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• Kenji Morimoto
• github.com: morimoto-cybozu

• Worked as an infrastructure engineer for 8 years
• Running 2,000+ servers on-premise

• Renewing the infrastructure with K8s
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• Challenge: Running distributed storage system on K8s
• Recap: Volume management in K8s

• Problem: How to place storage devices optimally

• Basic idea: WaitForFirstConsumer + Pod topology spread 
constraints

• Implementation using whenUnsatisfiable stanza

• Tuning: kube-scheduler configuration for the optimal 
placement

• Demo

Agenda
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• Distributed storage system organizes node-local storage 
devices

• It’s tedious work to add/remove storage devices manually

Distributed storage
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Recap: PVs and PVCs
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• Rook has a mode to acquire PVs through PVCs

How Rook places local storage
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• There is no standard profile to deploy distributed storage 
systems on K8s yet

• Distributed storage systems are responsible for replicating 
data across failure domains for robustness

• Distributing local storage devices evenly is up to the 
administrators

• Challenge: Distributing PVs for local disks evenly through 
PVCs

Challenge
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• K8s does not care about storage assignment
• kube-scheduler handles Pod scheduling, but not storage 

assignment

• In contrast to storage, K8s provides a rich set of Pod 
scheduling features
• Resource requirements

• Node selectors

• Pod affinity / anti-affinity

• Taints and tolerations

Problem
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• Challenge: Running distributed storage system on K8s
• Recap: Volume management in K8s

• Problem: How to place storage devices optimally

• Basic idea: WaitForFirstConsumer + pod topology spread 
constraints

• Implementation using whenUnsatisfiable stanza

• Tuning: kube-scheduler configuration for the optimal 
placement

• Demo

Agenda
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• Use “volumeBindingMode: WaitForFirstConsumer” in 
StorageClass
• … the WaitForFirstConsumer mode which will delay the binding 

and provisioning of a PersistentVolume until a Pod using the 
PersistentVolumeClaim is created.

https://kubernetes.io/docs/concepts/storage/storage-classes/

• 2 values for volumeBindingMode
• Immediate (default)

• WaitForFirstConsumer

Basic idea
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https://kubernetes.io/docs/concepts/storage/storage-classes/


    

    

volumeBindingMode: Immediate (default)
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volumeBindingMode: Immediate (default)
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volumeBindingMode: WaitForFirstComsumer
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volumeBindingMode: WaitForFirstComsumer
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volumeBindingMode: WaitForFirstComsumer
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• Use “volumeBindingMode: WaitForFirstConsumer” in 
StorageClass

• Translate the problem of storage allocation into the problem 
of Pod scheduling
• Now we can utilize K8s’s rich set of Pod scheduling

• Original challenge: Distributing PVs for local disks evenly 
through PVCs

• Translated challenge: Distributing Pods with PVCs evenly

Basic idea
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• Anti-affinity
• Only consider whether Pods overlap or not

• Cannot handle the case of multiple Pods/PVs in one Node

• Pod Topology Spread Constraints
• Alpha in K8s 1.16, beta in 1.18, stable in 1.19

• Compute scheduling score based on the skew

• You can use topology spread constraints to control how Pods are 
spread across your cluster among failure-domains such as regions, 
zones, nodes, and other user-defined topology domains

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

Pod scheduling criteria
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https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/


Pod Topology Spread Constraints
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https://kubernetes.io/blog/2020/05/introducing-podtopologyspread/

https://kubernetes.io/blog/2020/05/introducing-podtopologyspread/


• Challenge: Running distributed storage system on K8s
• Recap: Volume management in K8s

• Problem: How to place storage devices optimally

• Basic idea: WaitForFirstConsumer + pod topology spread 
constraints

• Implementation using whenUnsatisfiable stanza

• Tuning: kube-scheduler configuration for the optimal 
placement

• Demo

Agenda
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Evenness in the real world
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Evenness in the real world
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Evenness in the real world
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• whenUnsatisfiable indicates how to deal with a Pod if it 
doesn't satisfy the spread constraint:
• DoNotSchedule (default): not to schedule the Pod

• ScheduleAnyway: to still schedule the Pod while prioritizing nodes 
that minimize the skew

