh Working Group

@lcalcote 🔰

Kush Trivedi

🄰 @kush_1814

Join the community slack.layer5.io

Service Mesh Functionality

Traffic Control

content-based traffic steering

-O'O- Resilency

Observability

what gets people hooked on service metrics

Security identity and policy

Expect more from your infrastructure

Why use a Service Mesh?

to avoid...

- Bloated service (application) code
- Duplicating work to make services production-ready
 - Load balancing, auto scaling, rate limiting, traffic routing...
- Inconsistency across services
 - Retry, tls, failover, deadlines, cancellation, etc., for each language, framework
 - Siloed implementations lead to fragmented, non-uniform policy application and difficult debugging
- Diffusing responsibility of service management

Service Mesh Architectures

Service Mesh Architecture

- Provides multi-mesh federation, backend system integration, expanded policy and governance, continuous delivery integration, workflow, chaos engineering, configuration and performance management.
 - Provides policy, configuration, and platform integration.
 - Takes a set of isolated stateless sidecar proxies and turns them into a service mesh.
 - Does not touch any packets/requests in the data path.
 - Touches every packet/request in the system.
 - Responsible for service discovery, health checking, routing, load balancing, authentication, authorization, and observability.

Control Plane

Plane

ata

Functionality	In the app	In the filter
User / Token	S	
Subscription Plans	S	
Plan Enforcement		\checkmark

Two *w* application containers

Consul Architecture

traffic

😂 Image Hub on Consul

with a Rust-based WASM filter

github.com/layer5io/image-hub

WASM Filter

Ň

CloudNativeCon

KubeCon

😂 Image Hub on Consul

with a Rust-based WASM filter

github.com/layer5io/image-hub

WASM Filter

Ň

CloudNativeCon

KubeCon

PERFORMANCE

Mb/s

What is WebAssembly?

for the web, malware and beyond

- A small, fast binary format that promises near-native performance for web applications.
 - Most modern browsers support it.
 - Safe and sandboxed execution environment.
 - Over 40 languages that support WASM as a compilation target.
 - Originally used to speed up large web-applications.

Optimizing your average response time

In the presence of Bucket 1... ... take your largest segment by count and divide by your number of cores

identifying your optimal configuration for most requests

CloudNativeCon

Consul sidecar + app memory usage	
6000000	
40000000	
2000000	
Istio sidecar + app memory usage	
6000000	
40000000	
20000000	
Linkerd sidecar + app memory usage	
60000000	
40000000	
20000000	

Understand value vs overhead

Service Mesh Architecture

Data Plane

- Touches every packet/request in the system.
- Responsible for service discovery, health checking,
- routing, load balancing, authentication, authorization, and observability.

Service Mesh Architecture

Control Plane

ata Plane

Gate

ess.

- Provides policy, configuration, and platform integration.
- Takes a set of isolated stateless sidecar proxies and turns them into a service mesh.
- Does not touch any packets/requests in the data path.
 - Touches every packet/request in the system.
- Responsible for service discovery, health checking,
- routing, load balancing, authentication, authorization, and observability.

No control plane? Not a service mesh.

Comparing types of Data Plane filtering

Comparing approaches to data plane filtering

