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* Kenji Morimoto
* github.com: morimoto-cybozu

* Worked as an infrastructure engineer for 8 years
* Running 2,000+ servers on-premise

* Renewing the infrastructure with K8s



* Challenge: Running distributed storage system on K8s
* Recap: Volume management in K8s
* Problem: How to place storage devices optimally

* Basic idea: WaitForFirstConsumer + Pod topology spread
constraints

* Implementation using whenUnsatisfiable stanza

* Tuning: kube-scheduler configuration for the optimal
placement

* Demo



Distributed storage
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* Distributed storage system organizes node-local storage

devices

* [t's tedious work to add/remove storage devices manually
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Recap: PVs and PVCs S B Vrluat
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Challenge

* There is no standard profile to deploy distributed storage
systems on K8s yet

* Distributed storage systems are responsible for replicating
data across failure domains for robustness

* Distributing local storage devices evenly is up to the
administrators

* Challenge: Distributing PVs for local disks evenly through
PVCs
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It’s easy to achieve even distribution
if all disks are available




It’s not easy in reality because some
disks/servers/racks may be unavailable
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Problem S B /utal
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* K8s does not care about storage assighment
e kube-scheduler handles Pod scheduling, but not storage
assignment

* In contrast to storage, K8s provides a rich set of Pod
scheduling features
* Resource requirements
* Node selectors
* Pod affinity / anti-affinity
* Taints and tolerations
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* Challenge: Running distributed storage system on K8s
* Recap: Volume management in K8s
* Problem: How to place storage devices optimally

* Basic idea: WaitForFirstConsumer + pod topology spread
constraints

* Implementation using whenUnsatisfiable stanza

* Tuning: kube-scheduler configuration for the optimal
placement

* Demo
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Basic idea S . Virteal

* Use “volumeBindingMode: WaitForFirstConsumer” in
StorageClass

* ... the WaitForFirstConsumer mode which will delay the binding
and provisioning of a PersistentVolume until a Pod using the
PersistentVolumeClaim is created.

https://kubernetes.io/docs/concepts/storage/storage-classes/

e 2 values for volumeBindingMode

* Immediate (default)
* WaitForFirstConsumer
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volumeBindingMode: Immediate (default) ¥ K
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volumeBindingMode: Immediate (default) @ Virteal
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volumeBindingMode: Immediate (default) @ Virteal
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volumeBindingMode: WaitForFirstComsumer
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Basic idea

* Use “volumeBindingMode: WaitForFirstConsumer” in
StorageClass

* Translate the problem of storage allocation into the problem
of Pod scheduling

* Now we can utilize K8s's rich set of Pod scheduling

* Original challenge: Distributing PVs for local disks evenly
through PVCs

* Translated challenge: Distributing Pods with PVCs evenly
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Pod scheduling criteria 2 B Vil

* Anti-affinity
* Only consider whether Pods overlap or not
e Cannot handle the case of multiple Pods/PVs in one Node

\°/Pod Topology Spread Constraints
* Alpha in K8s 1.16, beta in 1.18, stable in 1.19
 Compute scheduling score based on the skew

* You can use topology spread constraints to control how Pods are
spread across your cluster among failure-domains such as regions,

zones, nodes, and other user-defined topology domains
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/
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Pod Topology Spread Constraints ¥ >
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[ el spec:
' Pod topologySpreadConstraints:
Moo ' - maxSkew: 1

topologyKey: zone
whenUnsatisfiable: DoNotSchedule

labelSelector:
matchLabels:

skew = Pods number matched in current topology - min Pods matches in a topology

https://kubernetes.io/blog/2020/05/introducing-podtopologyspread/
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* Challenge: Running distributed storage system on K8s
* Recap: Volume management in K8s
* Problem: How to place storage devices optimally

* Basic idea: WaitForFirstConsumer + pod topology spread
constraints

* Implementation using whenUnsatisfiable stanza

* Tuning: kube-scheduler configuration for the optimal
placement

* Demo
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Evenness in the real world
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e Strict evenness is not desirable in the real world

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers
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Evenness in the real world
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e Strict evenness is not desirable in the real world

Lap 1: | can assign 6 disks evenly (skew == 0)
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Evenness in the real world 8 .B_ Virteat
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Evenness in the real world 8 .B_ Virteat

e Strict evenness is not desirable in the real world

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers

e )
| cannot assigh any more disks due to constraints;

Do | need to stop assignment here?
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Relaxing the constraints 2 B Virlea!

 whenUnsatisfiable indicates how to deal with a Pod if it
doesn't satisfy the spread constraint:

