
Paarijaat Aditya & Manuel Stein
Nokia Bell Labs

Leveraging Service Meshes for 
Accelerating Serverless Workflows



Serverless

λ

λ

λ

PlatformDeveloper



Serverless

λ κ ι θ η ζ ε δ γ β α

Applications are not just one function

λ

κ

ι

θ
ηζ

ε

δ

γβα



• Compose multiple invocations

• Specifies a control flow

• Provides a common context to invocations

Serverless Workflows

How can a platform achieve fast workflow completion?

• Invoke actions according to the control flow

• Pass the workflow context from one execution to the next

serverlessworkflow.io

(actions, steps, tasks)

What’s in a workflow?

(as task graph, flowchart or state chart)

(artifacts, workflow data)

https://serverlessworkflow.io/


Outline

Communication

• The decentralized approach

• Which communication pattern to use

1) Simple Services

2) Knative Serving

3) Knative Eventing Sequence

4) Eventing + Serving

Grouping and Load Balancing

• Colocating functions to avoid 
communication

• Balance load across allocated resources

• Service mesh as an enabler for dynamic 
rebalancing



Platform design

Central Workflow Engine

Workflow engine

F1
F1

F2

F3

Central 
component
involved in all 
communication

Potential 
bottleneck

Additional 
latency



Platform design

Decentralized logic and functions

F1

F1

F2

F3

Direct
communication☺



1. Basic Services

Step2 Deployment

Function 2

• Kubernetes Deployments exposed through a ClusterIP Service

• Event loop implements asynchronous delivery

Step1 Deployment

Function 1

F1 F2 F3 F5
F4->F5

S F4
S->F1 F1->F2 F2->F3 F3->F4



1. Basic Services
Ti

m
e

(M
ill

is
ec

o
n

d
s)

Series of 5 Services

• CloudEvent with 1kB data

• Time between steps

• Median time is 0.62ms



2. Knative Serving

Trigger

Step2 Knative ServiceStep1 Knative Service

Function 1 Function 2

Gateway

Envoy

QueueProxy QueueProxy

• Scale to zero

• Traffic splitting

• Revision management



2. Knative Serving
Ti

m
e

(M
ill

is
ec

o
n

d
s)

Series of 5 Knative Services

• CloudEvent with 1kB data

• Median time is 2.15 ms



In-Memory Channel Dispatcher

3. Knative Eventing Sequence

• A sequence is a simple pipeline using channels

• Channel calls a destination (step)

• Step‘s response is fed to the next channel

• Technology is pluggable (In-memory / NATS / Kafka)

• Decoupling typically uses a store-and-forward pattern

Svc Svc Svc

Client

Sequence



3. Knative Eventing Sequence
Ti

m
e

(M
ill

is
ec

o
n

d
s)

Sequence of 5 steps

• Destinations are basic Services

• Delivery time from one
response to the next
destination

• CloudEvent with 1kB data

• Median latency is 1.45 ms

• (1.40 ms without last step)



Gateway

4. Eventing + Serving

Svc Svc Svc

Client

Knative
Services

• Decoupling and late-binding

• Scale-to-zero and revision management



4. Eventing + Serving
Ti

m
e

(M
ill

is
ec

o
n

d
s)

Sequence of 5 steps

• Destinations are Knative Services

• Delivery time for 1kB CloudEvent

• Median latency is 4.59 ms

• (4.37 ms without last step)



4,59 ms

50,31 ms

88,81 ms

1,45 ms

34,88 ms

60,50 ms

2,15 ms

29,73 ms

54,17 ms

0,62 ms

24,23 ms

41,41 ms

0 ms

10 ms

20 ms

30 ms

40 ms

50 ms

60 ms

70 ms

80 ms

90 ms

100 ms

Different data sizes

1 kB 1 MB 2 MB

Eventing + Serving

Knative Eventing Sequence

Knative Serving

Basic Services



180,34 ms

313,40 ms

461,70 ms

673,30 ms

233,67 ms

516,12 ms

785,01 ms

959,95 ms

359,41 ms

712,23 ms

1050,23 ms

1525,59 ms

225,97 ms

429,95 ms

628,60 ms

830,41 ms

0 ms

200 ms

400 ms

600 ms

800 ms

1000 ms

1200 ms

1400 ms

1600 ms

1800 ms

Different data sizes

20 MB 40 MB30 MB10 MB

Eventing + Serving

Knative Eventing Sequence

Knative Serving

Basic Services



Summary

Every indirection adds latency (proxy, channel, broker)

Proxying is faster than using store-and-forward

Separate control from data

Overheads involved with each solution



Outline

Communication patterns

• The decentralized approach

• Which communication pattern to use

1) Simple Services

2) Knative Serving

3) Knative Eventing Sequence

4) Eventing + Serving

Grouping and Load Balancing

• Colocating functions to avoid 
communication

• Balance load across allocations

• Service mesh as an enabler for dynamic 
rebalancing



0

10

20

30

40

0 100 200 300 400 500 600

Ti
m

e 
(s

ec
)

Data size (MB)

