
Natch Ruengsakulrach
Eric Hollis

Security Kill Chain Stages in a 100K+
Daily Container Environment with Falco

Natch Ruengsakulrach, MathWorks

• Software Engineer
• Interested in cloud-native application and distributed

system design

Introduction

Eric Hollis, MathWorks
Twitter: @ehollis3942

• Team Lead, Extended Detection and Response
• Interested in cloud security, automation, and threat

hunting

Our Cluster Architecture

Kubelet

App N

App 1

Worker Nodes

OS

Container Runtime

App 3

Kube
Proxy

App 2

API Server

Controller

Scheduler

etcd

Control Planes

Cloud
Client

Securing Our Cluster

Kubelet

App N

App 1

Worker Nodes

OS

Container Runtime

App 3

Kube
Proxy

App 2

API Server

Controller

Scheduler

etcd

Control Planes

Cloud
Client

Security in Depth
Least Privilege Principle
Scan K8s version/kernel/container
images for CVEs and Patch them

“No System is Perfectly Secured”

Kubelet

App N

App 1

Worker Nodes

OS

Container Runtime

App 3

Kube
Proxy

App 2

API Server

Controller

Scheduler

etcd

Control Planes

Cloud

Zero Day Vulnerability (K8s and Kernel)
K8s Cluster Misconfiguration
Security Bugs in apps or packages in
container image Client

Here Comes 2020

Kubelet

App N

App 1

Worker Nodes

OS

Container Runtime

App 3

Kube
Proxy

App 2

API Server

Controller

Scheduler

etcd

Control Plane

Cloud
Client

Attacker

1) Scan ports and
identify service with
vulnerable remote
code execution

2) Metasploit
installation

3) Leverage kernel
vulnerability to break
out of the container

4) Replace running
service with a
malicious program to
exfiltrate data

1) Scan ports and
identify service with
vulnerable remote
code execution

2) Metasploit
installation

3) Leverage kernel
vulnerability to break
out of the container

4) Replace running
service with a
malicious program to
exfiltrate data

What is the attackers’ source IP?

What package, which container, and by who?

How was the kernel vulnerability exploited?

What service was removed? What does the malicious
program do?

How Do We Trace Back?

Why Falco?

Kubelet

App N

App 1

Worker Nodes

OS

Container Runtime

App 2

Kube
Proxy

API Server

Controller

Scheduler

etcd

Master Nodes

Cloud

Kubernetes and Container Aware
Customizable Detection Rules
Flexible Alert Integration

Client

Kernel
Module
or eBPF

Security Incident
Management

2) Cyber Kill
Chain Analysis

3) Falco Rule
Development

4) Testing and
Qualifications

5) Security
Observability/
Alert Analysis

1) System
Analysis

Our Falco Strategy

2) Cyber Kill
Chain Analysis

3) Falco Rule
Development

4) Testing and
Qualifications

5) Security
Observability/
Alert Analysis

1) System
Analysis

Our Approach To Use Falco

System Analysis

System Analysis

Application
Analysis

Network

Inbound

Outbound

File System

Sensitive File
System Access

File System
Mounted

Memory/CPU

K8s API
Permissions

Cluster Analysis

RBAC
CRUD on

Kubernetes
Objects

Whitelisted
Container

Images

Cluster
Configuration

2) Cyber Kill
Chain Analysis

3) Falco Rule
Development

4) Testing and
Qualifications

5) Security
Observability/
Alert Analysis

1) System
Analysis

Our Approach To Use Falco

Security Kill Chain with Falco

Reconnaissance

Weaponization

Delivery

Exploitation

Installation

Command and Control

Action on Objectives

The Cyber Kill Chain®

1) Scan ports and
identify service with
vulnerable remote
code execution

2) Metasploit
installation

3) Leverage kernel
vulnerability to break
out of the container

4) Replace running
service with a
malicious program to
exfiltrate data

Security Kill Chain

Reconnaissance

Weaponization

Delivery

Exploitation

Installation

Command and Control

Action on Objectives

The Cyber Kill Chain®

2) Cyber Kill
Chain Analysis

3) Falco Rule
Development

4) Testing and
Qualifications

5) Security
Observability/
Alert Analysis

1) System
Analysis

Our Approach To Use Falco

- macro: allowed_ssh_hosts

condition: fd.net = “10.97.0.0/24"

