
Bowei Du <@bowei>
Rich Renner <@eth0xfeed>
Tim Hockin <@thockin>

SIG-Network
Intro & Deep-dive

Part 1: Intro
● An overview of the SIG and the “basics”
● If you are new to Kubernetes or not very familiar with the things that our SIG deal with -

this is for you!

Part 2: Deep-dive
● A deeper look at some of the newest work that the SIG has been doing
● If you are already comfortable with Kubernetes networking concepts, and want to see

what’s next - this is for you!

Agenda

Part 1: Intro

What, When, Where

Responsible for the Kubernetes network components
● Pod networking within and between nodes
● Service abstractions
● Ingress and egress
● Network policies and access control

Zoom meeting: Every other Thursday, at 21:00 UTC
Slack: #sig-network (slack.k8s.io)
https://git.k8s.io/community/sig-network

(Don’t worry, we’ll show this again at the end)

https://git.k8s.io/community/sig-network

APIs

Service, Endpoints, EndpointSlice
● Service registration & discovery

Ingress
● L7 HTTP routing

Gateway
● Next-generation HTTP routing and service ingress

NetworkPolicy
● Application “firewall”

Components

Kubelet CNI implementation
● Low-level network drivers and how they are used

Kube-proxy
● Implements Service API

Controllers
● Endpoints and EndpointSlice
● Service load-balancers
● IPAM

DNS
● Name-based discovery

Networking model

All Pods can reach all other Pods, across Nodes

Sounds simple, right?

Many implementations
● Flat
● Overlays (e.g. VXLAN)
● Routing config (e.g. BGP)

One of the more common things people struggle with

Services: problem

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Client connects to a server instance
- Which one?

Services: problem

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Server instance goes down for some reason

Services: problem

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Client has to connect to a different server instance
- Again, which one?

Services: abstraction

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Client connects to the abstract Service

Service

Service “hides” backend details

Services

Pod IPs are ephemeral

“I have a group of servers and I need clients to find them”

Services “expose” a group of pods
● Durable VIP (or not, if you choose)
● Port and protocol
● Used to build service discovery
● Can include load balancing (but doesn’t have to)

Node

Services: what really happens?

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Client connects to the abstract Service

Proxy
(iptables,
ipvs, etc)

Service “hides” backend details

Services: what really happens?

Pod
client

Client does DNS query
(DNS is a Service, too)

Proxy

DNS

Pod
svr

Services: what really happens?

Pod
client Proxy

DNS

Pod
svr

DNS returns
service VIP

Services: what really happens?

Pod
client Proxy

DNS

Pod
svr

Client connects to VIP

Services: what really happens?

Pod
client Proxy

DNS

Pod
svr

Proxy translates
VIP to pod IP

Services: what really happens?

Pod
client Proxy

DNS

Pod
svr

Service Endpoints

Controller

Async: controllers use service
and endpoints APIs to populate
DNS and proxies

Node

Services: what really happens?

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Client connects to the service VIP

Proxy

Service “hides” backend details

Node

Services: what really happens?

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Proxy

Backend goes down

Node

Services: what really happens?

Pod
client

Serving app

Pod
svr-1

Pod
svr-2

Pod
svr-3

Client re-connects to the service VIP

Proxy

Service “hides” backend details

Services: what you specify

kind: Service
apiVersion: v1
metadata:
 name: my-service
 namespace: default
Spec:
 selector:
 app: my-app
 ports:
 - port: 80
 targetPort: 9376

Used for discovery (e.g. DNS)

Which pods to use

Logical port (for clients)

Port on the backend pods

Services: what you get

kind: Service
apiVersion: v1
metadata:
 name: my-service
 namespace: default
Spec:
 type: ClusterIP
 clusterIP: 10.9.3.76
 selector:
 app: my-app
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

Default
Allocated

Default

Endpoints

Represents the list of IPs “behind” a Service
● Usually Pods, but not always

Recall that Service had port and targetPort fields
● Can “remap” ports

Generally managed by the system
● But can be manually managed in some cases

Endpoints controller(s)

Service {
 name: foo
 selector:
 app: foo
 ports:
 - port: 80
 targetPort: 9376
}

Endpoints controller(s)

Pod {
 labels:
 app: foo
 ip: 10.1.0.1
}

Service {
 name: foo
 selector:
 app: foo
 ports:
 - port: 80
 targetPort: 9376
}

