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WE BUILT VOLTERRA

...to distribute cloud services wherever your apps & data need them
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VoltMesh - Application Security
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Volterra Metrics and Logging infrastructure
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Volterra ML Model Explosion and Scaling

e Volterra ML models has to be done across several dimensions: Application, API,
Virtual Host, Source, Destination etc

® This leads to large cardinality of models for each ML module
® We need to scale as we deploy more complex applications in several locations

e Our ML models was running on a single instance in a serialized manner; one after the
other

e The training of all models simultaneously took very long. This alone can cause a
scenario that once a model was ready and deployed it was already obsolete
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Where We Started

e Single Kubernetes cluster with
continuous static running learning jobs Y i ;
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e Inefficient CPU and RAM usage
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What Would Be an Ideal Solution?

e Run several models in parallel with high performance

e Autoscale with increasing number of applications. Seamlessly handle varying
levels of scale per customer.

e Optimize CPU Resources, Cost effective
e Automation with CI/CD, Minimize Infrastructure Management

e Secure and Seamless Data Ingestion

= End-to-end integration of existing Kubernetes infra
with Spark Scaling and Parallelization (Databricks)
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Standard Databricks Integration
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Databricks requires VPC Peering, which opens new security concerns...
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Final Design Using VoltMesh Secure Ingress GW
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Model Parallelization Approach 1

Create Spark Dataframe of Model Keys and use
map/collect to apply the Model Function in Parallel

Map Transformation

Takes one element and produces one element

RDD RDD

Volterra

Spark provides a resilient distributed dataset (RDD), that
can be operated on in parallel

RDDs transformations: map

RDD action: collect

def outer func(key tuples, varl, var2):

# Build Pandas Dataframe from keys
pd df = pd.DataFrame.from records (key tuples)
# Build the Spark Dataframe from Pandas
spark df = spark.createDataFrame (pd df)
# Model Function inside an Outer Function
def my func(pd frame) :

keyl = pd frame['keyl']

key2 = pd frame['key2']

return model func(keyl, key2, varl, var2))
results = spark df.rdd.map (my func) .collect ()



Model Parallelization Approach 2
Use Pandas UDFs with Apache Arrow

Pandas UDFs allow not only to scale out their workloads, but also to leverage the Pandas APIs in
Apache Spark.

The user-defined functions are executed by:

e Apache Arrow, to exchange data directly between JVM and Python driver/executors with
near-zero (de)serialization cost.

e The Pandas UDFs work with Pandas APIs inside the function and Apache Arrow for exchanging
data.

e It allows vectorized operations that can increase performance up to 100x, compared to
row-at-a-time Python UDFs.

e Grouped Map Pandas UDFs: split a Spark DataFrame into groups based on the conditions
specified in the group by operator, applies a UDF (pandas.DataFrame > pandas.DataFrame) to
each group, combines and returns the results as a new Spark DataFrame.

Volterra


http://arrow.apache.org/

Apache Arrow

Row 1
Row 2
Row 3
Row 4

Row 1

Row 2

Row 3

Row 4
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session_id

1331246660
1331246351
1331244570
1331261196

Traditional
Memory Buffer

1331246660
3/8/2012 Z2:44PM
99.155,155.225
13312456351
3/8/2012 2:38PM
65.87.165.114

1331244570

3/8/2012 2:09PM
71.10.106.181
1331261196

3/8/2012 6:46PM
76.102.156.138

timestamp

3/8/2012 2:44PM
3/8/2012 2:38PM
3/8/2012 2:09PM
3/8/2012 6:46PM

session_id

timestamp

source_ip

source_ip

99.155.155.225
65.87.165.114
71.10.106,181
76.102.156.138

Arrow

Memory Buffer

1331246660

1331246351

138
3/8/2012 2:44PM
3/8/2012 2:38PM

3/8/2012 2:09PM
3/8/2012 6:46PM
99.155.155.225
65.87.165.114

71.10.106.181
76.102.156.138

Being columnar in memory, Apache Arrow
manages memory more efficiently than row
storage and takes advantage of modern CPU

and GPU.

[ ]

Intel CPU

Arrow leverages the data parallelism
(SIMD)in modern Intel CPUs:

SELECT * FROM clickstream WHERE

session_id = 1331246351
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Grouped Map Pandas UDF

e
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Original data frame Split Apply Combine
(the data frame in in- (the transformation to (each chunk back into a
memory manageable each chunk data frame)
chunks) independently)
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Grouped Map Pandas UDF

# define schema for what the pandas udf will return
schema = StructType ([StructField('group id', IntegerType()),
StructField('model str', StringType())])

@pandas_udf (schema, functionType=PandasUDFType.GROUPED MAP)

def train model (df pandas) :
# get the value of this group id
group_id = df pandas['group id'].iloc[0]
# get features and label for all training instances in this group
X = df pandas[['my feature 1', 'my feature 2']]
Y
# train this model

df pandas['my label']

model = RandomForestRegressor ()

model.fit (X,Y)

# get a string representation of our trained model to store
model str = pickle.dumps (model)

# build the DataFrame to return

df to return = pd.DataFrame ([group id, model str],

columns = ['group id', 'model str'])

return df to return

spark.conf.set ("spark.sqgl.execution.arrow.enabled", "true")
df sp = spark.createDataFrame (df pd)

results = df sp.groupBy ('group id') .apply(train model)

res pd = results.toPandas ()

Volterra



Conclusion

e Goal: Add new models and scale with

growing customers/applications

o End to End Automation, Security and CI/CD

More Models
available on Volterra

e Features
o Microservice architecture
m Embedded Spark
o Provide platform to seamlessly add new models.

o  Minimize resource costs

More
Applications

o Extend to Spark Streaming for near real-time

applications
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