Leveraging Service Meshes for

Accelerating Serverless Workflows

Paarijaat Aditya & Manuel Stein
Nokia Bell Labs

- =)
- ~
- ~

rrrrrrrrrrrrrrrr

S~ -
~ -
~~~~~~~~




Serverless

Developer III Platform

Q @ 0 @ $
.5  O®




Serverless

Applications are not just one function

M AK1OnCesdy B a

a-pIY

—p
A
o
Y

n/

A DM
W\ ¥



% .
Serverless Workflows S B Vit

North America 2020

What’s in a workflow?
 Compose multiple invocations (actions, steps, tasks)
* Specifies a control flow (as task graph, flowchart or state chart)

* Provides a common context to invocations (artifacts, workflow data)

serverlessworkflow.io

How can a platform achieve fast workflow completion?

* Invoke actions according to the control flow

 Pass the workflow context from one execution to the next


https://serverlessworkflow.io/

Outline

CloudNativeCon
North America 2020

@ N il

Communication

 The decentralized approach

* Which communication pattern to use
1) Simple Services
2) Knative Serving
3) Knative Eventing Sequence

4) Eventing + Serving

Grouping and Load Balancing

* Colocating functions to avoid
communication

 Balance load across allocated resources

e Service mesh as an enabler for dynamic
rebalancing



Platform design S B litat

component
involved in all

%m , > communication

\/\ / ﬁ Additional

latency ®

Central Workflow Engine / Central

Workflow engine /

/ /

Potential
bottleneck ®



Platform design S B litat

-@D—»
@€

Direct
communication ©




£2

1. Basic Services S B Vitual

Stepl Deployment Step2 Deployment

* Kubernetes Deployments exposed through a Cluster|P Service

 Eventloop implements asynchronous delivery

a S->F1 ﬂ F1->F2 ﬂ F2->F3 a F3->F4 m F4->F5 E



. . o .
1. Basic Services e y@g

35
Series of 5 Services
3
e CloudEvent with 1kB data
% 2,5 .
E . * Time between steps
& 2 : e Median time is 0.62ms
S 5
£ :
i~ 1 . g .
0,5 +%;
0

B Source->F1 BMF1->F2 BF2->F3 EF3->F4 B F4->F5



- . £
2. Knative Serving S B lirteat

Step1l Knative Service Step2 Knative Service

Function 2

Que

Function 1

Que

[ Trigger

Proxy ~Proxy

N\

Gateway

Ve b

e Scale to zero
e Traffic splitting
* Revision management



2. Knative Serving © 8 _lituat

7
Series of 5 Knative Services
6
e CloudEvent with 1kB data
’ e Median timeis 2.15 ms
4

Time (Milliseconds)

+..
f.
I
)
I

[

o

M Source->F1 WF1->F2 MF2->F3 BF3->F4 MF4->F5



£3

3. Knative Eventing Sequence .x.

Sequence

IIiviciiivil y wlidiiiicli viopatcuiici

 Asequence is a simple pipeline using channels

* Channel calls a destination (step)

e Step’s response is fed to the next channel

* Technology is pluggable (In-memory / NATS / Kafka)

* Decoupling typically uses a store-and-forward pattern



3. Knative Eventing Sequence .x.

Time (Milliseconds)

[T
o

O R, N W B U1 OO0 4 00 O

-

M Source->F1 WF1->F2 MF2->F3 BF3->F4 MF4->F5

Sequence of 5 steps

Destinations are basic Services

Delivery time from one
response to the next
destination

CloudEvent with 1kB data
Median latency is 1.45 ms
(1.40 ms without last step)



. . £ .
4. Eventing + Serving S B lirtat

Knative
Services

Gateway

- - -

 Decoupling and late-binding

* Scale-to-zero and revision management



4. Eventing + Serving © 8 _lituat

z - Sequence of 5 steps
1 * Destinations are Knative Services
E 0 = * Delivery time for 1kB CloudEvent
% 3 O N * Median latency is 4.59 ms
£ 6 ° * (4.37 ms without last step)
e ———

2

0

M Source->F1 WF1->F2 MF2->F3 B F3->F4 MF4->F5



. . A
Different data sizes S B Virteat

100 ms Eventing + Serving 38 81 ms

90 ms Knative Eventing Sequence

80 ms
