Optlmlzmg Storage ASS|gnment

via Pod Scheduling
Under Disturbance Factors

Kenji Morimoto, Cybozu

S ~

erica

KubeCon CloudNativeCon ”,
North America 2020 -—

* Kenji Morimoto
* github.com: morimoto-cybozu

* Worked as an infrastructure engineer for 8 years
* Running 2,000+ servers on-premise

* Renewing the infrastructure with K8s

* Challenge: Running distributed storage system on K8s
* Recap: Volume management in K8s
* Problem: How to place storage devices optimally

* Basic idea: WaitForFirstConsumer + Pod topology spread
constraints

* Implementation using whenUnsatisfiable stanza

* Tuning: kube-scheduler configuration for the optimal
placement

* Demo

Distributed storage

KubeCon CloudNativeCon ”,
North America 2020 -—

* Distributed storage system organizes node-local storage

devices

* [t's tedious work to add/remove storage devices manually

a I
node
- OSD
AR
\ J

node

-

Ei=)

~

”Od‘e 0SD }

OSD: Object Storage Device

Recap: PVs and PVCs S B Vrluat

O

disk Bound g
ldata source

network \
storage

WANTED
storage class: local

e capacity: 100 GiB
cloud K /
storage

—

/mnt/datal

- ~N
&- &80
| disk i i
_

4 9 5 N

‘ disk \ ‘ disk \ \

- J

Challenge

* There is no standard profile to deploy distributed storage
systems on K8s yet

* Distributed storage systems are responsible for replicating
data across failure domains for robustness

* Distributing local storage devices evenly is up to the
administrators

* Challenge: Distributing PVs for local disks evenly through
PVCs

X Uer Geal
CloudNativeCon
erica 2020

server

wr
b

server

r

>
b=
“mm
©
'
>
qv)
D
@)
©
| -
O
s
V)
[
O
O
-
D
>
D
-
)

It’s easy to achieve even distribution
if all disks are available

It’s not easy in reality because some
disks/servers/racks may be unavailable

10

Problem S B /utal
KubeC::rth A:Ie:l;l:lzl::otiveCon

* K8s does not care about storage assighment
e kube-scheduler handles Pod scheduling, but not storage
assignment

* In contrast to storage, K8s provides a rich set of Pod
scheduling features
* Resource requirements
* Node selectors
* Pod affinity / anti-affinity
* Taints and tolerations

11

* Challenge: Running distributed storage system on K8s
* Recap: Volume management in K8s
* Problem: How to place storage devices optimally

* Basic idea: WaitForFirstConsumer + pod topology spread
constraints

* Implementation using whenUnsatisfiable stanza

* Tuning: kube-scheduler configuration for the optimal
placement

* Demo

12

Basic idea S . Virteal

* Use “volumeBindingMode: WaitForFirstConsumer” in
StorageClass

* ... the WaitForFirstConsumer mode which will delay the binding
and provisioning of a PersistentVolume until a Pod using the
PersistentVolumeClaim is created.

https://kubernetes.io/docs/concepts/storage/storage-classes/

e 2 values for volumeBindingMode

* Immediate (default)
* WaitForFirstConsumer

13

https://kubernetes.io/docs/concepts/storage/storage-classes/

volumeBindingMode: Immediate (default) ¥ K

KubeCon CloudNativeCon
North America 2020

Urtust

local
disk

local

af
.
=

O

/mnt/datal

=

ldata source

&

WANTED
storage class: local

.

capacity: 100 GiB

14

£
volumeBindingMode: Immediate (default) ""'; E %/’M

KubeCon CloudNativeCon

O

/
/mnt/datal
1. Bound 9
N data source
4 WANTED
storage class: local
capacity: 100 GiB

_ /

15

volumeBindingMode: Immediate (default) @ Virteal

KubeCon CloudNativeCon
North America 2020

2. Scheduled

— 00—

/mnt/datal

=

ldata source

WANTED
storage class: local

capacity: 100 GiB

_ /

16

volumeBindingMode: Immediate (default) @ Virteal

KubeCon CloudNativeCon
North America 2020

2. Scheduled @
/ S-AR
/mnt/datal
1. Bound 9
- ldata source
e Even distribution cannot @
. WANTED
be taken into account storage class: local
capacity: 100 GiB

) - Y

17

volumeBindingMode: WaitForFirstComsumer % £

KubeCon CloudNativeCon
North America 2020

Urtust

local
disk

local

af
.
=

O

/mnt/datal

=

ldata source

&

WANTED
storage class: local

.

capacity: 100 GiB

18

volumeBindingMode: WaitForFirstComsumer

& o

KubeCon CloudNativeCon

North America 2020

rtust

1. Scheduled

g

Even distribution is
taken into account

&

1Ud ld SOUILCE

WANTED
storage class: local
capacity: 100 GiB

]

.

