
Serverless for ML-Serving on
Kubernetes: Genius or Folly?
Manasi Vartak, Ph.D.
Founder and CEO, Verta

@DataCereal | manasi@verta.ai | www.verta.ai

mailto:manasi@verta.ai
http://www.verta.ai

About

2

https://github.com/VertaAI/modeldb

Open-source ML model management &
versioning

Ph.D. thesis at MIT CSAIL

https://www.verta.ai/product

End-to-end MLOps platform for ML model
delivery, operations and management

Kubernetes-based, operations stack for ML

https://github.com/VertaAI/modeldb
https://www.verta.ai/product

Outline
● What is serverless and why is it interesting?
● Unique considerations for ML Serving
● Benchmark
● Key takeaways
● Check out if serverless is appropriate for you

3

Serverless: what is it and
why is it interesting?

4

Variety of ways to run your code

5

Serverless

Kubernetes/Containers

Virtual Machines

Bare Metal

Less
Control

More
Control

Higher level
Of Abstraction

Lower level of
Abstraction

Variety of ways to run your code

6

Serverless

Kubernetes/Containers

Virtual Machines

Bare Metal

Less
Control

More
Control

Higher level
Of Abstraction

Lower level of
Abstraction

Serverless 101

Serverless is, at its most simple, an outsourcing solution.

-- Martin Fowler, https://martinfowler.com/articles/serverless.html

7

https://martinfowler.com/articles/serverless.html

Serverless 101
▴ Requires no provisioning or management of servers and does not involve a

long-running server component
▴ Developer only writes the code or business logic without having to figure out how

to deploy and run it
▴ Serverless platform takes care of deploying and scaling the application

￮ Scale-up and scale down of resources happens on demand
￮ Can scale to zero when there is no load

▴ Also known as function-as-a-service

Popular Serverless systems: AWS Lambda, GCP Cloud Run, etc.

8

Why serverless?
▴ Simple to use (developers focus on business logic)
▴ Simple to scale (more copies of the serverless instance created automatically)
▴ Low infrastructure maintenance overhead (don’t need to manage nodes, perform

upgrades, tune resources requirements)
▴ Potentially cost-effective depending on workload (don’t need to provision resources

that will not be used)

Popular applications: Async message processing, IOT workloads, stream data processing

9

Why not serverless?
▴ Serverless applications are stateless
▴ Implementation restrictions: limits on execution duration, resources available (e.g.,

memory, CPU, disk, concurrency)
▴ Cannot choose/control hardware
▴ Large latency on cold-start

10

When does serverless make sense?
▴ Application is stateless
▴ Resource requirements are modest
▴ Performance requirements / SLAs are not stringent
▴ Cold-start latency is not an issue
▴ Query workload is not steady
▴ Infrastructure maintenance is a large burden

11

ML Serving

12

Unique considerations for ML serving
▴ ML serving: making predictions against a trained model
▴ ML models can be large

￮ E.g., DistilBERT model is 256 MB (compare to few MB of a Python-based non-ML function)

▴ ML libraries can be large and are varied
￮ Libraries often have optimizations that can be enabled based on hardware

▴ Some ML models may need to be served via GPUs or TPUs

13

Benchmarks

14

Benchmark Specification
● Goal: Identify when it makes sense to use serverless for ML Serving
● Systems

○ Serverless SOTA (AWS Lambda)
○ Serverless on Kubernetes with knative (Google Cloud Run)
○ Container-based platform on Kubernetes (Verta)

15

Systems: Serverless SOTA - AWS Lambda

16

Managed Serverless Platform

How it works:

▴ Upload packaged code to S3
▴ Upload other dependencies to S3
▴ Trigger lambda via an event or HTTP request
▴ Platform manages all resources, scaling, and endpoints

Systems: Serverless on k8s - Google Cloud Run

17

Managed service running containers in serverless fashion on k8s
(knative based)

How it works:

▴ Upload a Docker container to GCR
▴ Trigger Cloud Run via an event or HTTP request
▴ Platform manages all resources, scaling, and endpoints

Systems: Containers on k8s - Verta

18

Platform to run models as containers on k8s

How it works:

▴ Upload model and metadata to Verta platform
▴ Optionally specify resource and hardware requirements
▴ Deploy model on Verta
▴ Verta manages endpoints and scaling of models

Benchmark Specification
● Metrics

○ Prediction latency (warm-start)
○ Time to first prediction (cold-start)
○ Time to scale (autoscaling)
○ Usability concerns

● Workloads
○ Variety of models including state-of-the-art NLP, CV, and traditional ML models
○ Varying QPS

19

Results
Caveats!