- rule: Unsanctioned SSH Connection

desc: Detect any new ssh connection to a host other than those in an

allowed group of hosts

condition: (inbound_outbound) and ssh_port and not allowed_ssh_hosts

output: Unsanctioned SSH Connection (commandLine=%proc.cmdline

connectionId=%fd.name userName=%user.name

containerName=%container.name)

priority: WARNING

tags: [network]

Unexpected Traffic from SSH Port Scanning

Rule Example

1) Scan ports and
identify service with
vulnerable remote
code execution

- macro: user_known_contact_k8s_api_server_activities

condition: > (container.image.repository in (com.mathworks.webapp-one,

com.mathworks.webapp-two))

- rule: Contact K8S API Server From Container

desc: Detect attempts to contact the K8S API Server from a container

condition: >

evt.type=connect and evt.dir=< and

(fd.typechar=4 or fd.typechar=6) and

container and

not k8s_containers and

k8s_api_server and

not user_known_contact_k8s_api_server_activities

output: Unexpected connection to K8s API Server from container

(command=%proc.cmdline %container.info

image=%container.image.repository:%container.image.tag connection=%fd.name)

priority: NOTICE

tags: [network, k8s, container, mitre_discovery]

Unexpected API Server Traffic

Rule Example

1) Scan ports and
identify service with
vulnerable remote
code execution

Rule Example

2) Metasploit
installation

Example (Default Rules Provided by Falco)

- rule: Launch Package Management Process in Container

desc: Package management process ran inside container

condition: >

spawned_process

and container

and user.name != "_apt"

and package_mgmt_procs

and not package_mgmt_ancestor_procs

and not user_known_package_manager_in_container

output: >

Package management process launched in container (user=%user.name

user_loginuid=%user.loginuid

command=%proc.cmdline container_id=%container.id container_name=%container.name

image=%container.image.repository:%container.image.tag)

priority: ERROR

tags: [process, mitre_persistence]

Unexpected Package Installation

Rule Example

3) Leverage kernel
vulnerability to break
out of the container# Example (Default Rules Provided by Falco)

- rule: Create Symlink Over Sensitive Files

desc: Detect symlink created over sensitive files

condition: >

create_symlink and

(evt.arg.target in (sensitive_file_names) or evt.arg.target in

(sensitive_directory_names))

output: >

Symlinks created over senstivie files (user=%user.name

user_loginuid=%user.loginuid command=%proc.cmdline

target=%evt.arg.target linkpath=%evt.arg.linkpath

parent_process=%proc.pname)

priority: NOTICE

tags: [file, mitre_exfiltration]

Create symlink over sensitive files

Rule Example

4) Replace running
service with a
malicious program to
exfiltrate data

- rule: K8s Deployment Deleted
desc: Detect any attempt to delete a deployment
condition: (kactivity and kdelete and deployment and response_successful)
output: K8s Deployment Deleted (user=%ka.user.name deployment=%ka.target.name

ns=%ka.target.namespace resp=%ka.response.code decision=%ka.auth.decision
reason=%ka.auth.reason)

priority: INFO
source: k8s_audit
tags: [k8s]

K8s deployment deleted

2) Cyber Kill
Chain Analysis

3) Falco Rule
Development

4) Testing and
Qualifications

5) Security
Observability/
Alert Analysis

1) System
Analysis

Our Approach To Use Falco

Falco Rules Testing (Demo)

• Staging Areas
• Stage Falco rules in dev environment before production

release
• Strategies

1. Manual Testing
2. Falco Event Generator

https://github.com/falcosecurity/event-generator
• Generate suspect actions (ex. System and

Kubernetes Actions)
• Benchmark Falco

https://github.com/falcosecurity/event-generator

2) Cyber Kill
Chain Analysis

3) Falco Rule
Development

4) Testing and
Qualifications

5) Security
Observability/
Alert Analysis

1) System
Analysis

Our Approach To Use Falco

Using Falco Alerts

Kubelet

App N

App 1

Worker Nodes

OS

Container Runtime

App 2

Kube
Proxy

API Server

Controller

Scheduler

etcd

Control Plane

Cloud

Flexible Alert Integrations
Log
Stdout
Webhook
TLS gRPC Client

Kernel
Module
or eBPF

Security Incident
Management

Security Observability

Security Observability