/

19

. . ’ 4
volumeBindingMode: WaitForFirstComsumer @ %/’M

KubeCon CloudNativeCon
North America 2020

1. Scheduled @
4 L \
Even distribution is
w taken into account
\ Udld SOUITCCE
\ 1
4 Controllable through ﬁim
Pod scheduling storage class: local J
capacity: 100 GiB
local
_ disk J K /

20

Basic idea

* Use “volumeBindingMode: WaitForFirstConsumer” in
StorageClass

* Translate the problem of storage allocation into the problem
of Pod scheduling

* Now we can utilize K8s's rich set of Pod scheduling

* Original challenge: Distributing PVs for local disks evenly
through PVCs

* Translated challenge: Distributing Pods with PVCs evenly

21

£
v,V

Pod scheduling criteria 2 B Vil

* Anti-affinity
* Only consider whether Pods overlap or not
e Cannot handle the case of multiple Pods/PVs in one Node

\°/Pod Topology Spread Constraints
* Alpha in K8s 1.16, beta in 1.18, stable in 1.19
 Compute scheduling score based on the skew

* You can use topology spread constraints to control how Pods are
spread across your cluster among failure-domains such as regions,

zones, nodes, and other user-defined topology domains
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

22

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

S R /pteal

North America 2020

Pod Topology Spread Constraints ¥ >

Zone 2

zone=zonel ™ zone=zone2 -

Zone 1

Pod

Pod
- 9

-

skew=3 skew=0
[el spec:
' Pod topologySpreadConstraints:
Moo ' - maxSkew: 1

topologyKey: zone
whenUnsatisfiable: DoNotSchedule

labelSelector:
matchLabels:

skew = Pods number matched in current topology - min Pods matches in a topology

https://kubernetes.io/blog/2020/05/introducing-podtopologyspread/

23

https://kubernetes.io/blog/2020/05/introducing-podtopologyspread/

* Challenge: Running distributed storage system on K8s
* Recap: Volume management in K8s
* Problem: How to place storage devices optimally

* Basic idea: WaitForFirstConsumer + pod topology spread
constraints

* Implementation using whenUnsatisfiable stanza

* Tuning: kube-scheduler configuration for the optimal
placement

* Demo

24

Evenness in the real world

& o

rtust

e Strict evenness is not desirable in the real world

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers

rack 1

N
server 1a

OO

rack 2

=5

\
server 1b

OO

N
server 2a

OO

rack 3

=

=

~\

server 2b

OO

server 3a

=

server 3b

OO

=

25

Evenness in the real world

o I

KubeCon | CloudNativeCon

e Strict evenness is not desirable in the real world

Lap 1: | can assign 6 disks evenly (skew == 0)

rack 1

N
server 1a

@ S

server 1b

rack 2

N
server 2a

=
9 s

@ =

server 2b

-
¢ o

rack 3

server 3a

server 3b

o i

Virtwal

Evenness in the real world 8 .B_ Virteat
* Strict eveP_D_AQ_Li_LDDLdelLLDJLbLEQ:J_LMDLLd\

Lap 2: | can assigh 5 more disks
almost evenly (skew == 1)

Const vers

<k 3
server 3a
&
DI
~ ™

FACh—

r N
server 1a

r N
server 2a

server 3b

27

Evenness in the real world 8 .B_ Virteat

e Strict evenness is not desirable in the real world

Constraints: maxSkew = 1 for racks && maxSkew = 1 for servers

e)
| cannot assigh any more disks due to constraints;

Do | need to stop assignment here?

28

£2
wr

Relaxing the constraints 2 B Virlea!

 whenUnsatisfiable indicates how to deal with a Pod if it
doesn't satisfy the spread constraint:

 DoNotSchedule (default): not to schedule the Pod

ScheduleAnyway: to still schedule the Pod while prioritizing nodes
that minimize the skew

* We tried ScheduleAnyway and ...

29

Expected behavior of ScheduleAnyway ¥ Eﬂ Virtueal

* If satisfiable, kube-scheduler always schedules the Pod
within the constraints

30

Actual behavior of ScheduleAnyway

& o

KubeCon | CloudNativeCon
North America 2020

Constraint for storage management Pods: maxSkew = 1 for servers

()
server 1
. CPU 60%
W
pod
_ y,
()
server 2
. CPU 60%
W
pod
_ y,

.

server 4
. CPU 60%

T

pod

()
server 3
. CPU 60%
[
pod
_ Yy,
()

