
Anmol Krishan Sachdeva

PID 1, SIG Handling, Hooks & Probes:

Managing Container Lifecycle Correctly

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 2

About Me

International Tech Speaker

Distinguished Guest Lecturer

Represented India at Reputed International

Hackathons

Deep Learning Researcher

8+ International Publications

ALL STACK DEVELOPER

Mentor

Anmol Krishan Sachdeva
Site Reliability Engineer, OLX Group

MSc Advanced Computing

University of Bristol, United Kingdom

LinkedIn: greatdevaks

Twitter: @greatdevaks

https://www.linkedin.com/in/greatdevaks
https://www.twitter.com/greatdevaks

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 3

About OLX Group

Global product and tech group (20+ brands)

Online buying, selling, and exchange of

products and services

Serving approx. 350 million people per month

Operating in about 45 countries across 5

continents

More than 10 million online listings every single

month

Billions of Edge Hits per day

Hundreds of Thousands of Cache reads per

second

Hundreds of Microservices

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 4

Infrastructure Landscape

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 5

Agenda

Processes

Zombies
Orphans

Init Systems

The Big Picture

Pod & Container
Lifecycle
Linux Signals

Managed
Lifecycle

Health Check

Liveness Probe
Readiness Probe

Startup Probe

Resiliency

postStart Hook

preStop Hook
Graceful
Termination

Lifecycle Hooks
The Need

Detailed Working
Usage

Init Containers

Init Container vs.
Startup Probe vs.
postStart Hook

Face-off

The Big Picture

Processes, Zombies,

Orphans, and

Init Systems

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 7

Unix Processes

Instance of a running application

Ordered in form of a tree

Each process can spawn several child

processes

Each process has a parent, except for the top-

most process (init / PID 1)

PID 1 is started by the kernel

PID 1 acts as a parent process and starts the

rest of the system and processes

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 8

Zombies

Defunct / Zombie processes?

waitpid() system call

Reaping?

SIGCHILD signal

ZOMBIES ARE THE PROCESSES THAT

HAVE TERMINATED BUT HAVE NOT YET

BEEN WAITED FOR BY THEIR PARENT

PROCESSES

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 9

Orphans

What if the parent process terminates

somehow?

What happens to its children? Orphaned?

Time for PID 1 to take over? Adoption?

Who does the reaping now? PID 1?

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 10

Are Zombies Harmful?

Entry in the process table?

Kernel resources?

Creation of new processes?

Resource starvation?

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 11

Zombies and Containers

Generally, one main application process runs per container

Does this main process act like an init process?

What about reaping?

Zombies all around?

What about Docker containers managed by some third-party?

Need for a proper init system?

How about using bash?

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 12

Init System To The Rescue

Upstart? Systemd? The heavyweight systems…

Tini or dumb-init?

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 13

Tini Init System

https://github.com/krallin/tini

Simple and lightweight

Appropriate for containers

Reaps zombies

Performs signal forwarding

Adding or removing Tini doesn’t have any negative impact

https://github.com/krallin/tini

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 14

Setting Up Tini

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 15

More Details

Tini needs to run as PID 1 in order to reap zombies

Can act as a process sub-reaper if not started as PID 1

Passing `-s` argument to Tini (tini –s -- …)

Exits with child's exit code; remapping possible

Managed Lifecycle

Pod & Container
Lifecycle, and Linux

Signals

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 17

Pod Lifecycle Phases

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 18

Container Lifecycle States

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 19

Terminating Gracefully

Very important

Need for cleanups?

Forced termination? Downtime?

SIGTERM? A gentle poke…

SIGKILL? The hard kill…

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 20

Termination Lifecycle

Set the grace period | Enter TERMINATING state | Stop getting traffic

Execute preStop hook, if present | grace of extra 2 seconds possible

Send SIGTERM to PID 1 of each container

Grace period ends | Issue SIGKILL

API server deletes the Pod’s API Object

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 21

Termination Lifecycle

Resiliency

Health Check,
Liveness Probe,

Readiness Probe,
and Startup Probe

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 23

Health Probe Pattern

About how an application can communicate its health state to Kubernetes

Kubernetes should know the state of the Pod so that it can decide whether to

send requests to the Pod or not

Containers must provide APIs for different kinds of health checks

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 24

Self-Healing Containers

Kubelet brings up the containers and keep them running until the Pod dies

Kubelet restarts a container in case if it crashes; done via the Process Health

Checks (generic)

How can a container’s main process crash?

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 25

Problems

What if an application stops working without its main process crashing?

Deadlock, Infinite Loop, Memory Leak, Thrashing, and numerous other reasons

could be there

Can applications handle these situations well using some complex logic?

Should other services be able to access or send requests to a crashed

application?

How to tackle such problems?

