
Moving Cloud Native 
Beyond HTTP

Adding protocols to unlock new use cases

Hi everyone. In this session we’ll be discussing protocols, specifically networking 
protocols. I’ll cover some of the challenges we face deploying protocols to production 
and where we as a community can make it easier. Let’s go.



Jonathan Beri
Golioth, an IoT startup 

@beriberikix

My name is Jonathan Beri and I work on an IoT startup. You can find me on twitter at 
beriberikix if you want to chat about protocols, or anything else!



We should probably begin our discussion with HTTP, as it is the networking protocol 
most people are familiar with. It’s the lingua franca of the web and a large percentage 
of web services are built using HTTP.



Load Balancing Routing

Security Observability

Now once you have your HTTP service you’re not done - you need a bunch of things 
to deploy it to production and in the cloud. Things like load balancing, routing, security 
and observability. Since http is such a popular protocol, 

[animate]

different projects and operators provide these things for HTTP out of the box. Which is 
great, since you would otherwise have to build these things yourself.

But HTTP isn’t the only protocol you use all the time.



DNS

There’s also DNS, everyone’s favorite service. You use it when you want to configure 
a server to map to a domain name or enable services within a cluster to discover 
each other. But what if you wanted to *create* a DNS service? Turns out that this is 
thing people want to do. Well, you may not have realized that DNS is actually a suite 
of protocols and when you use services like Amazon Route 53 or CoreDNS, those are 
actually implementations of DNS protocols.



Load Balancing Routing

Security Observability

DNS

DNS, like HTTP, has similar things it needs in order to be deployed to production. 
However, since DNS is a less common protocol compared to HTTP, it isn’t supported 
out of the box by many of the cloud native projects, and therefore you have to build a 
lot of these things for DNS yourself. And that makes it way harder to build your own 
solution that implements DNS.



Gaming Video Conferencing

Telcos / 5G Core Infra (NTP)

Internet of Things

And there a lot of application and industry protocols that are designed fill a specific a 
purpose. I’ve listed a few examples here but they range from synchronizing game 
state to streaming WebRTC to the internet of things. And actually, IoT 

[animate]

is what first got me interested in exploring the topic of implementing protocols in the 
first place.

Attribution:

https://thenounproject.com/search/?q=gamepad&i=665185
https://thenounproject.com/search/?q=video+conferencing&i=3364005
https://thenounproject.com/search/?q=cellular&i=311763
https://thenounproject.com/search/?q=network+time&i=2180671
https://thenounproject.com/search/?q=internet+of+things&i=3379440

https://thenounproject.com/search/?q=gamepad&i=665185
https://thenounproject.com/search/?q=video+conferencing&i=3364005
https://thenounproject.com/search/?q=cellular&i=311763
https://thenounproject.com/search/?q=network+time&i=2180671
https://thenounproject.com/search/?q=internet+of+things&i=3379440


IoT protocols

CoAP

CAN Bus

See, there are a ton of IoT protocols designed specifically for the needs of connecting 
physical devices to each other and to the internet. Some are optimized for power, 
some are optimized for bandwidth. Others implement standardized industrial or 
consumer control planes. Some are built on the internet protocol, like UDP & TCP, 
while some can’t use IP!

As a startup we’re interested in implementing many of these protocols in our cloud 
solution.



Load Balancing Routing

Security Observability

Internet of Things

The challenge my startup faces in bringing IoT protocols to production is similar to 
DNS in that these protocols are less common than HTTP, a lot less in fact, and 
therefore aren’t supported easily by many of the projects, services & clouds we might 
want to leverage. Therefore we were faced with the challenge of implementing load 
balancing, routing, etcetera from scratch, all by ourselves. That means we can’t 
leverage the wealth of open source from this community or take advantage great 
solution providers.



Gaming Video Conferencing

Telcos / 5G Core Infra (NTP)

Internet of Things

But I did say before that the challenge of implementing protocols isn’t specific to IoT. I 
wanted to see if other people in the community are also implementing new protocols 
and see what I can learn from them. So I started talking to other folks, like game 
servers devs working on Project Agones, WebRTC maintainers from Pion, telco folks 
from the Network Service Mesh project and others. Turns out, they’re all asking a 
similar fundamental question.



How can we implement 
any protocol 
in a cloud native way?

How can we implement any protocol in a cloud native way? This is clearly a 
community challenge, something bigger than my startup or IoT.



bit.ly/beyondhttp

I’m a PM so I did what we do best - start a doc. You can go to it now at bitly slash 
beyond http. It’s a living doc that surveys a growing list of cloud native projects that 
might be used as part of a solution that implements a networking protocol. It tries to 
identify which projects are specifically focusing on supporting non-HTTP protocols 
and suggestions on where they can add additional hooks that we implementers might 
need.

Feedback and contributions greatly welcome.

I started the doc over a year ago and since that time contributors and maintainers 
have helped shape it. At the same time, projects across the cloud naitve landscape 
have added upstreamed features that make it easier to implement new protocols. This 
progress is both exciting and encouraging.



