
Optimizing Storage Assignment
via Pod Scheduling
Under Disturbance Factors

Kenji Morimoto, Cybozu



• Kenji Morimoto
• github.com: morimoto-cybozu

• Worked as an infrastructure engineer for 8 years
• Running 2,000+ servers on-premise

• Renewing the infrastructure with K8s

About Me

2



• Challenge: Running distributed storage system on K8s
• Recap: Volume management in K8s

• Problem: How to place storage devices optimally

• Basic idea: WaitForFirstConsumer + Pod topology spread 
constraints

• Implementation using whenUnsatisfiable stanza

• Tuning: kube-scheduler configuration for the optimal 
placement

• Demo

Agenda

3



• Distributed storage system organizes node-local storage 
devices

• It’s tedious work to add/remove storage devices manually

Distributed storage

4

node

disk disk

node

disk disk

node

disk disk

node

disk disk
OSD OSD

OSD

OSD: Object Storage Device



Recap: PVs and PVCs

5

   

   

local
disk

cloud
storage

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source

Bound

network
storage

  



• Rook has a mode to acquire PVs through PVCs

How Rook places local storage

6

disk disk
  

    

  

disk disk
  

    

    

disk disk
  

    

    

disk disk
  

    

  
   

   

   

   

   

   



• There is no standard profile to deploy distributed storage 
systems on K8s yet

• Distributed storage systems are responsible for replicating 
data across failure domains for robustness

• Distributing local storage devices evenly is up to the 
administrators

• Challenge: Distributing PVs for local disks evenly through 
PVCs

Challenge

7



disk

disk

disk disk

disk

Uneven local storage availability

8

rack

server

disk

server

rack

server

server

rack

server

server



disk

disk

disk disk

disk

Uneven local storage availability

9

rack

server

disk

server

rack

server

server

rack

server

server

It’s easy to achieve even distribution 
if all disks are available



disk

disk

disk disk

disk

Uneven local storage availability

10

rack

server

disk

server

rack

server

server

rack

server

server

SOLD OUT

SOLD OUT

It’s not easy in reality because some 
disks/servers/racks may be unavailable



• K8s does not care about storage assignment
• kube-scheduler handles Pod scheduling, but not storage 

assignment

• In contrast to storage, K8s provides a rich set of Pod 
scheduling features
• Resource requirements

• Node selectors

• Pod affinity / anti-affinity

• Taints and tolerations

Problem

11



• Challenge: Running distributed storage system on K8s
• Recap: Volume management in K8s

• Problem: How to place storage devices optimally

• Basic idea: WaitForFirstConsumer + pod topology spread 
constraints

• Implementation using whenUnsatisfiable stanza

• Tuning: kube-scheduler configuration for the optimal 
placement

• Demo

Agenda

12



• Use “volumeBindingMode: WaitForFirstConsumer” in 
StorageClass
• … the WaitForFirstConsumer mode which will delay the binding 

and provisioning of a PersistentVolume until a Pod using the 
PersistentVolumeClaim is created.

https://kubernetes.io/docs/concepts/storage/storage-classes/

• 2 values for volumeBindingMode
• Immediate (default)

• WaitForFirstConsumer

Basic idea

13

https://kubernetes.io/docs/concepts/storage/storage-classes/


    

    

volumeBindingMode: Immediate (default)

14

   

   

local
disk

local
disk

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source



    

    

volumeBindingMode: Immediate (default)

15

   

   

local
disk

local
disk

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source

1. Bound



    

    

volumeBindingMode: Immediate (default)

16

   

   

local
disk

local
disk

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source

1. Bound

2. Scheduled



    

    

volumeBindingMode: Immediate (default)

17

   

   

local
disk

local
disk

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source

Even distribution cannot 
be taken into account

1. Bound

2. Scheduled



volumeBindingMode: WaitForFirstComsumer

18

    

    

   

   

local
disk

local
disk

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source



volumeBindingMode: WaitForFirstComsumer

19

    

    

   

   

local
disk

local
disk

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source

Even distribution is 
taken into account

1. Scheduled



volumeBindingMode: WaitForFirstComsumer

20

    