Pod {
 labels:
 app: bar
 ip: 10.1.0.2
}

Pod {
 labels:
 app: foo
 ip: 10.1.9.3
}

Pod {
 labels:
 app: qux
 ip: 10.1.1.8
}

Pod {
 labels:
 app: foo
 ip: 10.1.7.6
}

Endpoints controller(s)

Pod {
 labels:
 app: foo
 ip: 10.1.0.1
}

Service {
 name: foo
 selector:
 app: foo
 ports:
 - port: 80
 targetPort: 9376
}

Pod {
 labels:
 app: bar
 ip: 10.1.0.2
}

Pod {
 labels:
 app: foo
 ip: 10.1.9.3
}

Pod {
 labels:
 app: qux
 ip: 10.1.1.8
}

Pod {
 labels:
 app: foo
 ip: 10.1.7.6
}

Endpoints controller(s)

Pod {
 labels:
 app: foo
 ip: 10.1.0.1
}

Service {
 name: foo
 selector:
 app: foo
 ports:
 - port: 80
 targetPort: 9376
}

Pod {
 labels:
 app: bar
 ip: 10.1.0.2
}

Pod {
 labels:
 app: foo
 ip: 10.1.9.3
}

Pod {
 labels:
 app: qux
 ip: 10.1.1.8
}

Pod {
 labels:
 app: foo
 ip: 10.1.7.6
}

Endpoints {
 name: foo
 ports:
 - port: 9376
 addresses:
 - 10.1.0.1
 - 10.1.7.6
 - 10.1.9.3
}

DNS

Starts with a specification
● A, AAAA, SRV, PTR record formats

Generally runs as pods in the cluster
● But doesn’t have to

Generally exposed by a Service VIP
● But doesn’t have to be

Containers are configured by kubelet to use kube-dns
● Search paths make using it even easier

Default implementation is CoreDNS

Services: DNS

The name of your service

The namespace your service lives in

my-service.default.svc.cluster.local

The cluster’s DNS zone

Indicates a service name

kube-proxy

Default implementation of Services
● But can be replaced!

Runs on every Node in the cluster

Uses the node as a proxy for traffic from pods on that node
● iptables, IPVS, winkernel, or userspace options
● Linux: iptables & IPVS are best choice (in-kernel)

Transparent to consumers

Kube-proxy: control path

Watch Services and Endpoints

Apply some filters
● E.g. ignore “headless” services

Link Endpoints (backends) with Services (frontends)

Accumulate changes to both

Update node rules

Kube-proxy: data path

Recognize service traffic
● E.g. Destination VIP and port

Choose a backend
● Consider client affinity if requested

Rewrite packets to new destination (DNAT)

Un-DNAT on response

Kube-proxy: FAQ

Q: Why not just use DNS-RR?

A: DNS clients are generally “broken” and don’t handle
changes to DNS records well. This provides a stable IP
while backends change

Q: My clients are enlightened, can I opt-out?

A: Yes! Headless Services get a DNS name but no VIP.

Service LoadBalancers

Services are also how you configure L4 load-balancers

Different LBs work in different ways, too broad for this talk

Integrations with most cloud providers

Ingress

Describes an HTTP proxy and routing rules
● Simple API - match hostnames and URL paths
● Too simple, more on this later

Targets a Service for each rule

Kubernetes defines the API, but implementations are 3rd
party

Integrations with most clouds and popular software LBs

Ingress

Ingress {
 hostname: foo.com
 paths:
 - path: /foo
 service: foo-svc
 - path: /bar
 service: bar-svc
}

Service: {
 name: foo-svc
 selector:
 app: foo
}

Service: {
 name: bar-svc
 selector:
 app: bar
}

Pod {
 labels:
 app: foo
 ip: 10.1.0.1
}

Pod {
 labels:
 app: bar
 ip: 10.1.0.2
}

Pod {
 labels:
 app: bar
 ip: 10.1.9.3
}

Pod {
 labels:
 app: foo
 ip: 10.1.7.6
}

Ingress FAQ

Q: How is this different from Service LoadBalancer?

A: Service LB API does not provide for HTTP - no
hostnames, no paths, no TLS, etc.

Q: Why isn’t there a controller “in the box”?

A: We didn’t want to be “picking winners” among the
software LBs. That may have been a mistake, honestly.

