
Menghan Li, Google

Proxyless
Service Mesh
with gRPC



gRPC
● High performance, open source

● High industry adoption

● Features

○ Connection management, multiplexing, bidi-streaming, flow control

○ Deadlines, cancellation, metadata

○ Plugins, interceptors etc.

● Multi-language, multi-platform

● Works great with Protocol Buffers and other wire formats

● Awesome framework for microservices



Before Service Meshes

● Before Service Mesh integration in gRPC

○ Service Discovery - only a DNS name resolver

○ Traffic management - pick-first and round-robin load balancing

○ Security - TLS

○ Observability - no built-in solution

● Advanced features require custom plugins

○ Resolver/Balancer interfaces

○ Stats APIs



What is a Service Mesh?

● Infrastructure layer to control how different parts interact

● Solves complexity of microservices architecture

Service Mesh 
Control Plane

Kubernetes PodKubernetes Pod
Service MeshService Mesh

Application Application



Proxy based Service Mesh

● Sidecar proxies get service mesh configuration from the control plane

● Requests are intercepted by the proxies

Service Mesh 
Control Plane

Kubernetes PodKubernetes Pod
Proxy

gRPC Service 
B

Proxy

gRPC Service 
A

Service Instance

Pod or VM

Localhost/UDS 
Connection



Problems with proxies

● Performance overhead

○ Potential bottleneck

● Lifecycle management of proxies

● No end-to-end security

Support Service Meshes in gRPC



Proxyless gRPC Service Mesh

● gRPC applications get service mesh policies from the control plane

● No sidecar proxies. Services talk to each other directly

Service Mesh 
Control Plane

Kubernetes PodKubernetes Pod

gRPC Service 
B

gRPC Service 
A

Service Instance

Pod or VM

RPCs



Which Service Mesh

● Choose the right data plane APIs - APIs between mesh control plane and 

the applications (proxies).

● Attributes: open, extensible, strong community support and widely used.

○ Works with any control plane that supports such data plane APIs.

○ Helps prevent vendor lock-in.

xDS APIs - the wildly popular data plane APIs used by Envoy proxy and istio.

https://github.com/envoyproxy/data-plane-api
https://www.envoyproxy.io/
https://istio.io/


Overview of xDS APIs
● Endpoint

○ A server instance
○ Health status

● Locality
○ A group, a zone
○ Priority (demo)

● Cluster
○ A deployment

■ Different services
■ Different versions of the same service

○ Load balancing
● Route

○ Request routing
■ Path matching, header matching (demo)
■ Traffic splitting (demo)
■ Retry, timeout

● Listener/VIP
○ Start of any traffic from proxy’s point of view
○ Doesn’t apply very well in gRPC

Locality2 Locality3Locality1 (e.g. Zone)

VIP1

Route 
Rules1

Cluster1

Endpoint1 Endpoint2 Endpoint3 Endpoint4 Endpoint5

Cluster2

Route 
Rules2

VIP2 VIP3



Enabling xDS in gRPC
● Pull in the xds dependencies

○ E.g. in gRPC-Go, import _ “google.golang.org/grpc/xds”

● Build a gRPC channel with “xds” resolver scheme

○ E.g. in gRPC-Go, grpc.DialContext(ctx, “xds:///foo.myservice”, …)

● Provide a bootstrap file with xDS server address and configuration

○ Set GRPC_XDS_BOOTSTRAP env variable to the bootstrap file



Limitations

● Feature gap
○ Active development going on

● Deploy bootstrap file
● Ecosystem (observability) around Envoy

○ gRPC has interceptors and OpenCensus integration
○ Observability work in progress

● Must recompile applications
○ Not a problem with CI/CD

The resolver scheme is per channel - Easy to migrate and 
mix’n’match proxied and proxyless deployment.



Current status

Released v1.33 (October 20, 2020)

● xDS client with LDS, RDS, CDS and EDS, Load reporting via LRS

○ Support xDS v2 and v3

● Weighted locality picking and round robin endpoint LB within the locality

● Route matching with path and headers field

● Traffic splitting between weighted clusters



What’s next?