-
server 5
_
(
server 6
_

31

Actual behavior of ScheduleAnyway ¥ B

North America 2020

Constraint for storage management Pods: maxSkew = 1 for servers

4) 4) ()
server 1 server 3 server 5

_ CPU 60% - Storage . CPU 60% - Storage
w T v P
pod pod pod pod

Storage

—~
P

pod

_ Yy, _ Yy, _ Yy
Expected
() () ()
server 2 server 4 server 6

_ CPU 60% Storage . CPU 60% Storage Storage
- = -
pod pod pod pod pod

\. J \. J . J

32

Actual behavior of ScheduleAnyway

& o

KubeCon | CloudNativeCon
North America 2020

Constraint for storage management Pods: maxSkew = 1 for servers

()
server 1
. CPU 60%
W
pod
_ y,
()
server 2
. CPU 60%
W
pod
_ y,

()
server 3
. CPU 60%
[
pod
_ J
()
server 4
. CPU 60%
-
pod
_ y,

r

server 5

—~
P

pod

Storage

33

The Truth S S Virteal

With whenUnsatisfiable == ScheduleAnyway

* Expected behavior:
* |f satisfiable, ...
* |f not satisfiable, ...

e Actual behavior:

* Whether the constraints are satisfiable or not, kube-scheduler no
longer treats them as real constraints

* Instead, they are treated as a part of the scoring factors

* As a result, flattening CPU resource usage can have a higher
priority than the Pod Topology Spread Constraints

34

Tuning of kube-scheduler 2 Bttt

* Tune kube-scheduler to weigh the topology spread
constraints more heavily
e K8s 1.17: adjust the scheduling policy

* Set EvenPodsSpreadPriority’s weight to 500
* The scheduling policy is applied globally, so do it carefully

e K8s 1.18+: create a new scheduling profile and adjust it
* 1.18: Set PodTopologySpread’s weight to 500
e 1.19: Disable NodeResourcesBalancedAllocation

35

Tuning In K8s 1.17

“r

KubeCon

N

CloudNativeCon

North America 2020

apiVersion: kubescheduler.config.k8s.io/vlalphal
kind: KubeSchedulerConfiguration
leaderElection:

leaderElect: true
clientConnection:

kubeconfig: /etc/kubernetes/scheduler/kubeconfig
schedulerName: default-scheduler
algorithmSource:

policy:

file:
path: /etc/kubernetes/scheduler/policy.cfg

"apiVersion": "v1",
"kind": "Policy",
"predicates”: null,
"hardPodAffinitySymmetricWeight": 0,
"alwaysCheckAllPredicates": false,
"priorities™: [
{
"name": "NodePreferAvoidPodsPriority",
"weight": 100000,
"argument”: null
12
{
"name": "EvenPodsSpreadPriority",
"weight": 500,
"argument": null
3
{
"name": "SelectorSpreadPriority",
"weight": 1,
"argument”: null

12

]
}

(and other priorities are listed here with weight =

:]_)

36

Tuning in K8s 1.18 S B Vitat

North America 2020

apiVersion: kubescheduler.config.k8s.io/vlalpha2
kind: KubeSchedulerConfiguration
leaderElection:
leaderElect: true
clientConnection:
kubeconfig: /etc/kubernetes/scheduler.conf
profiles:
- schedulerName: default-scheduler
- schedulerName: even-distribution-scheduler
plugins:
score:
disabled:
- name: PodTopologySpread
enabled:

- name: PodTopologySpread
weight: 500

37

Tuning in K8s 1.19 S B Vrtual

North America 2020

apiVersion: kubescheduler.config.k8s.io/vlalpha2
kind: KubeSchedulerConfiguration
leaderElection:
leaderElect: true
clientConnection:
kubeconfig: /etc/kubernetes/scheduler.conf
profiles:
- schedulerName: default-scheduler
- schedulerName: even-distribution-scheduler
plugins:
score:
disabled:
- name: NodeResourcesBalancedAllocation

y

38

* There are 4 Nodes

e 2 computing Pods are running

* 5 0SD Pods are placed for storage management; are they
distributed evenly?

e With default kube-scheduler
e With tuned kube-scheduler

39

Key Takeaways

* Translate local storage distribution into Pod scheduling using
WaitForFirstConsumer

* Use Pod topology spread constraints to give better
scheduling criteria

* Tune kube-scheduler to prioritize Pod topology spread
constraints

* for K8s 1.17, 1.18, 1.19

* Our configuration for Rook/Ceph is open-sourced

* https://github.com/cybozu-go/neco-apps, especially under “rook”
directory

40

https://github.com/cybozu-go/neco-apps

KubeCon CloudNativeCon

North America 2020

S R /pteal
-

CloudNativeCon
North America 2020

* How to expose node-local storage devices as PVs

e Local Persistence Volume Static Provisioner
* https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner

* Scan local devices according to the specified pathname patterns, and
expose matched devices as PVs

» Used for static preparation of PVs
* Dynamic binding is applicable
* TopolLVM
e https://github.com/topolvm/topolvm

* Create a Logical Volume of the specified size from the given Volume
Group, and expose the LV as a PV

* Used for dynamic provisioning

42

https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner
https://github.com/topolvm/topolvm

