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About OLX Group

Global product and tech group (20+ brands)

Online buying, selling, and exchange of

products and services

Serving approx. 350 million people per month

Operating in about 45 countries across 5

continents

More than 10 million online listings every single

month

Billions of Edge Hits per day

Hundreds of Thousands of Cache reads per

second

Hundreds of Microservices



Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 4

Infrastructure Landscape
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The Big Picture

Processes, Zombies,

Orphans, and

Init Systems
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Unix Processes

Instance of a running application

Ordered in form of a tree

Each process can spawn several child

processes

Each process has a parent, except for the top-

most process (init / PID 1)

PID 1 is started by the kernel

PID 1 acts as a parent process and starts the

rest of the system and processes
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Zombies

Defunct / Zombie processes?

waitpid() system call

Reaping?

SIGCHILD signal

ZOMBIES ARE THE PROCESSES THAT

HAVE TERMINATED BUT HAVE NOT YET

BEEN WAITED FOR BY THEIR PARENT

PROCESSES
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Orphans

What if the parent process terminates

somehow?

What happens to its children? Orphaned?

Time for PID 1 to take over? Adoption?

Who does the reaping now? PID 1?
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Are Zombies Harmful?

Entry in the process table?

Kernel resources?

Creation of new processes?

Resource starvation?
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Zombies and Containers

Generally, one main application process runs per container

Does this main process act like an init process?

What about reaping?

Zombies all around?

What about Docker containers managed by some third-party?

Need for a proper init system?

How about using bash?
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Init System To The Rescue

Upstart? Systemd? The heavyweight systems…

Tini or dumb-init?
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Tini Init System

https://github.com/krallin/tini

Simple and lightweight

Appropriate for containers

Reaps zombies

Performs signal forwarding

Adding or removing Tini doesn’t have any negative impact

https://github.com/krallin/tini
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Setting Up Tini
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More Details

Tini needs to run as PID 1 in order to reap zombies

Can act as a process sub-reaper if not started as PID 1

Passing `-s` argument to Tini (tini –s -- …)

Exits with child's exit code; remapping possible



Managed Lifecycle

Pod & Container 
Lifecycle, and Linux 

Signals
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Pod Lifecycle Phases
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Container Lifecycle States
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Terminating Gracefully

Very important

Need for cleanups?

Forced termination? Downtime?

SIGTERM? A gentle poke…

SIGKILL? The hard kill…
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Termination Lifecycle

Set the grace period | Enter TERMINATING state | Stop getting traffic 

Execute preStop hook, if present | grace  of extra 2 seconds possible

Send SIGTERM to PID 1 of each container

Grace period ends | Issue SIGKILL

API server deletes the Pod’s API Object



Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 21

Termination Lifecycle



Resiliency

Health Check, 
Liveness Probe, 

Readiness Probe,
and Startup Probe
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Health Probe Pattern

About how an application can communicate its health state to Kubernetes

Kubernetes should know the state of the Pod so that it can decide whether to

send requests to the Pod or not

Containers must provide APIs for different kinds of health checks
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Self-Healing Containers

Kubelet brings up the containers and keep them running until the Pod dies

Kubelet restarts a container in case if it crashes; done via the Process Health

Checks (generic)

How can a container’s main process crash?
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Problems

What if an application stops working without its main process crashing?

Deadlock, Infinite Loop, Memory Leak, Thrashing, and numerous other reasons

could be there

Can applications handle these situations well using some complex logic?

Should other services be able to access or send requests to a crashed

application?

How to tackle such problems?
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Probes

A diagnostic performed by the Kubelet on a container

Provides resiliency

Helps in better load balancing and request routing

Ensures timely response to each request
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Technicalities of Probes

Periodically performed by the Kubelet

Possible via calling Handlers implemented by the container

Type of Handlers / Probing Mechanisms:

Exec: Executes a command in a container

TCP Socket: Performs a TCP check against the specified port of the Pod

HTTP GET: Makes an HTTP GET request on container’s IP address, a specified

port and path; success is considered for 2xx or 3xx HTTP response codes

Resultant states:

Success

Failure

Unknown
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Container Probes

Liveness Probe

Readiness Probe

Startup Probe



Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 29

Liveness Probe

Tells whether a container is alive or dead

In case of failure, the Kubelet kills the container

Whether the container will restart or not depends on the `restartPolicy` of the

container (which can be Always, OnFailer, or Never)

TIPS:

Always define a liveness probe for pods running in production

Have the application expose a health-check API endpoint (like /health)

