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Serverless

Applications are not just one function
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Serverless Workflows S B Vit

North America 2020

What’s in a workflow?
 Compose multiple invocations (actions, steps, tasks)
* Specifies a control flow (as task graph, flowchart or state chart)

* Provides a common context to invocations (artifacts, workflow data)

serverlessworkflow.io

How can a platform achieve fast workflow completion?

* Invoke actions according to the control flow

 Pass the workflow context from one execution to the next


https://serverlessworkflow.io/
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Communication

 The decentralized approach

* Which communication pattern to use
1) Simple Services
2) Knative Serving
3) Knative Eventing Sequence

4) Eventing + Serving

Grouping and Load Balancing

* Colocating functions to avoid
communication

 Balance load across allocated resources

e Service mesh as an enabler for dynamic
rebalancing
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1. Basic Services S B Vitual

Stepl Deployment Step2 Deployment

* Kubernetes Deployments exposed through a Cluster|P Service

 Eventloop implements asynchronous delivery

a S->F1 ﬂ F1->F2 ﬂ F2->F3 a F3->F4 m F4->F5 E
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e Scale to zero
e Traffic splitting
* Revision management
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3. Knative Eventing Sequence .x.

Sequence
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 Asequence is a simple pipeline using channels

* Channel calls a destination (step)

e Step’s response is fed to the next channel

* Technology is pluggable (In-memory / NATS / Kafka)

* Decoupling typically uses a store-and-forward pattern
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Sequence of 5 steps

Destinations are basic Services

Delivery time from one
response to the next
destination

CloudEvent with 1kB data
Median latency is 1.45 ms
(1.40 ms without last step)
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 Decoupling and late-binding

* Scale-to-zero and revision management
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Different data sizes
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KubeCon
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Every indirection adds latency (proxy, channel, broker)
Proxying is faster than using store-and-forward
Separate control from data

Overheads involved with each solution
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Communication patterns

 The decentralized approach

* Which communication pattern to use
1) Simple Services
2) Knative Serving
3) Knative Eventing Sequence

4) Eventing + Serving

Grouping and Load Balancing

* Colocating functions to avoid
communication

* Balance load across allocations

e Service mesh as an enabler for dynamic
rebalancing
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* Previous approaches assume that each function is located in a different container

* Transferring large amount of data may create a significant overhead and slow down
workflow completion time
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* Colocate multiple functions in a container to further accelerte workflow completion time

» Keep data local (local or shared-mem filesystem), pass a reference to data
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* At the time of admitting a request, the container may not be aware of congestion in a
latter part of a workflow

* The container may admit more requests that it is able to process downstream
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Need for internal load rebalance o cotraecen Virtual

* Need to rebalance already admitted requests

* |nternally route requests to other replicas of downstream function

Fn2

External load balancer
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Load rebalancing with data transfer — «<. s Virtual

* Transferring data makes rebalancing even more challenging
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Load rebalancing with data transfer e« o
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Under load, it may be better to rebalance to a replica of F2
in a different container, even if it involves data transfer
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Dynamically configurable communication e

e Co-locating multiple functions of a workflow can accelerate workflows
* But now you are dealing with a large unit of deployment

* May have to dynamically rebalance load from somewhere in the middle of a
workflow, which you not know beforehand

* Need a flexible, dynamically configurable routing/communication mechanism
* Need fine grained observability

* Need configurable load balancing without modifying core logic of the app
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* Provides dynamically configurable routing at runtime,
* Configurable load balancing policies (e.g round-robin, weighted, maglev, etc),

* Detailed observability, periodic health checks
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e Reuse envoy proxy for intra-container communication (in addition to inter-container comm.)
» Preferentially send requests to local downstream function (e.g. weighted load-balancing)
* Allow functions to exert back pressure (e.g. via 503 responses to health checks)
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e Colocate functions of a workflow inside single container (wrapped in a Knative service).
Provides a custom local message bus within the container

Knative serving load balancing
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» Colocate functions of a workflow inside single container (wrapped in a Knative service). Provides a
custom local message bus within the container

 [Coming soon] Extending to utilize the envoy proxy (+ control plane) as a unified communication
mechanism for intra- and inter-container communication and load rebalancing
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KNIX Website: https://knix.io

KNIX Source code: https://github.com/knix-microfunctions/knix

KNIX Slack channel: https://knix.slack.com

Code for benchmark experiments presented in this talk:
https://github.com/knix-microfunctions/workflowmesh



https://github.com/knix-microfunctions/workflowmesh
https://knix.io/
https://github.com/knix-microfunctions/knix
https://knix.slack.com/

Thank youl!