NetworkPolicy

Describes the allowed call-graph for communications
● E.g. frontends can talk to backends, backends to DB, but

never frontends to DB

Like Ingress, implementations are 3rd-party
● Often highly coupled to low-level network drivers

Very simple rules - focused on app-owners rather than
cluster or network admins
● We may need a related-but-different API for the cluster

operators

NetworkPolicy

DB

DB

DB

BE

BE

FE

FE

FE

FE

FE

NetworkPolicy

DB

DB

DB

BE

BE

FE

FE

FE

FE

FE

Agenda

Part 2: Deep-Dive

Deep-dive

On-going work in the SIG:

● NodeLocal DNS
● EndpointSlice
● Services (Gateway API, MultiClusterService)
● IPv{4,6} Dual stack

NodeLocal DNS

Kubernetes DNS resource cost is high:
● Expansion due to alias names (“my-service”, “my-service.ns”, ...)
● Application density (e.g. microservices)
● DNS-heavy application libraries (e.g. Node.JS)
● CONNTRACK entries due to UDP

Solution? NodeLocal DNS (GA v1.18)
● Run a cache on every node
● Careful: per-node overhead can easily dominate in large clusters

As a system-critical service in a Daemonset, we need to be careful
about high-availability during upgrades, failures.

Node

NodeLocal DNS

kube-dns /
CoreDNSkube-dns /
CoreDNSkube-dns /
CoreDNS

App PodsApp Pods
My Pod

DNS:
10.0.0.10

kube-dns

kube-proxy

10.0.0.10

Node

NodeLocal DNS

kube-dns /
CoreDNSkube-dns /
CoreDNSkube-dns /
CoreDNS

NodeLocalDNS
App PodsApp Pods

My Pod

DNS:
10.0.0.10

kube-dns

kube-proxy

kube-dns-upstream

du
m

m
y

ifa
ce

10.0.0.10

10.0.x.x

NOTRACK

10.0.0.10

169.x.x.x

Node

NodeLocal DNS

kube-dns /
CoreDNSkube-dns /
CoreDNSkube-dns /
CoreDNS

NodeLocalDNS
App PodsApp Pods

My Pod

DNS:
10.0.0.10

kube-dns

kube-proxy

kube-dns-upstream

du
m

m
y

ifa
ce

10.0.0.10

10.0.x.x

NOTRACK

10.0.0.10

169.x.x.x

DNS

We can do better though:

● Proposal: push alias expansion into the server as an API
(enhancements/pull/967)

● Refactor the DNS naming scheme altogether?

https://github.com/kubernetes/enhancements/pull/967/files?short_path=0e7a707#diff-0e7a707047b5ea7a47b2629d55d853d4

EndpointSlice

Larger clusters (think 15k nodes) and very large Services lead to API
scalability issues:
● Size of a single object in etcd
● Amount of data sent to watchers
● etcd DB activity

Scale Kubernetes Service Endpoints 100X, (Tyczynski, Xia)

https://static.sched.com/hosted_files/kccnceu19/f0/Scale%20Kubernetes%20Service%20Endpoints%20100x.pdf

EndpointSlice

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

…

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

…
10

.x
.x

.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

…

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

…
EP

EP EP

Update

kube-proxy kube-proxy kube-proxy

…

EndpointSlice

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

… EP
S

kube-proxy kube-proxy kube-proxy

EP
S

10
.x

.x
.x

…

10
.x

.x
.x

10
.x

.x
.x

… EP
S

10
.x

.x
.x

…
10

.x
.x

.x

10
.x

.x
.x

10
.x

.x
.x

… EP
S

EP
S

10
.x

.x
.x

…

10
.x

.x
.x

10
.x

.x
.x

10
.x

.x
.x

… EP
S

EP
S

Update

kind: Service
metadata:
 name: foo
spec:
 …

kind: EndpointSlice
metadata:
 name: foo-xfz1
 labels:
 kubernetes.io/service-name: foo
endpoints:
- addresses:
 - ip: 10.1.0.7
 …

kind: EndpointSlice
metadata:
 name: foo-fzew2
 labels:
 kubernetes.io/service-name: foo
endpoints:
- addresses:
 - ip: 10.1.0.1
 …

kind: EndpointSlice
…

EndpointSlice

Controllers

EndpointSlices controller: slices from
Service selector. Linked to the Service via
kubernetes.io/service-name label

EndpointSliceMirroring controller: slices
from selectorless Service’s

Other users can set
endpointslice.kubernetes.io/managed-by

EndpointSlice

Update algorithm is an optimization problem:

● Keep number of slices low
● Minimize changes to slices per update
● Keep amount of data sent low

Current algorithm

1. Remove stale endpoints in existing slices
2. Fill new endpoints in free space
3. Create new slices only if no more room

No active rebalancing -- claim: too much churn, open area

v1.20+

EndpointSlice

v1.19v1.18v1.17
Beta

EndpointSlice
controller available

Beta

EndpointSlice
controller enabled

no kube-proxy

Beta

EndpointSlice
controller

EndpointSliceMirror

Windows

kube-proxy enabled

GA

😀

Services across Clusters

As Kubernetes installations get bigger - multiple clusters is
becoming the norm
● LOTS of reasons for this: HA, blast radius, geography, etc.

