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gRPC
● High performance, open source

● High industry adoption

● Features

○ Connection management, multiplexing, bidi-streaming, flow control

○ Deadlines, cancellation, metadata

○ Plugins, interceptors etc.

● Multi-language, multi-platform

● Works great with Protocol Buffers and other wire formats

● Awesome framework for microservices



Before Service Meshes

● Before Service Mesh integration in gRPC

○ Service Discovery - only a DNS name resolver

○ Traffic management - pick-first and round-robin load balancing

○ Security - TLS

○ Observability - no built-in solution

● Advanced features require custom plugins

○ Resolver/Balancer interfaces

○ Stats APIs



What is a Service Mesh?

● Infrastructure layer to control how different parts interact

● Solves complexity of microservices architecture
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Proxy based Service Mesh

● Sidecar proxies get service mesh configuration from the control plane

● Requests are intercepted by the proxies
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Problems with proxies

● Performance overhead

○ Potential bottleneck

● Lifecycle management of proxies

● No end-to-end security

Support Service Meshes in gRPC



Proxyless gRPC Service Mesh

● gRPC applications get service mesh policies from the control plane

● No sidecar proxies. Services talk to each other directly
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Which Service Mesh

● Choose the right data plane APIs - APIs between mesh control plane and 

the applications (proxies).

● Attributes: open, extensible, strong community support and widely used.

○ Works with any control plane that supports such data plane APIs.

○ Helps prevent vendor lock-in.

xDS APIs - the wildly popular data plane APIs used by Envoy proxy and istio.

https://github.com/envoyproxy/data-plane-api
https://www.envoyproxy.io/
https://istio.io/


Overview of xDS APIs
● Endpoint

○ A server instance
○ Health status

● Locality
○ A group, a zone
○ Priority (demo)

● Cluster
○ A deployment

■ Different services
■ Different versions of the same service

○ Load balancing
● Route

○ Request routing
■ Path matching, header matching (demo)
■ Traffic splitting (demo)
■ Retry, timeout

● Listener/VIP
○ Start of any traffic from proxy’s point of view
○ Doesn’t apply very well in gRPC
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Enabling xDS in gRPC
● Pull in the xds dependencies

○ E.g. in gRPC-Go, import _ “google.golang.org/grpc/xds”

● Build a gRPC channel with “xds” resolver scheme

○ E.g. in gRPC-Go, grpc.DialContext(ctx, “xds:///foo.myservice”, …)

● Provide a bootstrap file with xDS server address and configuration

○ Set GRPC_XDS_BOOTSTRAP env variable to the bootstrap file



Limitations

● Feature gap
○ Active development going on

● Deploy bootstrap file
● Ecosystem (observability) around Envoy

○ gRPC has interceptors and OpenCensus integration
○ Observability work in progress

● Must recompile applications
○ Not a problem with CI/CD

The resolver scheme is per channel - Easy to migrate and 
mix’n’match proxied and proxyless deployment.



Current status

Released v1.33 (October 20, 2020)

● xDS client with LDS, RDS, CDS and EDS, Load reporting via LRS

○ Support xDS v2 and v3

● Weighted locality picking and round robin endpoint LB within the locality

● Route matching with path and headers field

● Traffic splitting between weighted clusters



What’s next?

● Timeout, circuit breaking, fault injection

● gRPC server side xDS integration

● Security features like service-to-service mTLS

● Observability



Resources
● gRFCs

○ xDS load balancing design

○ xDS traffic splitting and routing design

○ xDS timeout support

○ xDS circuit breaking

● xDS features in gRPC by release

● Envoy xDS APIs, Universal Data Plane APIs

● Data plane vs. control plane, Concepts and terminology

● Traffic Director

https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md
https://github.com/grpc/proposal/blob/master/A28-xds-traffic-splitting-and-routing.md
https://github.com/grpc/proposal/blob/master/A31-xds-timeout-support-and-config-selector.md
https://github.com/grpc/proposal/blob/master/A32-xds-circuit-breaking.md
https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://github.com/cncf/udpa
https://medium.com/@aburnos/data-plane-control-plane-and-their-apis-explained-d0a3fa7291f3
https://jimmysong.io/en/blog/service-mesh-the-microservices-in-post-kubernetes-era/
https://cloud.google.com/traffic-director


Demo

● Application: gRPC Wallet 

● Control plane: Traffic Director, Google Cloud's managed control plane for 

service mesh.

○ Traffic Director uses xDS to communicate with gRPC clients.

https://github.com/GoogleCloudPlatform/traffic-director-grpc-examples/
https://cloud.google.com/traffic-director


gRPC Wallet
● A wallet for gRPC-Coin
● Services

○ Account Service - database for user id and information
○ Stats Service - price for gRPC-Coin
○ Wallet Service - number of gRPC-Coins for each user
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Demo: traffic splitting
● Client connected to “wallet.grpcwallet.io”

● Two deployments of Wallet service

○ wallet-v1

○ wallet-v2

● Split traffic for RPC “FetchBalance”

○ v1: 60%

○ v2: 40%

● Useful when migrating from v1 to v2

○ Gradually increase the traffic to v2



Demo: header matching
● Client connected to “stats.grpcwallet.io”

● Two deployments of Stats service

○ stats

○ stats-premium

■ Premium users receive price update with higher frequency

● Match header for user information

○ {“membership”: “premium”}

■ route to stats-premium

■ verified with the Account service



Demo: failover

● Client is in “us-central”

● Two server localities

○ “us-central”, will be priority 0

■ because they are in the same zone as the client

○ “us-west”, will be priority 1

● All traffic go to “us-central”

● When “us-central” is down, traffic will go to “us-west”



Thanks

● Contact

○ menghanl@google.com

○ github @menghanl

● gRPC (https://grpc.io/community/)

○ grpc-io mailing list

○ grpc/grpc gitter

mailto:menghanl@google.com
https://grpc.io/community/
https://groups.google.com/forum/#!forum/grpc-io
https://gitter.im/grpc/grpc
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What is xDS

● (x) Discovery Service - Listener, Route, Cluster, Endpoint, Secret etc
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xDS architecture in gRPC
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gRPC Wallet
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