    

   

   

local
disk

local
disk

  

  

   

WANTED
storage class: local
capacity: 100 GiB

/mnt/data1

data source

Even distribution is 
taken into account2. Bound

1. Scheduled

Controllable through 
Pod scheduling



• Use “volumeBindingMode: WaitForFirstConsumer” in 
StorageClass

• Translate the problem of storage allocation into the problem 
of Pod scheduling
• Now we can utilize K8s’s rich set of Pod scheduling

• Original challenge: Distributing PVs for local disks evenly 
through PVCs

• Translated challenge: Distributing Pods with PVCs evenly

Basic idea

21



• Anti-affinity
• Only consider whether Pods overlap or not

• Cannot handle the case of multiple Pods/PVs in one Node

• Pod Topology Spread Constraints
• Alpha in K8s 1.16, beta in 1.18, stable in 1.19

• Compute scheduling score based on the skew

• You can use topology spread constraints to control how Pods are 
spread across your cluster among failure-domains such as regions, 
zones, nodes, and other user-defined topology domains

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

Pod scheduling criteria

22

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/


Pod Topology Spread Constraints

23

https://kubernetes.io/blog/2020/05/introducing-podtopologyspread/

https://kubernetes.io/blog/2020/05/introducing-podtopologyspread/


• Challenge: Running distributed storage system on K8s
• Recap: Volume management in K8s

• Problem: How to place storage devices optimally

• Basic idea: WaitForFirstConsumer + pod topology spread 
constraints

• Implementation using whenUnsatisfiable stanza

• Tuning: kube-scheduler configuration for the optimal 
placement

• Demo

Agenda

24



Evenness in the real world

25

rack 1

server 1b

rack 2

server 2b

rack 3

server 3b

server 1a server 2a server 3a

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers

• Strict evenness is not desirable in the real world



Evenness in the real world

26

rack 1

server 1b

rack 2

server 2b

rack 3

server 3b

server 1a server 2a server 3a

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers

• Strict evenness is not desirable in the real world

   

   

   

      

   

Lap 1: I can assign 6 disks evenly (skew == 0)



Evenness in the real world

27

rack 1

server 1b

rack 2

server 2b

rack 3

server 3b

server 1a server 2a server 3a

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers

• Strict evenness is not desirable in the real world

      

   

   

               

      

Lap 2: I can assign 5 more disks 
almost evenly (skew == 1)



Evenness in the real world

28

rack 1

server 1b

rack 2

server 2b

rack 3

server 3b

server 1a server 2a server 3a

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers

• Strict evenness is not desirable in the real world

      

   

   

               

      

I cannot assign any more disks due to constraints;
Do I need to stop assignment here?



• whenUnsatisfiable indicates how to deal with a Pod if it 
doesn't satisfy the spread constraint:
• DoNotSchedule (default): not to schedule the Pod

• ScheduleAnyway: to still schedule the Pod while prioritizing nodes 
that minimize the skew

• We tried ScheduleAnyway and …

Relaxing the constraints

29



• If satisfiable, kube-scheduler always schedules the Pod 
within the constraints

Expected behavior of ScheduleAnyway

30



Actual behavior of ScheduleAnyway

31

server 2 server 4 server 6

server 1 server 3 server 5

Constraint for storage management Pods: maxSkew = 1 for servers

   

   

   

   

CPU 60%

CPU 60%

CPU 60%

CPU 60%



Actual behavior of ScheduleAnyway

32

server 2 server 4 server 6

server 1 server 3 server 5

Constraint for storage management Pods: maxSkew = 1 for servers

      

   

   

   

CPU 60%

CPU 60%

CPU 60%

CPU 60%

Storage

   

Storage

   

Storage

   

Storage

   

Storage

   

Storage

Expected



Actual behavior of ScheduleAnyway

33

server 2 server 4 server 6

server 1 server 3 server 5

Constraint for storage management Pods: maxSkew = 1 for servers

   

   

   

   

CPU 60%

CPU 60%

CPU 60%

CPU 60%

   