70 ms Basic Services

60 ms 60,50 m

50 ms
40 ms
30 ms
20 ms
10 ms

54,17 ms

41,41 ms

29,73 ms

24,23 ms

/ V
0 ms 0,62 ms
1 kB 1 MB 2 MB



Different data sizes

wr

KubeCon

1800 ms Eventing + Serving

1600 ms Knative Eventing Sequence

1400 ms
1200 ms Basic Services
1000 ms
800 ms
600 ms
400 ms "

200 ms

0O ms
10 MB

1525,59 ms

1050,23
959,95 ms

30,41 ms

785,01 ms

712,23 ms
673,30 ms

__—

628,60 ms

461,70ms/

516,12 ms

313,40 ms

S
180,34 ms

20 MB 30 MB 40 MB



S u m m ary Kxoﬂ:rth A:le:':adg’econ —' )

Every indirection adds latency (proxy, channel, broker)
Proxying is faster than using store-and-forward
Separate control from data

Overheads involved with each solution



Outline

CloudNativeCon
North America 2020

@ N il

Communication patterns

 The decentralized approach

* Which communication pattern to use
1) Simple Services
2) Knative Serving
3) Knative Eventing Sequence

4) Eventing + Serving

Grouping and Load Balancing

* Colocating functions to avoid
communication

* Balance load across allocations

e Service mesh as an enabler for dynamic
rebalancing



Overheads In transferring large data ¥ B Viteal

North America 2020

* Previous approaches assume that each function is located in a different container

* Transferring large amount of data may create a significant overhead and slow down
workflow completion time

/ \ Median workflow completion time

40
write data

locally

Remote invocation,
with data transfer

30
——

t——

¥
P

20

-
Time (sec)

AN 1 /’m

Pull data from N

container or global .
Pass data reference store, if needed 0 100 200 300 400 500
Or Fn2 Data size (MB)
pass actual data
\ / remote_fileref remote_datacall
‘remote’ invocation of f2, with a data ‘reference’ ‘fileref” = sending reference to data, and then pulling data if needed

‘datacall’ = sending actual data



£
Colocating functions to accelarate WOrkflows .. o %/’W

North America 2020

* Colocate multiple functions in a container to further accelerte workflow completion time

» Keep data local (local or shared-mem filesystem), pass a reference to data

/ — \ Median workflow completion time
i locall 0 . .
;"’”tﬁ data N ¥ Remote invocation,
ocally .
. gy :m . with data transfer I
—— —_
Pass data reference g
20 . .
& ¢ Local invocation,
= .
, N _ _ , ’ with data transfer
local’ invocation of f2, with a data ‘reference 10
/
1,2 0 @<=
0 100 200 300 400 500 600
. Data size (MB)
§ 0,8
}ET —e—|ocal_fileref = —e—|ocal_datacall remote_fileref remote_datacall
i= 04 . .
Keeping data local is better
0
0 4 8 12 16 20




Need for internal load rebalance v | oot y”_;é‘;“g

North America 2020

* At the time of admitting a request, the container may not be aware of congestion in a
latter part of a workflow

* The container may admit more requests that it is able to process downstream

(£ N
4’ 4’
Fnl Fn2
— > >
External load balancer .
AN )
\

A )




Need for internal load rebalance o cotraecen Virtual

* Need to rebalance already admitted requests

* |nternally route requests to other replicas of downstream function

Fn2

External load balancer

)




Load rebalancing with data transfer — «<. s Virtual

* Transferring data makes rebalancing even more challenging

—

—

External load balancer

pull data from N
remote container
or from global
storage

4




S R pteal

Load rebalancing with data transfer e« o

Median workflow completion time (loaded container, with rebalancing) b
50 1,2
Local invocation, 2
; with data transfer P
- 0,4
— 30 0
& 0 4 8 12 16 20
= . . Data size (MB)
& Remote invocation,
= .
2 with data transfer
