Scaling to a million ML models
using Kubernetes, Apache Spark
and Apache Arrow

Sandeep Pombra Jakub Pavlik

Head of Data Science Director Engineering

\{
Volterra
Enable a Distributed Cloud for Everyone, Everywhere

Agenda

e Overview
e Volterra ML Functions & Model Explosion
e ML Infrastructure Evolution Journey

e Model Scaling Challenges

Volterra

WE BUILT VOLTERRA

...to distribute cloud services wherever your apps & data need them

rroro ™22 Gitamai]

Users & CDNs

.0’ N
& 3

Nomadic Edge

)z ¢

Physical Edge

Volterra

Volterra Console

3

_
VoltStack - Platform Services for VoltMesh - Distributed
Distributed Infra and Apps Network & Security Services

Volterra’s Global Network

...with Kubernetes everywhere

© . @
Qﬁhﬁ

aws
Public Cloud

workday.

SaaS Providers

Private Cloud

© 2020 Volterra Inc. All Rights Reserve

d.

VoltMesh - Application Security

Al-based Advanced Security
Visibility and Security (App & Network)

Standard Signature
Based WAF

Volterra Centralized Control Plane
—

BRI B o

N

N N
S TSI (oS
Volterra Global Backbone

11 11
\ N
20 I

Volterrf Node : Volterja Node
5 o)

A aws ©

uj

3

-t

E\

;i. VoltMesh - Application Security

¢ Rule-based WAFs
e Application DoS & BOT Detection

o Application Anomaly Detection

Learning Core

Data Pipeline

Access Logs

Time-series Metrics Model Updates

Inference Engine
Mirror Requests

L4-L7 Data Plane oo
L3-L4 Data Plane

Incoming Requests

N

S8

* Time-series Anomaly Detection

* APl Endpoint Markup

Access Logs
Timeseries Metrics

Model Updates Timeseries
Inference Engine
Mirror Requests

L4-L7 Data Plane
L3-L4 Data Plane

Incoming Requests

N

S8

* APl Behavioral Analysis & Anomalies

Volterra

© 2020 Volterra Inc. All Rights Reserved

Volterra Metrics and Logging infrastructure

Thousands of Sites

Tens of Sites

| Regional Edge (PoP)

| Customer Edge n

Customer Edge 2

Customer Edge 1

O

Prometheus
- Relabeling
- Recording rules

v

K8s workload &
nodes

!

Fluentbit
- Capturing events
- Classification,

Tagging

Federation—1

| _| — Filtering

Forwarding/

== logs

Volterra

Regional Edge (PoP)

O

Prometheus
- CE Federation
- Metric Alert rules

]

v

K8s workload &
nodes

i

Fluentd/Fluentbit

- CE Federation
- Filtering/Routing

§

/]

/]

3 Regions

["Remote Write

Send Alerts

Volterra Global Controller

cortex

Cortex Cluster
- Long Term Storage
- Metric Alert rules

\ AlertManager

- Multi GC Deploy
- Alert Routing

Send Alerts
——Eorwarding -
logs—T———p.| -w—wr
ElasticSearch
Fowvardihg -S::z:te Clusters
logs

-

Amazon S3

A

\/

\V
Volterra Metric
Data Analysis

\'
Volterra Data
Service

\'
Volterra Event
Data Analysis

Volterra ML Model Explosion and Scaling

e Volterra ML models has to be done across several dimensions: Application, API,
Virtual Host, Source, Destination etc

® This leads to large cardinality of models for each ML module
® We need to scale as we deploy more complex applications in several locations

e Our ML models was running on a single instance in a serialized manner; one after the
other

e The training of all models simultaneously took very long. This alone can cause a
scenario that once a model was ready and deployed it was already obsolete

Volterra

Where We Started

e Single Kubernetes cluster with
continuous static running learning jobs Y i ;
| = A
e Inefficient CPU and RAM usage