Median workflow completion time

remote_fileref remote_datacall

Overheads in transferring large data

Container

Fn2
Pass data reference

Or 
pass actual data

Container

Fn1

data
write data
locally

Pull data from 
container or global 
store, if needed

• Previous approaches assume that each function is located in a different container

• Transferring large amount of data may create a significant overhead and slow down 
workflow completion time

‘remote’ invocation of f2, with a data ‘reference’ ‘fileref’ = sending reference to data, and then pulling data if needed
‘datacall’ = sending actual data

Remote invocation, 
with data transfer



0

10

20

30

40

0 100 200 300 400 500 600

Ti
m

e 
(s

ec
)

Data size (MB)

Median workflow completion time

local_fileref local_datacall remote_fileref remote_datacall

Colocating functions to accelarate workflows

• Colocate multiple functions in a container to further accelerte workflow completion time

• Keep data local (local or shared-mem filesystem), pass a reference to data

Container

Fn2Fn1

data

write data
locally

Pass data reference

read data
locally

‘local’ invocation of f2, with a data ‘reference’ 

Keeping data local is better

Local invocation, 
with data transfer

0

0,4

0,8

1,2

0 4 8 12 16 20

Ti
m

e 
(s

ec
)

Remote invocation, 
with data transfer



Need for internal load rebalance

• At the time of admitting a request, the container may not be aware of congestion in a 
latter part of a workflow

• The container may admit more requests that it is able to process downstream

Container

Fn2Fn1

...

Container

Fn2Fn1

External load balancer

Fn2



• Need to rebalance already admitted requests

• Internally route requests to other replicas of downstream function

Container

Fn2Fn1

...

Container

Fn2Fn1

External load balancer

Fn2

Need for internal load rebalance



Load rebalancing with data transfer

• Transferring data makes rebalancing even more challenging

Container

Fn2Fn1

...

Container

Fn2Fn1

External load balancer

Fn2

data

data

pull data from 
remote container 
or from global 
storage



0

10

20

30

40

50

0 100 200 300 400 500 600

Ti
m

e 
(s

ec
)

Data size (MB)

Median workflow completion time (loaded container, with rebalancing)

local_fileref local_datacall remote_fileref remote_datacall

Load rebalancing with data transfer

Under load, it may be better to rebalance to a replica of F2 
in a different container, even if it involves data transfer

Remote invocation, 
with data transfer

Local invocation, 
with data transfer

‘fileref’ = sending reference to data, 
and then pulling data if needed

‘datacall’ = sending actual data

0

0,4

0,8

1,2

1,6

0 4 8 12 16 20

Ti
m

e 
(s

ec
)

Data size (MB)



Dynamically configurable communication

• Co-locating multiple functions of a workflow can accelerate workflows

• But now you are dealing with a large unit of deployment

• May have to dynamically rebalance load from somewhere in the middle of a 
workflow, which you not know beforehand

• Need a flexible, dynamically configurable routing/communication mechanism

• Need fine grained observability

• Need configurable load balancing without modifying core logic of the app



Service mesh as an enabler

• Provides dynamically configurable routing at runtime,

• Configurable load balancing policies (e.g round-robin, weighted, maglev, etc),

• Detailed observability, periodic health checks

svc1

Pod

http://svc2

Service 1

svc2

Pod

Service 2

Load balance traffic

Periodic health checks

Control Plane

Service discovery, Configuration updates



• Reuse envoy proxy for intra-container communication (in addition to inter-container comm.)

• Preferentially send requests to local downstream function (e.g. weighted load-balancing)

• Allow functions to exert back pressure (e.g. via 503 responses to health checks)

fn2

Pod

http://fn2

workflow replica

fn1

PodLoad balance traffic

Periodic health checks

Control Plane

Service discovery, Configuration updatesfn1

workflow replicas

fn2

Service mesh as an enabler



KNIX Microfunctions (knix.io)

• Colocate functions of a workflow inside single container (wrapped in a Knative service). 
Provides a custom local message bus within the container

fn2

Knative service replicas

workflow replica

Control Plane
(Istio)

fn1

workflow replicas

local message bus

Knative serving load balancing

Knative service replica

fn2fn1

local message bus



KNIX Microfunctions (knix.io)

• Colocate functions of a workflow inside single container (wrapped in a Knative service). Provides a 
custom local message bus within the container

• [Coming soon] Extending to utilize the envoy proxy (+ control plane) as a unified communication 
mechanism for intra- and inter-container communication and load rebalancing

fn2

Knative service replicas

workflow replica

Control Plane
(Istio)

fn1

workflow replicas

Knative serving load balancing

Knative service replica

fn2fn1

Rebalance traffic

Periodic health checks

Service discovery, Configuration updates



Source code

Code for benchmark experiments presented in this talk:
https://github.com/knix-microfunctions/workflowmesh 

KNIX Website: https://knix.io

KNIX Source code: https://github.com/knix-microfunctions/knix

KNIX Slack channel: https://knix.slack.com

https://github.com/knix-microfunctions/workflowmesh
https://knix.io/
https://github.com/knix-microfunctions/knix
https://knix.slack.com/


Thank you!