10
0
0 100 200 300 400 500 600
Data size (MB
(MB) ‘fileref’ = sending reference to data,
—e—local_fileref —e—local_datacall remote_fileref remote_datacall and then pulling data if needed

‘datacall’ = sending actual data

Under load, it may be better to rebalance to a replica of F2
in a different container, even if it involves data transfer



£2

Do)
v,V

Dynamically configurable communication e

e Co-locating multiple functions of a workflow can accelerate workflows
* But now you are dealing with a large unit of deployment

* May have to dynamically rebalance load from somewhere in the middle of a
workflow, which you not know beforehand

* Need a flexible, dynamically configurable routing/communication mechanism
* Need fine grained observability

* Need configurable load balancing without modifying core logic of the app



Service mesh as an enabler 2 .2, lrleal

North America 2020

* Provides dynamically configurable routing at runtime,
* Configurable load balancing policies (e.g round-robin, weighted, maglev, etc),

* Detailed observability, periodic health checks

)
ﬂod \ Load balance traffic L // Pod\

|1l
— () envoy
\ 4

Periodic health checks P |

&@ envoy —

X

\

‘ http://svc2 \\

\ ps
\ A
AN . ) ) ) 2t svc2
svcl \, Service discovery, Configuration updates |.* \\

\

’
’
s ’

e <
Control Plane

Service 1

<

Service 2




Service mesh as an enabler 2 .2, lrleal

North America 2020

e Reuse envoy proxy for intra-container communication (in addition to inter-container comm.)
» Preferentially send requests to local downstream function (e.g. weighted load-balancing)
* Allow functions to exert back pressure (e.g. via 503 responses to health checks)

S\
Pod Load balance traffic (f/ PON
(™ N / fr—

@ envoy —————
= X, Periodic health checks e
http://fn/' \ \\ //
\\ ,&
\ /
fnl fn2 \\\ Service discovery, Configuration updates /"\\\ fnl fn2
\ ’, J

workflow replica

\ ,/
\ J \\ //
Control Plane

workflow replicas




KNIX Microfunctions (knix.io) 2 _B_ liteal

rth America

e Colocate functions of a workflow inside single container (wrapped in a Knative service).
Provides a custom local message bus within the container

Knative serving load balancing
\ Knative service rep“cas
Knative service replica =

=~ (7 .

-~

,-L'@ envoy

local message bus local message bus

e \ pd \
\_ fnt ) 4 Control Plane \ " -

Istio
workflow replica s ( ) workflow replicas




KNIX Microfunctions (knix.io) 2 _B_ Jrteal

North America 2020

» Colocate functions of a workflow inside single container (wrapped in a Knative service). Provides a
custom local message bus within the container

 [Coming soon] Extending to utilize the envoy proxy (+ control plane) as a unified communication
mechanism for intra- and inter-container communication and load rebalancing

Knative serving load balancing
/ \ Knative service replicas
Knative service replica
Rebalance traffic —\ \
K &@ envoy ;—  > (&,@ envoy

Periodic health checks Py
K\\ ,/,
\\ ,/
\\\ ,/,
S, L
> ’
[, Service discovery, Configuration updates  }1
S ’
\\ ,/
fn1l fn2 ™ e fnl fn2
k j R \ Control Plane 4 J
‘ (Istio)

workflow replica e workflow replicas




Source code 2 . Vileal

KNIX Website: https://knix.io

KNIX Source code: https://github.com/knix-microfunctions/knix

KNIX Slack channel: https://knix.slack.com

Code for benchmark experiments presented in this talk:
https://github.com/knix-microfunctions/workflowmesh



https://github.com/knix-microfunctions/workflowmesh
https://knix.io/
https://github.com/knix-microfunctions/knix
https://knix.slack.com/

Thank youl!