Services have always been a cluster-centric abstraction

Starting to work through how to export and extend Services
across clusters

Cluster A

Services across Clusters

Namespace frontend

Service: {
 name: fe-svc
}

Cluster B

Namespace backend

Service: {
 name: be-svc
}

Pod Pod

Pod Pod

ServiceExport

Service {
 metadata:
 Name: be-svc
 spec:
 type: ClusterIP
 clusterIP: 1.2.3.4
}

ServiceExport {
 metadata:
 Name: be-svc
}

Group

Cluster A

Services across Clusters

Namespace frontend

Service: {
 name: fe-svc
}

Cluster B

Namespace backend

Service: {
 name: be-svc
}

Pod Pod

Pod Pod

Group

Cluster A

Services across Clusters

Cluster B

Namespace frontend

Service: {
 name: fe-svc
}

Namespace backend

Service: {
 name: be-svc
}

Pod Pod

Pod Pod

Group

Cluster A

Services across Clusters

Cluster B

Namespace frontend

Service: {
 name: fe-svc
}

Namespace backend

Service: {
 name: be-svc
}

ServiceImport: {
 name: be-svc
}

Pod Pod

Pod Pod

ServiceImports: DNS

The name of your service

The namespace your service lives in

be-svc.backend.supercluster.local

The multi-cluster DNS zone (TBD)

Group

Cluster BCluster A

Namespace backend

Service: {
 name: be-svc
}

Services across Clusters

Namespace frontend

Service: {
 name: fe-svc
}

Service: {
 name: be-svc
}

ServiceImport

Pod Pod

Pod PodPod Pod

ServiceImport

Services across Clusters

This is mostly KEP-ware right now

Still hammering out API, names, etc

Still working out some semantics (e.g. conflicts)

IPv{4,6} Dual Stack

Some users need IPv4 and IPv6 at the same time
● Kubernetes only supports 1 Pod IP

Some users need Services with both IP families
● Kubernetes only supports 1 Service IP

This is a small, but important change to several APIs

Wasn’t this work done already? Yes, but we found some
problems, needed a major reboot

IPv{4,6} Dual Stack

Pod {
 status:
 podIP: 1.2.3.4
}

IPv{4,6} Dual Stack

Pod {
 status:
 podIP: 1.2.3.4
 podIPs:

 - 1.2.3.4
 - 1234:5678::0001

}

same

new

IPv{4,6} Dual Stack

Node {
 spec:
 podCIDR: 10.9.8.0/24
}

IPv{4,6} Dual Stack

Node {
 spec:
 podCIDR: 10.9.8.0/24
 podCIDRs:

 - 10.9.8.0/24
 - 1234:5678::/96

}

same

new

IPv{4,6} Dual Stack

Service {
 spec:
 type: ClusterIP
 clusterIP: 1.2.3.4
}

IPv{4,6} Dual Stack

Service {
 spec:
 type: ClusterIP
 ipFamilyPolicy: PreferDualStack
 ipFamilies: [IPv4, IPv6]
 clusterIP: 1.2.3.4
 clusterIPs:
 - 1.2.3.4
 - 1234::5678::0001
}

same

new

new

IPv{4,6} Dual Stack

Can express various requirements:
● “I need single-stack”
● “I’d like dual-stack, if it is available”
● “I need dual-stack”

Defaults to single-stack if users doesn’t express a
requirement

Works for headless Services, NodePorts, and LBs (if
cloud-provider supports it)

Shooting for second alpha in 1.20

Services V+1

Service resource describes many things:

● Method of exposure (ClusterIP, NodePort,
LoadBalancer)

● Grouping of Pods (e.g. selector)
● Attributes (ExternalTrafficPolicy, SessionAffinity, …)

Evolving and extending the resource becomes harder
and harder due to interactions between fields…

Evolution of L7 Ingress API: role-based resource
modeling, extensibility

(Headless)

ClusterIP

NodePort

LoadBalancer

Service
hierarchy

Services V+1

Idea: Decouple along role, concept axes:

Roles:
● 👷‍♀Infrastructure Provider
● 👨‍🔧 Cluster Operator / NetOps
● 👩‍💻 Application Developer

Concepts:
● Grouping, selection
● Routing, protocol specific attributes
● Exposure and access

Gateway
Class

Gateway

*Route

Service

Services V+1

Gateway
Class

Gateway

*Route

Service

👷‍♀ Infrastructure Provider

Defines a kind of Service access for the cluster (e.g.
“internal-proxy”, “internet-lb”, …)

Similar to StorageClass, abstracts implementation of
mechanism from the consumer.

kind: GatewayClass
metadata:
 name: cluster-gateway
spec:
 controller: "acme.io/gateway-controller"
 parametersRef:
 name: internet-gateway

Services V+1

Gateway
Class

Gateway

*Route

Service

👨‍🔧 Cluster Operator / NetOps

How the Service(s) are access by the user (e.g. port,
protocol, addresses)

Keystone resource: 1-1 with configuration of the
infrastructure:
● Spawn a software LB
● Add a configuration stanza to LB.
● Program the SDN

May be “underspecified”: defaults based on
GatewayClass.

Services V+1

Gateway
Class

Gateway

*Route

Service

kind: Gateway
metadata:
 name: my-gateway
spec:
 class: cluster-gateway
 # How Gateway is to be accessed (e.g. via Port 80)
 listeners:
 - port: 80
 routes:
 - routeSelector: # Which Routes are linked to this Gateway
 foo: bar

Services V+1

Gateway
Class

Gateway

*Route

Service

👩‍💻 Application Developer

Application routing, composition, e.g. “/search” →
service-service, “/store” → store-service.

Family of Resource types by protocol (TCPRoute, HTTPRoute,
…) to solve issue of single, closed union type and extensibility.

kind: HTTPRoute
metadata:
 name: my-app
spec:
 rules:
 - match: {path: “/store”}
 action: {fowardTo: {targetRef: “store-service”}}

Services V+1

Gateway
Class

Gateway

*Route

Service

What about Service?

● Grouping, selection
● V1 functionality still works -- but hopefully will not

have to add significantly to existing surface area.

Services V+1

kind: GatewayClass
name: internet-lb
...

kind: Gateway
namespace: net-ops
name: the-gateway

class: internet-lb
listeners:

- port: 80
protocol: http

routes:
- kind: HTTPRoute

name: my-app

kind: HTTPRoute
name: my-app

rules:
- path: /my-app

...
gateways:

- namespace: net-ops
name: the-gateway

kind: Service
name: my-app

Services V+1

Initial v1alpha1 cut:

● Basic applications, data types
● GatewayClass for interoperation between controllers.
● Gateway + Route

○ HTTP, TCP
○ HTTPS + server certificates+secrets

● Implementability:
○ Merging style (multiple Gateways hosted on single* proxy

infra)
○ Provisioning/Cloud (Gateways mapped to externally

managed resources)

Agenda

Wrapping up

Wrapping up

Issues

https://issues.k8s.io

File bugs, cleanup ideas, and feature requests

Find issues to help with!
● Especially those labelled “good first issue” and “help

wanted”.
● Triage issues (is this a real bug?) labelled

“triage/unresolved”.

https://github.com/kubernetes/kubernetes/issues

Enhancements

https://git.k8s.io/enhancements/keps/sig-network

“Enhancements” are user-visible changes (features +
functional changes)
● Participate in enhancement dialogue and planning

○ More eyeballs are always welcome
● Submit enhancement proposals of your own!

https://github.com/kubernetes/enhancements/tree/master/keps/sig-network

Get involved!

https://git.k8s.io/community/sig-network

Zoom meeting: Every other Thursday, 21:00 UTC

Slack: #sig-network (slack.k8s.io)

Mailing List:
https://groups.google.com/forum/#!forum/kubernetes-sig-network

https://git.k8s.io/community/sig-network
https://groups.google.com/forum/#!forum/kubernetes-sig-network

#c1c1ffff

#f5e8a5ff

#f5a39dff

#93f5bcff

#7d7be0ff

#f5e75fff

#f5846cff

#4ef5b8ff

#3a35c5ff

#f5cd1bff

#f5544cff

#27f575ff

#473dc4ff

#cf40f5ff

#f56b2fff

#a1f51bff

#0e0d8cff

#2762f5ff

#6333f5ff

#f583d2ff

