
Justin Cormack

seccomp
what can it do for you?



Justin Cormack
● Engineer at Docker
● Based in Cambridge, UK
● Notary maintainer
● CNCF TOC member
● CNCF SIG Security
● @justincormack



seccomp
what is it anyway?



● Originally (2005) seccomp was an extreme sandboxing methods for 
code just doing compute

● Processes could call read, write (with existing file), exit and 
sigreturn only

● This was rarely used
● In 2013, seccomp BPF was introduced, allowing small BPF programs to 

be written to decide if syscalls should be allowed, error, be logged or kill 
the thread or process

“Secure Computing”



In theory you take a look at what a program is doing

... and say yes to each call if it is ok, or return EPERM or ENOSYS if not 
allowed, or you want to pretend it does not exist

In theory



● You get very restricted information, eg for
open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC)
you actually only see
open(<pointer>, O_RDONLY|O_CLOEXEC)

● So you cannot make decisions based on filenames, or other things where 
a struct is passed in a pointer

● You cannot inspect a file descriptor to know what type it is, for example if 
it is a network connection or a local file

● You need to allow for weird things like registers not being masked, 
multiple architectures (32 and 64 bit and halfway) being supported

● You need to know what should be allowed and why without context

seccomp in practise



● Jessie Frazelle and I did the work for Docker in early 2016
● Enabled by default since then, most people do not disable it
● In Kubernetes, prior to 1.19 you could annotate pods, since then you 

use seccompProfile in securityContext
● In Kubernetes you need to specify profiles as filenames, as apparently 

800 more lines of Yaml is too much
● Not enabled by default, use RuntimeDefault for something like 

Docker

In Docker and Kubernetes



● In the container space, seccomp is layered through two more 
abstraction layers

● First it is called via the Go bindings to libseccomp, which generates BPF 
code from a simpler description of matching rules
○ however libseccomp can only generate a subset of BPF programs

● The calls to libseccomp are generated from JSON that is defined by the 
runtime, this allows some runtime configuration in addition, so Docker 
will have slightly different rules on different architectures, and if you add 
other privileges

● JSON⇒JSON⇒Go⇒C⇒BPF

seccomp in OCI practise



seccomp
why are we doing this?



● The Linux kernel includes syscalls that are often not considered safe for 
isolated programs to use

● huge attack surface, CVEs
perf_event_open
user namespaces
bpf

● disable security features
ADDR_NO_RANDOMIZE

● obsolete
sysctl

● not namespaced
keyrings, time before 5.6

 

Do not use



seccomp
some good outcomes



● “I consider the ability to use CLONE_NEWUSER to acquire 
CAP_NET_ADMIN over /any/ network namespace and to thus access 
the network configuration API to be a huge risk. For example, 
unprivileged users can program iptables. I'll eat my hat if there are no 
privilege escalations in there.”
Andy Lutomirski

User namespaces



● CVE 2016-3134 “In the mark_source_chains function 
(net/ipv4/netfilter/ip_tables.c) it is possible for a user-supplied 
ipt_entry structure to have a large next_offset field. This field is 
not bounds checked prior to writing a counter value at the supplied 
offset.”

● Can be exploited if you use setsockopt(IPT_SO_SET_REPLACE)
● This normally requires CAP_NET_ADMIN which is not granted
● However, in a user namespace, you can create a new network 

namespace in which you are “local root” and can call these functions
● Blocking user namespace creation by seccomp mitigated these issues

CVE 2016-3134



● “In the Linux kernel 5.5.0 and newer, the bpf verifier 
(kernel/bpf/verifier.c) did not properly restrict the register bounds for 
32-bit operations, leading to out-of-bounds reads and writes in kernel 
memory.”

● This could be exploited by an unprivileged user with access to the bpf 
syscall

● In general bpf is used in the control plane not in end user applications
● It is blocked in the Docker profile unless CAP_SYS_ADMIN granted

CVE 2020-8835



seccomp
some bad outcomes



● Ah Emacs! I single handedly stopped people running Emacs in a 
container with seccomp for many years!

● “GNU Emacs' build process depends on the ability of the build-stage 
binary (temacs) to "dump" itself to a new executable file containing 
preloaded lisp objects/state in its .data segment. This process is 
highly non-portable even in principle; in practice, the big issue is where 
malloc allocations end up. They need to all be contiguous just above the 
.data/.bss in the original binary so that they can become part of the 
.data mapping.”

● Required disabling ASLR via prctl(ADDR_NO_RANDOMIZE)
● This makes exploiting many other things much easier!
● Eventually Emacs stopped doing this!

