
K-Bench: A Framework to
Prescriptively Benchmark Kubernetes

Yong Li and Karthik Ganesan

VMware

Ø When it comes to performance, multiple aspects to look at:

§ Control plane aspects when deploying and manipulating K8s objects:
• Responsiveness
• Scalability
• Resiliency

§ Data plane or application performance:
• Core Infrastructure capabilities (Compute, I/O, network)
• Resource efficiency
• Performance isolation characteristics

Ø Lack of a configurable and an accurate tool to benchmark these different aspects

Motivation

K-Bench Overview

Ø A configurable framework to prescriptively deploy and manipulate K8s objects
§ Benchmark both control and data plane aspects with ease
• E.g., Deploy 1000 nginx pods concurrently and observe at pod startup latencies
• E.g., Deploy a persistent volume and record asynchronous rd/wr bandwidths to it from a pod

Ø Extensible design, rich configuration space
§ Bring your own workloads and orchestrate your target workflows with ease
§ A simple and prescriptive config file represents a use-case

Ø Provides an intuitive set of performance metrics and detailed diagnostic data to
help resolve performance issues

K-Bench Overview

Ø Control Plane:
§ Accurate and fine-grained critical path latencies
• E.g., pod scheduling, initialization, startup latencies

§ Client-server hybrid & event driven approaches
• Tackle eventual consistency in K8s

Ø Data Plane:
§ Evaluate application performance with containerized benchmarks in K8s pods

§ Built-in workloads to stress specific infrastructure resources
• E.g., Redis memtier (compute/memory) , FIO (I/O), Iperf3/qperf (network)

§ Scale-up, scale-out & mix resource usage to study infrastructure performance

§ Built-in blueprints of workflows to evaluate different aspects

K-Bench Control Plane Basics & Terminology

Ø Control plane action
§ CREATE, DELETE, LIST, SCALE, etc.

§ Can be resource type specific (e.g., CREAT for Pod, SCALE for Deployment)

§ Run with action specific options (yaml spec)

§ Multiple actions run one after another on the same resource object can form a chain

Ø Operation
§ Contains a collection of action chains, each executed for a particular resource type

§ Action chains for different resource types run in parallel

Ø Predicate
§ A condition under which an operation is triggered

Ø Labels & filters
§ K-Bench labels (k-label) and use specified labels (u-labels)

K-Bench Control Plane Framework

…
. ……

Infrastructure
vSphere GKE

Kubernetes Client G
o

.… Openshift

K-Bench
Config Parser &
Dispatcher Logic

Resource Manager (Pod)

Resource Manager (Deployment)

K-Bench
config

Kube
yaml

Lifecycle
Management

Container
Interface

Ø Config file specifies:
§ Resource types
§ Actions & operations
§ Concurrency
§ Filters & labels
§ Predicates
§ Execution plan

Ø Data plane:
§ Container interface

Ø Telemetry & monitoring:
§ Wavefront & Prometheus

integration

Ø Run on many k8s platforms

Kubernetes Cluster
& Resource Objects

k u
k ulabels

Pod Actions:
Create(…)
Update(…)
Run(…)

Dep. Actions:
Create(…)
Scale(…)
……

O
ne

 o
pe

ra
tio

n

thread
pool

t0 tm

…

t0 tn

…
Wavefront &
Promethues
Integration

Example Resources, Actions & Config Options

Ø Pod supports CREATE, LIST, GET, RUN, COPY, UPDATE, and DELETE actions.
§ All actions have some common options, e.g.: Count (concurrency) and SleepTime
§ CREATE has ImagePullPolicy, Image, YamlSpec, etc., options.
§ RUN supports Command option.
§ COPY supports LocalPath, ContainerPath, etc., options.
§ CREATE, LIST, RUN, COPY provide LabelKey and LabelValue options.

Ø Deployment:
§ Supports all pod actions, and SCALE.
§ CREATE has specific options such as NumReplicas

Ø ReplicationController and StatefulSet: similar to Deployments.

Ø Other resource types:
§ Namespace, Service, ConfigMap, Endpoints, Event, ComponentStatus, Node,
§ LimitRange, PersistentVolumeClaim, PersistentVolume, PodTemplate, ResourceQuota,
§ Secret, ServiceAccount, Role, RoleBinding, ClusterRole, ClusterRoleBinding, etc.,

Example Configurations

Predicate:
§ Operation runs when condition is met

Typed actions inside one operation:
§ Create deployments with dep.yaml, with 4

go routines
§ Create pods with pause image and then

Run start_work.sh in pods with given labels,
with 2 go routines

More operations can be configured
§ Operations run sequentially

{
"Timeout": 60000,
"Operations": [

{ # first operation
"Predicate": { "Resource": "mypod/initializer" }
"Deployments": {