Storage

   

Storage

   

Storage

   

Storage

   

Storage

   

Storage

Actual



With whenUnsatisfiable == ScheduleAnyway

• Expected behavior:
• If satisfiable, …

• If not satisfiable, …

• Actual behavior:
• Whether the constraints are satisfiable or not, kube-scheduler no 

longer treats them as real constraints

• Instead, they are treated as a part of the scoring factors

• As a result, flattening CPU resource usage can have a higher 
priority than the Pod Topology Spread Constraints

The Truth

34



• Tune kube-scheduler to weigh the topology spread 
constraints more heavily
• K8s 1.17: adjust the scheduling policy

• Set EvenPodsSpreadPriority’s weight to 500

• The scheduling policy is applied globally, so do it carefully

• K8s 1.18+: create a new scheduling profile and adjust it
• 1.18: Set PodTopologySpread’s weight to 500

• 1.19: Disable NodeResourcesBalancedAllocation

Tuning of kube-scheduler

35



Tuning in K8s 1.17

36

apiVersion: kubescheduler.config.k8s.io/v1alpha1

kind: KubeSchedulerConfiguration

leaderElection:

leaderElect: true

clientConnection:

kubeconfig: /etc/kubernetes/scheduler/kubeconfig

schedulerName: default-scheduler

algorithmSource:

policy:

file:

path: /etc/kubernetes/scheduler/policy.cfg

{

"apiVersion": "v1",

"kind": "Policy",

"predicates": null,

"hardPodAffinitySymmetricWeight": 0,

"alwaysCheckAllPredicates": false,

"priorities": [

{

"name": "NodePreferAvoidPodsPriority",

"weight": 100000,

"argument": null

},

{

"name": "EvenPodsSpreadPriority",

"weight": 500,

"argument": null

},

{

"name": "SelectorSpreadPriority",

"weight": 1,

"argument": null

},

(and other priorities are listed here with weight == 1)

]

}



Tuning in K8s 1.18

37

apiVersion: kubescheduler.config.k8s.io/v1alpha2

kind: KubeSchedulerConfiguration

leaderElection:

leaderElect: true

clientConnection:

kubeconfig: /etc/kubernetes/scheduler.conf

profiles:

- schedulerName: default-scheduler

- schedulerName: even-distribution-scheduler

plugins:

score:

disabled:

- name: PodTopologySpread

enabled:

- name: PodTopologySpread

weight: 500



Tuning in K8s 1.19

38

apiVersion: kubescheduler.config.k8s.io/v1alpha2

kind: KubeSchedulerConfiguration

leaderElection:

leaderElect: true

clientConnection:

kubeconfig: /etc/kubernetes/scheduler.conf

profiles:

- schedulerName: default-scheduler

- schedulerName: even-distribution-scheduler

plugins:

score:

disabled:

- name: NodeResourcesBalancedAllocation



• There are 4 Nodes

• 2 computing Pods are running

• 5 OSD Pods are placed for storage management; are they 
distributed evenly?
• With default kube-scheduler

• With tuned kube-scheduler

Demo

39



• Translate local storage distribution into Pod scheduling using 
WaitForFirstConsumer

• Use Pod topology spread constraints to give better 
scheduling criteria

• Tune kube-scheduler to prioritize Pod topology spread 
constraints
• for K8s 1.17, 1.18, 1.19

• Our configuration for Rook/Ceph is open-sourced
• https://github.com/cybozu-go/neco-apps, especially under “rook” 

directory

Key Takeaways

40

https://github.com/cybozu-go/neco-apps




• How to expose node-local storage devices as PVs
• Local Persistence Volume Static Provisioner

• https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner

• Scan local devices according to the specified pathname patterns, and 
expose matched devices as PVs

• Used for static preparation of PVs

• Dynamic binding is applicable

• TopoLVM
• https://github.com/topolvm/topolvm

• Create a Logical Volume of the specified size from the given Volume 
Group, and expose the LV as a PV

• Used for dynamic provisioning

FYI

42

https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner
https://github.com/topolvm/topolvm