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 26

Probes

A diagnostic performed by the Kubelet on a container

Provides resiliency

Helps in better load balancing and request routing

Ensures timely response to each request

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 27

Technicalities of Probes

Periodically performed by the Kubelet

Possible via calling Handlers implemented by the container

Type of Handlers / Probing Mechanisms:

Exec: Executes a command in a container

TCP Socket: Performs a TCP check against the specified port of the Pod

HTTP GET: Makes an HTTP GET request on container’s IP address, a specified

port and path; success is considered for 2xx or 3xx HTTP response codes

Resultant states:

Success

Failure

Unknown

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 28

Container Probes

Liveness Probe

Readiness Probe

Startup Probe

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 29

Liveness Probe

Tells whether a container is alive or dead

In case of failure, the Kubelet kills the container

Whether the container will restart or not depends on the `restartPolicy` of the

container (which can be Always, OnFailer, or Never)

TIPS:

Always define a liveness probe for pods running in production

Have the application expose a health-check API endpoint (like /health)

The health-check API endpoint should not require authentication, else the probe

will always fail

Keep it light on the computational resources (probe’s CPU time is part of the

container’s CPU time quota)

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 30

Readiness Probe

A container may need to perform some warm-up procedure

Signals whether a container is ready to accept requests / connections

Until all the containers of a Pod are ready, the Pod isn’t treated to be ready

Unlike the Liveness Probe, on failure, a container isn’t killed

Note: After receiving a SIGTERM signal, even though if the readiness check

passes, Kubernetes tries to prevent the container from receiving new requests

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 31

Code Walkthrough

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 32

Startup Probe

Indicates whether the application within the container has started

All other probes are disabled until Startup Probe succeeds

Useful for slow-starting containers

The Startup Probe is meant to be executed only at the startup, unlike others

A decent `failureThreshold` should be provided

Lifecycle Hooks

postStart Hook,
preStop Hook, and

Graceful Termination

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 34

Need for Lifecycle Hooks

Using only process signals for managing container / application lifecycle is

somewhat limited

Helps maintain the container / application lifecycle in a better manner

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 35

postStart Hook

Executed just after a container is created, asynchronously with the main

container process

Warm-up logic can be implemented

Can be used to delay the startup state of the container while giving time to the

main container process to initialize

Precondition checks can be done – any failure would result in the main process

getting killed

Can be used to signal to an external listener about the application getting

started

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 36

postStart Hook Behaviour

No guarantees of running

postStart action is a blocking call

Container status remains `Waiting` until the postStart handler completes, which

in turn keeps the Pod status in the `Pending` status

postStart hook runs in parallel with the main container process – it may

happen that the hook gets executed before the container has started

No retries happens

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 37

preStop Hook

Call sent to the container before it is terminated

Initiates graceful termination

Use when reacting to SIGTERM signal is not possible from within the

application

Useful when using third-party managed container images

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 38

Revisiting Termination

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 39

Code Walkthrough

The Specialized

Init Containers

Need, Working, and

Usage

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 41

Init Containers

Run before the application containers

Contains the utilities or setup which is not present in the application’s image

A Pod can have one or more init containers

Must run to successful completion

Don’t support lifecycle hooks or probes

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 42

Init Containers Continued

If an init container fails during execution and the Pod’s `restartPolicy` is not set

to `Never`, the Kubelet would repeatedly restart the init container until it

succeeds

If the Pod’s `restartPolicy` is set to `Never` and an init container fails during

execution, the Pod is treated as failed

Use separate image(s)

If multiple init containers are defined, they run sequentially in the specified

order; one must successfully complete before the next one starts executing

Can share the same volume with the application containers

Altering an init container leads to restarting of the Pod

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 43

Code Walkthrough

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 44

Usage of Init Containers

Delaying the application container startup

Perform precondition checks

Run utilities or code that is not part of the application container or is not secure

to be run through the application container

Seed data in the database before the application starts

Wait for some service to become available before the application starts

Configure things at the runtime

Perform database schema preparation

Perform database migrations

Create user accounts

And much more…

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 45

Scheduling and Resources

Init containers and application containers co-exist inside a Pod

Pod’s effective request/limit for a resource depends on what is specified for the

init containers as well as the application containers

Pod’s effective request/limit for a resource is the higher of:

The sum of request/limit for a resource of all the application containers

The effective request/limit for a resource of the init containers – it is the

highest of any particular resource request/limit defined on all the init

containers

Face-off

Init Container vs.

Startup Probe vs.

postStart Hook

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully

Failure Threshold / Restarts Kills container if fails
Restart until successful, depends on

the Pod’s restartPolicy
Can be specified

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully

Failure Threshold / Restarts Kills container if fails
Restart until successful, depends on

the Pod’s restartPolicy
Can be specified

Usage
Precondition checks, signal to

external listeners, and introducing
delays

Initialization and precondition
checks

Appropriate for slow-starting
containers and for checking if the

application has started functioning

Managing Container Lifecycle Correctly | Anmol Krishan Sachdeva, Site Reliability Engineer, OLX Group 47

Face-off

Parameters postStart Hook Init Container Startup Probe

Container Same as application Separate container Same as application

Scope Per container Whole Pod Per Container

Container Image Same as application Separate image Same as application

Run Guarantee No Must run successfully Must run successfully

Failure Threshold / Restarts Kills container if fails
Restart until successful, depends on

the Pod’s restartPolicy
Can be specified

Usage
Precondition checks, signal to

external listeners, and introducing
delays

Initialization and precondition
checks

Appropriate for slow-starting
containers and for checking if the

application has started functioning

Count
Exactly one but supports multiple
commands using Exec mechanism

Multiple
Exactly one but supports multiple
commands using Exec mechanism

Time for

Q/A

@Slack

#2-kubecon-101