EKS Cluster

e Resizing to bigger and bigger VM

B0 &

flavors :
1 cortex Prometheus Elasticsearch ,
VPC ! |
peering : :

&

e Managing scaling to multiple instances fo.secGnd , .
region !
7 ‘ <_j_|_> instance instance instance
e Autoscaling processing and memory A ; 4 \
VPC 1
pe?,:ii?g w i Volterra Data Learning Services J
e Handling very large dataset ingestion e :

and training

"olt
\ o e rra © 2020 Volterra Inc. All Rights Reserved 7

What Would Be an Ideal Solution?

e Run several models in parallel with high performance

e Autoscale with increasing number of applications. Seamlessly handle varying
levels of scale per customer.

e Optimize CPU Resources, Cost effective
e Automation with CI/CD, Minimize Infrastructure Management

e Secure and Seamless Data Ingestion

= End-to-end integration of existing Kubernetes infra
with Spark Scaling and Parallelization (Databricks)

Volterra

Standard Databricks Integration

Spark
Clusters

|
|
|
|
|
|
|

L __ SecurityGroup_ |

Databricks VPC

10.126.0.0/16
AWS account

VPC

WS

Peer

QS kafka

|
|
|
¥

ing ‘
L ___ Security Group_ ___
Shared Data VPC
172.78.0.0/16
AWS Account

Databricks requires VPC Peering, which opens new security concerns...

Volterra

© 2020 Volterra Inc. All Rights Reserved.

9

Final Design Using VoltMesh Secure Ingress GW

AWS VPC Volterra region

5

\V

Volterra Data
Learning Services

1 I

1 I

i i

1 I

1 1 1 I

1 1 1 |

1 1 1 |

1 1 1 I

1 1 1 |

1 1 1 I

1 1 1 I

1 1 1 I

i I i

1 1 1 I

1 1 1 I

! EKS Cluster ¢ |

: \ | Advertised API Discovery !

] = \ | Prometheus :

i M4 ! | Cortex - !

: [' ! Elasticsearch l’i::" Satl’-yl'les !

1 1 1 I

! wr T i Detection i

1 1 1 I

! Prometheus i v i

: cortex Elasticsearch ? o ? |

VPC peering , e 1 4 : Per Request :
to second : S — ? Anomaly !
region 1 E B T | & Detection !
1 L L] - 4 < i i i

1 1 1 I

i VoltMesh [! ! VoltMesh :

1 instance instance instance . 4| Request Data]

i i Analysis !

1 1 1 I

1 1 1 I

i I i

VPC peering : 1ol :
to third ! T i User Behaviour i
region ! ! Analysis :
AN . P ;

1 1 1 I

' 1 1 |

Volterra

© 2020 Volterra Inc. All Rights Reserved. 10

https://lucid.app/documents/edit/3365b66f-2524-499f-a7c3-83d907f8365a/3?callback=close&name=slides&callback_type=back&v=2973&s=720

Model Parallelization Approach 1

Create Spark Dataframe of Model Keys and use
map/collect to apply the Model Function in Parallel

Map Transformation

Takes one element and produces one element

RDD RDD

Volterra

Spark provides a resilient distributed dataset (RDD), that
can be operated on in parallel

RDDs transformations: map

RDD action: collect

def outer func(key tuples, varl, var2):

Build Pandas Dataframe from keys
pd df = pd.DataFrame.from records (key tuples)
Build the Spark Dataframe from Pandas
spark df = spark.createDataFrame (pd df)
Model Function inside an Outer Function
def my func(pd frame) :

keyl = pd frame['keyl']

key2 = pd frame['key2']

return model func(keyl, key2, varl, var2))
results = spark df.rdd.map (my func) .collect ()

Model Parallelization Approach 2
Use Pandas UDFs with Apache Arrow

Pandas UDFs allow not only to scale out their workloads, but also to leverage the Pandas APIs in
Apache Spark.