"Actions": [{
"Act": "CREATE",
"Spec": { "YamlSpec": "./dep.yaml" } }

],
"Count": 4

},
"Pods": {

"Actions": [
{ "Act": "CREATE" },
{ "Act": "RUN",

"Spec": {
"Command": "/root/start_work.sh",
"LabelKey": "podName",
"LabelValue": "myPod" } }

],
"Count": 2

}
},
{ # second operation...}

]
}

Benchmarking Control Plane

Ø SIG compliant API metrics

Ø Fine-grained critical path latencies

• E.g., scheduling, initialization, image pulling, startup latencies

Ø Improved accuracy

• Client-server hybrid timing

4.741

13.386
16.023 17.087

33.008

0 0 0 0 0
0

5

10

15

20

25

30

35

1-client 16-client 32-client 48-client 64-client

La
te

nc
y (

m
s)

Pod scheduling latency (client) Pod scheduling latency (server)

e2e perf tests report 0s
for milli-second metrics

Benchmarking Data Plane – Orchestrate Any Workflow

Ø Leverage K-Bench container interface to orchestrate real world workloads

ØCREATE -> deploy labelled K8s resources with your target containers

Ø These labels will enable user to filter and select specific objects on which following operations act on

ØCOPY -> copy workload artifacts into containers

ØRUN -> run commands inside pods to trigger workflows

Ø Use condition-based predicates to trigger workflows

Ø Predicates can be K8s system based or evaluated in-container

Ø E.g., wait until a server process is up in server pod before a client pod generates load

ØCOPY -> copy results out of the pods to the client

ØDELETE -> delete the created artifacts and trigger next workflow

Benchmarking Data Plane – Leverage Pre-integrated Blueprints

ØContainerized workloads to stress different infrastructure resource dimensions

• CPU, Memory, I/O, Network, hardware accelerators [Future]

• Integrated workloads: Redis Memtier, FIO, IOping, Iperf3, Qperf, etc.

• Pre-Integrated blueprints: Redis Memtier pod density for aggregate performance

Metrics Resource category Benchmark Notes

Txn throughput CPU/Memory Redis Memtier Aggregate transaction throughput

Txn latency CPU/Memory Redis Memtier Transaction latency

I/O bandwidth (IOPS) I/O FIO Rd/Wr bandwidth for various rd-wr ratios, block sizes on
ephemeral and persistent volumes

I/O Latency (ms) I/O Ioping I/O latency on Ephemeral and Persistent volumes

Network b/w Network Iperf3 Inter-pod TCP, UDP bandwidth. Blueprints with varying pod
placements on nodes, zones, regions

Network latency Network Qperf Inter-pod network latency for TCP and UDP packets.
Blueprints with varying pod placements

Diagnostic Data and Dashboarding

Ø End results only paint the final picture
§ Analysis and improvements need infrastructure diagnostics

Ø Diagnostic Telemetry:
§ Support to inject performance and diagnostic data to

dashboarding services like Wavefront/Grafana

§ Distributed Telegraf data collectors with generic output
plugins

§ 1000s of hand-crafted performance metrics can be
monitored for Linux and ESX K8s nodes

Dataplane Use-cases – Example 1

Ø Cluster-level aggregate transaction throughput

Ø Deploy a standard Java benchmark inside multiple K8s pods

Ø Find maximum cluster level aggregate transaction throughput

Ø Compare performance of two K8s clusters with same hardware resources

Ø Further explain the results using insights from the infrastructure diagnostics

1.08

1

0 0.2 0.4 0.6 0.8 1 1.2

Pacific
Supervisor Cluster

Baremetal
Enterprise Linux

System Throughput Normalized to Popular Enterprise Linux on Bare-metal

VMware CEO Pat Gelsinger and PE Joe Beda announce project Pacific at VMworld 2019 opening
keynote using results generated by K-Bench

https://blogs.vmware.com/performance/2019/10/how-does-project-pacific-deliver-8-better-performance-than-bare-metal.html

https://blogs.vmware.com/performance/2019/10/how-does-project-pacific-deliver-8-better-performance-than-bare-metal.html

Dataplane Use-cases – Example 2

Ø Example Blueprint: “dp_network_internode”

Ø Automatically deploys two pods on two nodes using anti-affinity rules

Ø Iperf3 run across the pods

Ø Provides inter-pod TCP/UDP bandwidth

Ø Qperf run across the pods

Ø Provides inter-pod TCP/UDP latency

Ø These blueprints can be run as a suite to get all these key metrics
in a nutshell

Summary

Ø K-Bench is a highly configurable and easy-to-use benchmark

framework to evaluate Kubernetes performance

Ø It can be valuable for competitive benchmarking of K8s platforms,
identify and improve performance issues

Ø K-Bench is open sourced: https://github.com/vmware-tanzu/k-bench

Ø If you are interested, please consider using the tool, providing us
feedback and contributing to the project

https://github.com/vmware-tanzu/k-bench

Thank You!
Any Questions?