There’s more projects than I have time to discuss in this session but I wanted to 
highlight a few I think will be used by the most amount of folks. Kubernetes, Envoy, 
Service Mesh Interface, Cloudevents and Network Service Mesh.

Let’s start with Kubernetes



K8s: Gateway, aka Ingress V2

Kubernetes has a concept of Ingress, which is an object that exposes networking 
traffic from outside the cluster to services within. The current stable Ingress 
implementation supports HTTP, go figure. Within the Networking SIG, a group has 
been hard at work developing the new Gateway API to replace Ingress. Like Ingress, 
a Gateway routes traffic to a service but supports more protocols like UDP and TCP 
(among other things), with a goal to enable protocol implementers to create custom 
gateways in the future. They already have demos you can try and it may be in an 
Alpha release by the time you watch this recording.



Envoy: TCP/UDP proxies & Wasm

Envoy, as a popular networking proxy, by its nature needs to support a protocol in 
order to act as proxy for said protocol. Envoy has always had native support for HTTP 
but due it’s popularity began implementing support for protocols like Redis and 
Postgres, albeit in a one-off fashion. Over the last year or two, the team has added 
UDP and TCP listeners, which makes it possible for protocol implementers to use 
Envoy to proxy any protocol based on those layer 4 primitives, which covers a lot of 
potential protocols. Also, with the introduction of WebAssembly support, Envoy has 
now made it even easier for more people to implement custom protocols in the 
language of their choice.

One more thing - since Envoy is used as a basis for other projects like Service 
Meshes and Observability tools, it now becomes easier for projects like Istio and 
Prometheus to support custom protocols in the future.



Service Mesh Interface

Next I’d like to highlight Service Mesh Interface, or S.M.I., which is developing a 
standard for service meshes on Kubernetes. One aspect of a service mesh is how it 
manages traffic between services within a cluster. SMI defines a concept of “Traffic 
Specs”, a list of subspecs that define how traffic flows between the mesh. There are 
already sub specs for HTTP, TCP & UDP. The intent is for protocol implementers to 
define their own Traffic Specs and eventually contribute them upstream to SMI where 
it make sense.

You may notice some parallels between the Gateway API in Kubernetes and the 
Traffic Spec here in SMI. Gateways are about traffic coming into a cluster while traffic 
specs are internal traffic within, so there’s a potential for the two projects to work well 
together. I’m personally excited to see who these two efforts may collaborate in the 
future.



CloudEvents

CloudEvents is a specification for describing event data in common formats to provide 
interoperability across services, platforms and systems. It defines how to serialize 
events in different formats like JSON and protocols - which of course includes HTTP. 
There’s already subspecs for protocols like Kafka, MQTT & NATS and clear 
documentation on how to define custom slash proprietary protocols. CloudEvents is 
already being used today in projects like Knative and I believe will become more 
commonplace among event-oriented microservices, so having a way to define custom 
protocol bindings will make it easier for services leverging non-HTTP protocols to 
interoperate.



Network Service Mesh

The last project I’m going to touch on is Network Service Mesh, not to be confused 
with the *other* kind of Service Mesh or the Service Mesh Interface. NSM is here to 
extend the existing kubernetes networking model but address networking use cases 
that need to go deeper in the stack, like L3 or L2 layers or even Ethernet frames 
themselves. Inspired by Istio, Network Service Mesh maps the concept of a service 
mesh to L2/L3 payloads, hence the name. Telcos, and the CNCF Telecom User 
Group, are big fans of NSM and one reason is how it enables them to implement 
cellular-specific protocols in a cloud native way. 5G is propelling the Telecom industry 
into fully embracing what they call “Cloud Network Functions.” Many of the functions 
have been classically implemented in very expensive hardware found in cell towers 
that take a long time to physically upgrade. With Cloud Native functions, Telecom 
operators hope to build these capabilities as services that can be more easily be 
upgraded over time. Lot’s of the functions are specific niche protocols that are part of 
the operation of 5G networks and NSM provides the means to configure them easily 
on top of K8s.

I’m only scratching the surface on what NSM enables but fun fact - because Service 
Meshes like Istio operate up the stack at L7/L4 and NSM is L3 and below, you can 
use a Service Mesh with NSM - and there’s a bunch of advantage when combining 
the two concepts. I don’t have time to dig into that now but the NSM crew have some 
examples.

Attribution: 
https://www.netmanias.com/en/post/oneshot/14103/5g/5g-protocol-stack-user-plane-c



ontrol-plane



With that I want to conclude with what you can do to participate. If you’re trying to 
create something with protocols other than HTTP, share your story. Documenting use 
cases, both real-world and aspirational, has been the single most effective tool to help 
improve protocol support. Create issues, hop on the CNCF or Kubernetes slack or 
just hit me up on Twitter. If you’re a project maintainer, try to identify where your 
projects are currently assuming all traffic is HTTP and look for places for extensibility. 
And, ask your users what they think! 

Attribution
https://unsplash.com/photos/ujx_KIIujRg



Thanks!

Jonathan Beri ⬥ bit.ly/beyondhttp ⬥ @beriberikix

And that’s all I got! Thank you everyone. Here’s that the link to doc one more time, 
and you can again reach me at @beriberikix. Cheers.