The user-defined functions are executed by:

e Apache Arrow, to exchange data directly between JVM and Python driver/executors with
near-zero (de)serialization cost.

e The Pandas UDFs work with Pandas APIs inside the function and Apache Arrow for exchanging
data.

e It allows vectorized operations that can increase performance up to 100x, compared to
row-at-a-time Python UDFs.

e Grouped Map Pandas UDFs: split a Spark DataFrame into groups based on the conditions
specified in the group by operator, applies a UDF (pandas.DataFrame > pandas.DataFrame) to
each group, combines and returns the results as a new Spark DataFrame.

Volterra

http://arrow.apache.org/

Apache Arrow

Row 1
Row 2
Row 3
Row 4

Row 1

Row 2

Row 3

Row 4

Volterra

session_id

1331246660
1331246351
1331244570
1331261196

Traditional
Memory Buffer

1331246660
3/8/2012 Z2:44PM
99.155,155.225
13312456351
3/8/2012 2:38PM
65.87.165.114

1331244570

3/8/2012 2:09PM
71.10.106.181
1331261196

3/8/2012 6:46PM
76.102.156.138

timestamp

3/8/2012 2:44PM
3/8/2012 2:38PM
3/8/2012 2:09PM
3/8/2012 6:46PM

session_id

timestamp

source_ip

source_ip

99.155.155.225
65.87.165.114
71.10.106,181
76.102.156.138

Arrow

Memory Buffer

1331246660

1331246351

138
3/8/2012 2:44PM
3/8/2012 2:38PM

3/8/2012 2:09PM
3/8/2012 6:46PM
99.155.155.225
65.87.165.114

71.10.106.181
76.102.156.138

Being columnar in memory, Apache Arrow
manages memory more efficiently than row
storage and takes advantage of modern CPU

and GPU.

[]

Intel CPU

Arrow leverages the data parallelism
(SIMD)in modern Intel CPUs:

SELECT * FROM clickstream WHERE

session_id = 1331246351

© 2020 Volterra Inc. All Rights Reserved.

13

Grouped Map Pandas UDF

e
—P>
==
=
Original data frame Split Apply Combine
(the data frame in in- (the transformation to (each chunk back into a
memory manageable each chunk data frame)
chunks) independently)

Volterra

© 2020 Volterra Inc. All Rights Reserved. 14

Grouped Map Pandas UDF

define schema for what the pandas udf will return
schema = StructType ([StructField('group id', IntegerType()),
StructField('model str', StringType())])

@pandas_udf (schema, functionType=PandasUDFType.GROUPED MAP)

def train model (df pandas) :
get the value of this group id
group_id = df pandas['group id'].iloc[0]
get features and label for all training instances in this group
X = df pandas[['my feature 1', 'my feature 2']]
Y
train this model

df pandas['my label']

model = RandomForestRegressor ()

model.fit (X,Y)

get a string representation of our trained model to store
model str = pickle.dumps (model)

build the DataFrame to return

df to return = pd.DataFrame ([group id, model str],

columns = ['group id', 'model str'])

return df to return

spark.conf.set ("spark.sqgl.execution.arrow.enabled", "true")
df sp = spark.createDataFrame (df pd)

results = df sp.groupBy ('group id') .apply(train model)

res pd = results.toPandas ()

Volterra

Conclusion

e Goal: Add new models and scale with

growing customers/applications

o End to End Automation, Security and CI/CD

More Models
available on Volterra

e Features
o Microservice architecture
m Embedded Spark
o Provide platform to seamlessly add new models.

o Minimize resource costs

More
Applications

o Extend to Spark Streaming for near real-time

applications

W,
\ o I te rra © 2019 Volterra Inc. All Rights Reserved. 16

Contacts

m https://medium.com/volterra-io
Medium
\4
@Volterra_

https://gitlab.com/volterra.io

4

\{
\ OI te rra © 2019 Volterra Inc. All Rights Reserved 17

