
© 2020 Volterra Inc. All Rights Reserved. 
Enable a Distributed Cloud for Everyone, Everywhere

Scaling to a million ML models 
using Kubernetes, Apache Spark 

and Apache Arrow
Sandeep Pombra
Head of Data Science

Jakub Pavlik
Director Engineering



© 2019 Volterra Inc. All Rights Reserved. 

Agenda

● Overview

● Volterra ML Functions & Model Explosion

● ML Infrastructure Evolution Journey

● Model Scaling Challenges

2



© 2020 Volterra Inc. All Rights Reserved. 
3

Public Cloud

Private Cloud

Volterra Console

VoltMesh - Distributed 
Network & Security Services

Volterra’s Global Network

Users & CDNs

Nomadic Edge

Physical Edge

VoltStack - Platform Services for 
Distributed Infra and Apps 

SaaS Providers

WE BUILT VOLTERRA
...to distribute cloud services wherever your apps & data need them

...with Kubernetes everywhere



© 2020 Volterra Inc. All Rights Reserved. 44

VoltMesh - Application Security



© 2020 Volterra Inc. All Rights Reserved. 

Volterra Metrics and Logging infrastructure

5



© 2020 Volterra Inc. All Rights Reserved. 

Volterra ML Model Explosion and Scaling

● Volterra ML models has to be done across several dimensions: Application, API, 
Virtual Host, Source, Destination etc

● This leads to large cardinality of models for each ML module 

● We need to scale as we deploy more complex applications in several locations

● Our ML models was running on a single instance in a serialized manner; one after the 
other

● The training  of all models simultaneously took very long. This alone can cause a 
scenario that once a model was ready and deployed it was already obsolete

6



© 2020 Volterra Inc. All Rights Reserved. 

Where We Started

7

● Single Kubernetes cluster with 
continuous static running learning jobs

● Inefficient CPU and RAM usage

● Resizing to bigger and bigger VM 
flavors

● Managing scaling to multiple instances 

● Autoscaling processing and memory

● Handling very large dataset ingestion 
and training



© 2020 Volterra Inc. All Rights Reserved. 88

What Would Be an Ideal Solution?

● Run several models in parallel with high performance

● Autoscale with increasing number of applications. Seamlessly handle varying 
levels of scale per customer.

● Optimize CPU Resources, Cost effective

● Automation with CI/CD, Minimize Infrastructure Management

● Secure and Seamless Data Ingestion

⇒ End-to-end integration of existing Kubernetes infra 
with Spark Scaling and Parallelization (Databricks)



© 2020 Volterra Inc. All Rights Reserved. 

Standard Databricks Integration 

9

Databricks requires VPC Peering, which opens new security concerns...



© 2020 Volterra Inc. All Rights Reserved. 

Final Design Using VoltMesh Secure Ingress GW

10

https://lucid.app/documents/edit/3365b66f-2524-499f-a7c3-83d907f8365a/3?callback=close&name=slides&callback_type=back&v=2973&s=720


© 2020 Volterra Inc. All Rights Reserved. 

Model Parallelization Approach 1

11

Spark provides a resilient distributed dataset (RDD), that 
can be operated on in parallel
RDDs transformations: map
RDD action: collect

def outer_func(key_tuples, var1, var2):
  # Build Pandas Dataframe from keys
  pd_df = pd.DataFrame.from_records(key_tuples)
  # Build the Spark Dataframe from Pandas
  spark_df = spark.createDataFrame(pd_df)
  # Model Function inside an Outer Function
  def my_func(pd_frame):
    key1 = pd_frame['key1']
    key2 = pd_frame['key2']
    return model_func(key1, key2, var1, var2))
  results = spark_df.rdd.map(my_func).collect()

Create Spark Dataframe of Model Keys and use 
map/collect to apply the Model Function in Parallel

Map Transformation

Takes one element and produces one element 



© 2020 Volterra Inc. All Rights Reserved. 

Model Parallelization Approach 2
Use Pandas UDFs with Apache Arrow
Pandas UDFs allow not only to scale out their workloads, but also to leverage the Pandas APIs in 
Apache Spark.

The user-defined functions are executed by:

● Apache Arrow, to exchange data directly between JVM and Python driver/executors with 
near-zero (de)serialization cost.

● The Pandas UDFs work with Pandas APIs inside the function and Apache Arrow for exchanging 
data. 

● It allows vectorized operations that can increase performance up to 100x, compared to 
row-at-a-time Python UDFs.

● Grouped Map Pandas UDFs: split a Spark DataFrame into groups based on the conditions 
specified in the group by operator, applies a UDF (pandas.DataFrame > pandas.DataFrame) to 
each group, combines and returns the results as a new Spark DataFrame.

12

http://arrow.apache.org/


© 2020 Volterra Inc. All Rights Reserved. 

Apache Arrow

13

Being columnar in memory, Apache Arrow 
manages memory more efficiently than row 
storage and takes advantage of modern CPU 
and GPU. 



© 2020 Volterra Inc. All Rights Reserved. 14

Grouped Map Pandas UDF



© 2020 Volterra Inc. All Rights Reserved. 

Grouped Map Pandas UDF
# define schema for what the pandas udf will return
schema = StructType([StructField('group_id', IntegerType()),
StructField('model_str', StringType())])

@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def train_model(df_pandas):     
    # get the value of this group id
    group_id = df_pandas['group_id'].iloc[0] 
    # get features and label for all training instances in this group
    X = df_pandas[['my_feature_1', 'my_feature_2']]
    Y = df_pandas['my_label'] 
    # train this model
    model = RandomForestRegressor()
    model.fit(X,Y) 
    # get a string representation of our trained model to store
    model_str = pickle.dumps(model)
    # build the DataFrame to return
    df_to_return = pd.DataFrame([group_id, model_str],
    columns = ['group_id', 'model_str'])
    return df_to_return

spark.conf.set("spark.sql.execution.arrow.enabled", "true")
df_sp = spark.createDataFrame(df_pd)
results = df_sp.groupBy('group_id').apply(train_model)
res_pd = results.toPandas()

15



© 2019 Volterra Inc. All Rights Reserved. 

Conclusion

● Goal: Add new models and scale with 

growing customers/applications
○ End to End Automation, Security and CI/CD

● Features
○ Microservice architecture

■ Embedded Spark

○ Provide platform to seamlessly add new models.

○ Minimize resource costs

○ Extend to Spark Streaming for near real-time 

applications

16

More Models
available on Volterra 

More
Applications



© 2019 Volterra Inc. All Rights Reserved. 

Contacts

17

@Volterra_

https://medium.com/volterra-io

https://gitlab.com/volterra.io