• We tried ScheduleAnyway and …

Relaxing the constraints
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• If satisfiable, kube-scheduler always schedules the Pod 
within the constraints

Expected behavior of ScheduleAnyway
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Actual behavior of ScheduleAnyway
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Actual behavior of ScheduleAnyway
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Actual behavior of ScheduleAnyway
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With whenUnsatisfiable == ScheduleAnyway

• Expected behavior:
• If satisfiable, …

• If not satisfiable, …

• Actual behavior:
• Whether the constraints are satisfiable or not, kube-scheduler no 

longer treats them as real constraints

• Instead, they are treated as a part of the scoring factors

• As a result, flattening CPU resource usage can have a higher 
priority than the Pod Topology Spread Constraints

The Truth
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• Tune kube-scheduler to weigh the topology spread 
constraints more heavily
• K8s 1.17: adjust the scheduling policy

• Set EvenPodsSpreadPriority’s weight to 500

• The scheduling policy is applied globally, so do it carefully

• K8s 1.18+: create a new scheduling profile and adjust it
• 1.18: Set PodTopologySpread’s weight to 500

• 1.19: Disable NodeResourcesBalancedAllocation

Tuning of kube-scheduler
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Tuning in K8s 1.17
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apiVersion: kubescheduler.config.k8s.io/v1alpha1

kind: KubeSchedulerConfiguration

leaderElection:

leaderElect: true

clientConnection:

kubeconfig: /etc/kubernetes/scheduler/kubeconfig

schedulerName: default-scheduler

algorithmSource:

policy:

file:

path: /etc/kubernetes/scheduler/policy.cfg

{

"apiVersion": "v1",

"kind": "Policy",

"predicates": null,

"hardPodAffinitySymmetricWeight": 0,

"alwaysCheckAllPredicates": false,

"priorities": [

{

"name": "NodePreferAvoidPodsPriority",

"weight": 100000,

"argument": null

},

{

"name": "EvenPodsSpreadPriority",

"weight": 500,

"argument": null

},

{

"name": "SelectorSpreadPriority",

"weight": 1,

"argument": null

},

(and other priorities are listed here with weight == 1)

]

}



Tuning in K8s 1.18
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apiVersion: kubescheduler.config.k8s.io/v1alpha2

kind: KubeSchedulerConfiguration

leaderElection:

leaderElect: true

clientConnection:

kubeconfig: /etc/kubernetes/scheduler.conf

profiles:

- schedulerName: default-scheduler

- schedulerName: even-distribution-scheduler

plugins:

score:

disabled:

- name: PodTopologySpread

enabled:

- name: PodTopologySpread

weight: 500



Tuning in K8s 1.19
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apiVersion: kubescheduler.config.k8s.io/v1alpha2

kind: KubeSchedulerConfiguration

leaderElection:

leaderElect: true

clientConnection:

kubeconfig: /etc/kubernetes/scheduler.conf

profiles:

- schedulerName: default-scheduler

- schedulerName: even-distribution-scheduler

plugins:

score:

disabled:

- name: NodeResourcesBalancedAllocation



• There are 4 Nodes

• 2 computing Pods are running

• 5 OSD Pods are placed for storage management; are they 
distributed evenly?
• With default kube-scheduler

• With tuned kube-scheduler

Demo
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• Translate local storage distribution into Pod scheduling using 
WaitForFirstConsumer

• Use Pod topology spread constraints to give better 
scheduling criteria

• Tune kube-scheduler to prioritize Pod topology spread 
constraints
• for K8s 1.17, 1.18, 1.19

• Our configuration for Rook/Ceph is open-sourced
• https://github.com/cybozu-go/neco-apps, especially under “rook” 

directory

Key Takeaways
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https://github.com/cybozu-go/neco-apps




• How to expose node-local storage devices as PVs
• Local Persistence Volume Static Provisioner

• https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner

• Scan local devices according to the specified pathname patterns, and 
expose matched devices as PVs

• Used for static preparation of PVs

• Dynamic binding is applicable

• TopoLVM
• https://github.com/topolvm/topolvm

• Create a Logical Volume of the specified size from the given Volume 
Group, and expose the LV as a PV

• Used for dynamic provisioning

FYI
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https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner
https://github.com/topolvm/topolvm