▴ Serverless for k8s is still evolving. These numbers are based on the software and
capabilities available today

▴ For managed services, there are knobs that cannot be controlled by the end user
and optimizations performed under the hood

▴ We use off-the-shelf settings in this benchmark
▴ This talk covers a subset of the benchmark results, for the full set of results

visit: verta.ai/serverless-inference-benchmark

20

https://www.verta.ai/serverless-inference-benchmark

Results: Usability Concerns (Serverless)
▴ Serverless platforms have hard restrictions on resources available

21

AWS Lambda Google Cloud Run

Memory 3 GB 4 GB

Disk 250 + 500 MB 4 GB

CPU Proportional to
memory

4 vCPUs

GPUs n/a n/a

Results: Usability Concerns (Serverless)
▴ If your model or ML library(s) doesn’t fit in these constraints, you cannot use the

serverless platform
￮ Ex.1.

▪ Torch + transformer library (HuggingFace) for DistilBERT > 500 MB
▪ Need to surgically remove pieces of the libraries or get creative with model loading to even use

lambdas
▪ Significant wrangling required

￮ Ex.2.
▪ Embedding + nearest neighbor lookup model > 20 GB
▪ Doesn’t fit constraints for any of the serverless platforms

22

Results: Usability Concerns (Serverless)
Configuration options

▴ ML libraries and lower-level linear algebra libraries have optimizations that can be
tuned via environment variables

▴ However, settings are tied to underlying hardware and serverless platforms are not
transparent wrt hardware used

▴ Additionally, serverless platforms do not allow hardware to be customized

23

Results: Warm-start Prediction Latency

24

P50 (s) P95 (s) P99 (s)

AWS Lambda 0.4885 0.5341 0.5738

Google Cloud Run 0.3848 0.4574 0.4971

Verta 0.2605 0.2809 0.2935

Configuration:

AWS Lambda: Memory=3 GB
Google Cloud Run: 2 CPUs, 3 GB
Verta: CPU=1.6, Memory=3 GB
1 worker/query

Model: DistilBERT

Observations:

Verta (container-based system) has lower latency by
2X. This can be attributed potentially to more control
on environment (e.g., Intel vs. AMD processors).
Without implementation details of AWS and GCP
systems, hard to identify root cause.

Results: Cold-Start Prediction Latency

25

Time to first request (s)

AWS Lambda 41

Google Cloud Run 8.2

Verta 0.7

Model: DistilBERT

Configuration:

100 qps, 1 worker/query
Steady state: receives 100 responses/sec
Time to 1st response: time to first successful
response
Resource configs same as before

Observations:

Verta (container-based system) always has >=1 model
replica running, so time to first request is the lowest.

Results: Scaling Latency

26

Time to reach steady state (s)

AWS Lambda 79

Google Cloud Run 33

Verta 105 (pods only)
315 (pods+nodes)

Model: DistilBERT

Configuration:

100 qps, 1 worker/query
Steady state: receives 100 responses/sec
Resource configs same as before

Observations:

Auto-scaling is faster on serverless systems.

Results: Varying model size

27

DistilBERT -
P95 Latency

BERT -
P95 Latency

DistilBERT -
Time to 1st
req

BERT -
Time to 1st req

AWS
Lambda

0.5341 0.9878 41.0138 41.1018

Google
Cloud Run

0.4574 0.7616 8.2 15.8

Verta 0.2809 0.4887 0.3043 0.8179

Models:

DistillBERT: 254MB
BERT: 416 MB

Observations:

Running a larger model increases latency across the
systems. Cold-start metrics show some degradation.

Note on Cost
▴ Pure infra costs may be comparable or even higher than a non-serverless system
▴ Tied to exact workload and resources used (e.g., bursty, seasonal, continuous and

steady).
▴ However, TCO is usually lower due to lower development and maintenance costs

28

Takeaways

29

Takeaways
▴ Serverless solutions have hard limits on resources. If your model doesn’t fit into

those constraints, serverless is not a good fit
▴ Ability to configure hardware can lead to better performance for non-serverless

systems
▴ Scaling with serverless platforms is faster than vanilla autoscaling in k8s
▴ Query pattern and workload will affect costs of running ML-inference in serverless

fashion vs. w/servers

30

Check out verta.ai/serverless-inference-benchmark to learn how to run
the benchmark!

https://www.verta.ai/serverless-inference-benchmark

31

Thank you.
Is serverless right for your ML workload? Check
out verta.ai/serverless-inference-benchmark

Reach out at manasi@verta.ai or @DataCereal
with questions.

https://www.verta.ai/serverless-inference-benchmark
mailto:manasi@verta.ai