The war on Emacs



● Steam runs only 32 bit binaries, and is widely used
● Linux has made a lot of changes to 32 bit syscalls
● First one, that broke Steam, was the switch from socketcall to 

separate calls for socket, bind, connect etc...
● Second one more recently was when new calls were added to support 

64 bit time on 32 bit systems, to save us from the year 2038
● Illustrates the fragility of the same user code potentially being converted 

to different syscalls depending what base image you use

Accidentally broke Steam!



● We use an allow list not a block list, so that new syscalls are blocked
● This list is very long, and not yet processed efficiently
● For IO intensive applications there is a significant performance hit
● Some of this can be fixed by using the existing binary search tree code, 

or by even more efficient BPF checking code
● The vast majority of users are not affected, and those that are just 

disable seccomp rather than working on the tedious work of fixing it

Performance



seccomp
did not help



● My favourite Linux CVE, found by Jann Horn, Google Project Zero
● cache invalidation bug in the Linux page fault code
● “However, this optimization is incorrect because it doesn't take into 

account what happens if a previously single-threaded process creates a 
new thread immediately after the mm_struct's sequence number has 
wrapped around to zero.”

● Fixed by changing a counter to 64 bits not 32 bits to avoid overflow
● Only requires mmap and clone to execute, so seccomp cannot protect
● Actually exploiting it is easier with information leaks however

CVE 2018-17182

https://googleprojectzero.blogspot.com/2018/09/a-cache-invalidation-bug-in-linux.html


seccomp
should we be using it like this?



Why is a container platform responsible for the state of Linux kernel 
security?
● Because we want to have some isolation without virtual machines
● Because our applications do not generally use the whole Linux kernel 

syscall space, mostly they use a sane (but undefined) subset
● Although seccomp was designed for end user applications to use, not 

platforms and administrators, it has failed for the vast majority as it is 
too difficult to use

Is this right?



seccomp
choose your adventure



● The status quo is probably that only a few serious companies will use it
● Plus Docker users, which is now mostly a development platform, so 

makes little sense there now
● Update your kernel weekly
● Higher rate of 0-days

Don’t use it?



● I am coming around to the view that a small blocklist is a better 
approach

● Block bpf, user namespaces, open_perf_event, ASLR disable etc
● Easier to understand, less likely to break on upgrade
● Easier to customise inline in your yaml with an allow list
● Way less maintenance work and compatibility issues
● Risk of blocklist moving to zero because there is someone who wants 

everything

Are small blocklists better?



● Whose problem is this anyway?
○ user
○ application
○ Kubernetes
○ CRI eg containerd
○ runc

● Currently responsibility is pushed up to the user, but the threat model is 
not clear in this chain

● Why don’t we have runtimes that provide security guarantees? We are 
seeing these with VMs, gVisor, but the stack was not designed for this

● Why is the runtime a JSON syscall config?

Is it better to push to runtime?



● gVisor looks at the problem by re-implementing much of Linux in a 
memory safe language (Go), and intercepting the syscalls.

● Heroic effort on the transparent unikernel spectrum
● The most successful in this line of bypassing much of Linux
● Uses seccomp internally but largely makes it unnecessary for users
● Has a performance hit too, and may have compatibility issues

gVisor



● AWS Lambda is like a very restricted container runtime
● Uses seccomp (have not probed policy, LMK if you do)
● Uses a Linux kernel with features removed; normal Linux distros are 

designed with everything in usually as they are general purpose
● No application can run as root
● Restricted runtime API
● We could define an isolated container ABI and runtime more like this, 

and less like pick anything you want from Linux
● Clear delineation with control plane components that may be more 

privileged
● The “sandboxed” flag proposal but with a specification

Lambda like?



● Has been a long topic of conversation for years
● Merged in Linux 5.7
● Solve the lack of context and lack of programmability issue
● Custom LSM for different applications
● Obsoletes SELinux and AppArmor eventually
● Startup sized problem, or NSA sized?
● Technical solution does not solve human problems

eBPF LSM



seccomp
what will happen?



● Continuing lack of investment in lower levels of stack mean that little will 
happen

● Majority expect someone else to solve their problems
● Funding that eBPF LSM container security startup is easier than most of 

the other options
● The serious service providers are already using VMs for containers 

anyway, with additional layers inside
● Security vendors are not solving this kind of problem
● End users find it difficult to contribute to this sort of problem, due to lack 

of expertise in these parts of the stack

Prediction