 DoNotSchedule (default): not to schedule the Pod

ScheduleAnyway: to still schedule the Pod while prioritizing nodes
that minimize the skew

* We tried ScheduleAnyway and ...
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Expected behavior of ScheduleAnyway ¥ Eﬂ Virtueal

* If satisfiable, kube-scheduler always schedules the Pod
within the constraints

30



Actual behavior of ScheduleAnyway
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Actual behavior of ScheduleAnyway ¥ B
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Constraint for storage management Pods: maxSkew = 1 for servers
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Actual behavior of ScheduleAnyway
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The Truth S S Virteal

With whenUnsatisfiable == ScheduleAnyway

* Expected behavior:
* |f satisfiable, ...
* |f not satisfiable, ...

e Actual behavior:

* Whether the constraints are satisfiable or not, kube-scheduler no
longer treats them as real constraints

* Instead, they are treated as a part of the scoring factors

* As a result, flattening CPU resource usage can have a higher
priority than the Pod Topology Spread Constraints
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Tuning of kube-scheduler 2 Bttt

* Tune kube-scheduler to weigh the topology spread
constraints more heavily
e K8s 1.17: adjust the scheduling policy

* Set EvenPodsSpreadPriority’s weight to 500
* The scheduling policy is applied globally, so do it carefully

e K8s 1.18+: create a new scheduling profile and adjust it
* 1.18: Set PodTopologySpread’s weight to 500
e 1.19: Disable NodeResourcesBalancedAllocation
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Tuning In K8s 1.17
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apiVersion: kubescheduler.config.k8s.io/vlalphal
kind: KubeSchedulerConfiguration
leaderElection:

leaderElect: true
clientConnection:

kubeconfig: /etc/kubernetes/scheduler/kubeconfig
schedulerName: default-scheduler
algorithmSource:

policy:

file:
path: /etc/kubernetes/scheduler/policy.cfg

"apiVersion": "v1",
"kind": "Policy",
"predicates”: null,
"hardPodAffinitySymmetricWeight": 0,
"alwaysCheckAllPredicates": false,
"priorities™: [
{
"name": "NodePreferAvoidPodsPriority",
"weight": 100000,
"argument”: null
12
{
"name": "EvenPodsSpreadPriority",
"weight": 500,
"argument": null
3
{
"name": "SelectorSpreadPriority",
"weight": 1,
"argument”: null

12

]
}

(and other priorities are listed here with weight =

:]_)
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Tuning in K8s 1.18 S B Vitat
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apiVersion: kubescheduler.config.k8s.io/vlalpha2
kind: KubeSchedulerConfiguration
leaderElection:
leaderElect: true
clientConnection:
kubeconfig: /etc/kubernetes/scheduler.conf
profiles:
- schedulerName: default-scheduler
- schedulerName: even-distribution-scheduler
plugins:
score:
disabled:
- name: PodTopologySpread
enabled:

- name: PodTopologySpread
weight: 500
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Tuning in K8s 1.19 S B Vrtual
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apiVersion: kubescheduler.config.k8s.io/vlalpha2
kind: KubeSchedulerConfiguration
leaderElection:
leaderElect: true
clientConnection:
kubeconfig: /etc/kubernetes/scheduler.conf
profiles:
- schedulerName: default-scheduler
- schedulerName: even-distribution-scheduler
plugins:
score:
disabled:
- name: NodeResourcesBalancedAllocation

y
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* There are 4 Nodes

e 2 computing Pods are running

* 5 0SD Pods are placed for storage management; are they
distributed evenly?

e With default kube-scheduler
e With tuned kube-scheduler
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Key Takeaways

* Translate local storage distribution into Pod scheduling using
WaitForFirstConsumer

* Use Pod topology spread constraints to give better
scheduling criteria

* Tune kube-scheduler to prioritize Pod topology spread
constraints

* for K8s 1.17, 1.18, 1.19

* Our configuration for Rook/Ceph is open-sourced

* https://github.com/cybozu-go/neco-apps, especially under “rook”
directory

40


https://github.com/cybozu-go/neco-apps

KubeCon CloudNativeCon

North America 2020




S R /pteal
-

CloudNativeCon
North America 2020

* How to expose node-local storage devices as PVs

e Local Persistence Volume Static Provisioner
* https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner

* Scan local devices according to the specified pathname patterns, and
expose matched devices as PVs

» Used for static preparation of PVs
* Dynamic binding is applicable
* TopolLVM
e https://github.com/topolvm/topolvm

* Create a Logical Volume of the specified size from the given Volume
Group, and expose the LV as a PV

* Used for dynamic provisioning
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