● Timeout, circuit breaking, fault injection

● gRPC server side xDS integration

● Security features like service-to-service mTLS

● Observability



Resources
● gRFCs

○ xDS load balancing design

○ xDS traffic splitting and routing design

○ xDS timeout support

○ xDS circuit breaking

● xDS features in gRPC by release

● Envoy xDS APIs, Universal Data Plane APIs

● Data plane vs. control plane, Concepts and terminology

● Traffic Director

https://github.com/grpc/proposal/blob/master/A27-xds-global-load-balancing.md
https://github.com/grpc/proposal/blob/master/A28-xds-traffic-splitting-and-routing.md
https://github.com/grpc/proposal/blob/master/A31-xds-timeout-support-and-config-selector.md
https://github.com/grpc/proposal/blob/master/A32-xds-circuit-breaking.md
https://github.com/grpc/grpc/blob/master/doc/grpc_xds_features.md
https://www.envoyproxy.io/docs/envoy/latest/api-docs/xds_protocol
https://github.com/cncf/udpa
https://medium.com/@aburnos/data-plane-control-plane-and-their-apis-explained-d0a3fa7291f3
https://jimmysong.io/en/blog/service-mesh-the-microservices-in-post-kubernetes-era/
https://cloud.google.com/traffic-director


Demo

● Application: gRPC Wallet 

● Control plane: Traffic Director, Google Cloud's managed control plane for 

service mesh.

○ Traffic Director uses xDS to communicate with gRPC clients.

https://github.com/GoogleCloudPlatform/traffic-director-grpc-examples/
https://cloud.google.com/traffic-director


gRPC Wallet
● A wallet for gRPC-Coin
● Services

○ Account Service - database for user id and information
○ Stats Service - price for gRPC-Coin
○ Wallet Service - number of gRPC-Coins for each user

Client Account

Wallet

Stats

wallet.GetBalance

stats.WatchPrice

stats.GetPrice

account.GetUserInfo

account.GetUserInfo
1

1

2

3

2



Demo: traffic splitting
● Client connected to “wallet.grpcwallet.io”

● Two deployments of Wallet service

○ wallet-v1

○ wallet-v2

● Split traffic for RPC “FetchBalance”

○ v1: 60%

○ v2: 40%

● Useful when migrating from v1 to v2

○ Gradually increase the traffic to v2



Demo: header matching
● Client connected to “stats.grpcwallet.io”

● Two deployments of Stats service

○ stats

○ stats-premium

■ Premium users receive price update with higher frequency

● Match header for user information

○ {“membership”: “premium”}

■ route to stats-premium

■ verified with the Account service



Demo: failover

● Client is in “us-central”

● Two server localities

○ “us-central”, will be priority 0

■ because they are in the same zone as the client

○ “us-west”, will be priority 1

● All traffic go to “us-central”

● When “us-central” is down, traffic will go to “us-west”



Thanks

● Contact

○ menghanl@google.com

○ github @menghanl

● gRPC (https://grpc.io/community/)

○ grpc-io mailing list

○ grpc/grpc gitter

mailto:menghanl@google.com
https://grpc.io/community/
https://groups.google.com/forum/#!forum/grpc-io
https://gitter.im/grpc/grpc




Title

● body



Title

● body



Title

● body



What is xDS

● (x) Discovery Service - Listener, Route, Cluster, Endpoint, Secret etc

Locality2 Locality3Locality1 (e.g. Zone)

VIP1

Route 
Rules1

Cluster1

Endpoint1 Endpoint2 Endpoint3 Endpoint4 Endpoint5

Cluster2

Route 
Rules2

VIP2 VIP3Listener Discovery Service
Service VIP(IP:Port) configuration 

Route Discovery Service
Route matching rules and actions 

configuration 

Cluster Discovery Service
Cluster (Backend Service) 

configuration

Endpoint Discovery Service
Prioritized and weighted list of 

localities and endpoints



xDS architecture in gRPC

Client Channel

xDS Resolver

CDS LB policy
(creates one EDS 

policy)

xDS Client
(reads bootstrap file,

speaks LDS, RDS, CDS, 
EDS and LRS)

EDS LB policy
(picks locality and 

creates Child policy)

Cluster Picking Policy
(picks based on RPC 

path/header)

ADS and LRS streams 
with xDS server

Child LB 
policy
(picks 

endpoint 
within 

locality)

Child LB 
policy
(picks 

endpoint 
within 

locality)

Child LB 
policy
(picks 

endpoint 
within 

locality)

CDS LB policy
(creates one EDS 

policy)

EDS LB policy
(picks locality and 

creates Child policy)

Child LB 
policy
(picks 

endpoint 
within 

locality)

Child LB 
policy
(picks 

endpoint 
within 

locality)

Child LB 
policy
(picks 

endpoint 
within 

locality)

CDS LB policy
(creates one EDS 

policy)

EDS LB policy
(picks locality and 

creates Child policy)

Child LB 
policy
(picks 

endpoint 
within 

locality)

Child LB 
policy
(picks 

endpoint 
within 

locality)

Child LB 
policy
(picks 

endpoint 
within 

locality)

Application creates 
channel with xds scheme

To xDS Server

LDS and RDS
CDS

EDS



gRPC Wallet

Client Account

Wallet

Stats

wallet.GetBalance

stats.WatchPrice

stats.GetPrice

account.GetUserInfo

account.GetUserInfo1

1

2

3

2