The health-check API endpoint should not require authentication, else the probe

will always fail

Keep it light on the computational resources (probe’s CPU time is part of the

container’s CPU time quota)
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Readiness Probe

A container may need to perform some warm-up procedure

Signals whether a container is ready to accept requests / connections

Until all the containers of a Pod are ready, the Pod isn’t treated to be ready

Unlike the Liveness Probe, on failure, a container isn’t killed

Note: After receiving a SIGTERM signal, even though if the readiness check

passes, Kubernetes tries to prevent the container from receiving new requests
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Code Walkthrough
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Startup Probe

Indicates whether the application within the container has started

All other probes are disabled until Startup Probe succeeds

Useful for slow-starting containers

The Startup Probe is meant to be executed only at the startup, unlike others

A decent `failureThreshold` should be provided



Lifecycle Hooks

postStart Hook,
preStop Hook, and

Graceful Termination
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Need for Lifecycle Hooks

Using only process signals for managing container / application lifecycle is

somewhat limited

Helps maintain the container / application lifecycle in a better manner



Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 35

postStart Hook

Executed just after a container is created, asynchronously with the main

container process

Warm-up logic can be implemented

Can be used to delay the startup state of the container while giving time to the

main container process to initialize

Precondition checks can be done – any failure would result in the main process

getting killed

Can be used to signal to an external listener about the application getting

started
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postStart Hook Behaviour

No guarantees of running

postStart action is a blocking call

Container status remains `Waiting` until the postStart handler completes, which

in turn keeps the Pod status in the `Pending` status

postStart hook runs in parallel with the main container process – it may

happen that the hook gets executed before the container has started

No retries happens
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preStop Hook

Call sent to the container before it is terminated

Initiates graceful termination

Use when reacting to SIGTERM signal is not possible from within the

application

Useful when using third-party managed container images
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Revisiting Termination
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Code Walkthrough



The Specialized

Init Containers

Need, Working, and 

Usage
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Init Containers

Run before the application containers

Contains the utilities or setup which is not present in the application’s image

A Pod can have one or more init containers

Must run to successful completion

Don’t support lifecycle hooks or probes
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Init Containers Continued

If an init container fails during execution and the Pod’s `restartPolicy` is not set

to `Never`, the Kubelet would repeatedly restart the init container until it

succeeds

If the Pod’s `restartPolicy` is set to `Never` and an init container fails during

execution, the Pod is treated as failed

Use separate image(s)

If multiple init containers are defined, they run sequentially in the specified

order; one must successfully complete before the next one starts executing

Can share the same volume with the application containers

Altering an init container leads to restarting of the Pod
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Code Walkthrough
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Usage of Init Containers

Delaying the application container startup

Perform precondition checks

Run utilities or code that is not part of the application container or is not secure

to be run through the application container

Seed data in the database before the application starts

Wait for some service to become available before the application starts

Configure things at the runtime

Perform database schema preparation

Perform database migrations

Create user accounts

And much more…
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Scheduling and Resources

Init containers and application containers co-exist inside a Pod

Pod’s effective request/limit for a resource depends on what is specified for the

init containers as well as the application containers

Pod’s effective request/limit for a resource is the higher of:

The sum of request/limit for a resource of all the application containers

The effective request/limit for a resource of the init containers – it is the

highest of any particular resource request/limit defined on all the init

containers



Face-off

Init Container vs.

Startup Probe vs.

postStart Hook
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Face-off

Parameters postStart Hook Init Container Startup Probe
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Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application
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Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container
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Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application
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Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully
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Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully

Failure Threshold / Restarts Kills container if fails
Restart until successful, depends on 

the Pod’s restartPolicy
Can be specified
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Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully

Failure Threshold / Restarts Kills container if fails
Restart until successful, depends on 

the Pod’s restartPolicy
Can be specified

Usage
Precondition checks, signal to 

external listeners, and introducing 
delays

Initialization and precondition 
checks

Appropriate for slow-starting 
containers and for checking if the 

application has started functioning
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Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully

Failure Threshold / Restarts Kills container if fails
Restart until successful, depends on 

the Pod’s restartPolicy
Can be specified

Usage
Precondition checks, signal to 

external listeners, and introducing 
delays

Initialization and precondition 
checks

Appropriate for slow-starting 
containers and for checking if the 

application has started functioning

Count
Exactly one but supports multiple 
commands using Exec mechanism

Multiple
Exactly one but supports multiple 
commands using Exec mechanism
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