
Jaeger
Project Deep Dive

Annanay Agarwal (Grafana)
Pavol Loffay (Traceable.ai)
Yuri Shkuro (Facebook)

KubeCon + CloudNativeCon NA 2020 Virtual
Thu, Nov 19 • 2:55 pm - 3:30 pm

1

● Yuri Shkuro (https://github.com/yurishkuro)
○ Software engineer
○ Maintainer of Jaeger, OpenTracing, OpenTelemetry
○ Author of “Mastering Distributed Tracing” book

About

2

https://github.com/yurishkuro
https://www.shkuro.com/books/2019-mastering-distributed-tracing/

● Observability and tracing
● Jaeger features
● Jaeger architecture
● Sampling
● Jaeger and OpenTelemetry
● Jaeger on Kubernetes

Agenda

3

● Annanay Agarwal (https://github.com/annanay25)
○ Software developer at Grafana Labs
○ Contributor to Jaeger and OpenTelemetry projects

About

4

https://github.com/annanay25

What is Tracing & Why?
Concepts and terminology

5

7

 BILLIONS of times a day!

Metrics

10

http_request_duration_sec{“app=ice-cream-shop”} 10s

Metrics - Cardinality

11

http_request_duration_sec{“app=ice-cream-shop”

datacenter=”us-central”, env=”production”,

service=”cart-manager”, path=”/api/order”,

func_name=”my-func”} 6s

Logs - stack trace?

12

Logs are a mess: concurrent requests, multiple hosts, impossible to correlate.

Monitoring tools must tell stories!

13

Do you like debugging
without a stack trace?

We need to monitor
distributed transactions
⇒ distributed tracing!

Context Propagation & Distributed Tracing

14

A

B

C D

E

{context}
{context}

{context}{context}

Edge Service
Unique ID → {context} A

B

E

C

D

time

TRACE

SPANS

Let’s look at some traces
http://bit.do/jaeger-hotrod

15

http://bit.do/jaeger-hotrod

Service dependencies diagram

16

Transitive Service Graphs

Transitive Service Graphs

Trace timeline

Trace timeline – Parent → Child → Grandchild

Trace timeline – Time + Mini-map

Trace timeline – A blocking operation

Trace timeline – Sequential operations

Trace timeline – Parents encompass descendents (generally)

Span details

Span details – Database query

Span details – Lock contention

Comparing trace structures – Unified diff

Comparing trace structures – Shared structure

Comparing trace structures – Absent in one or the traces

Comparing trace structures – More or less within a node

Comparing trace structures – Substantial divergence

Comparing span durations

Comparing span durations

Jaeger
Architecture

43

Jaeger, a Distributed Tracing Platform

44

trace
collection
backend

visualization
frontend

data mining
platform

client libraries
(SDKs, tracers)

Instrumentation not included

45

Jaeger project does not provide instrumentation!

Use OpenTracing or OpenTelemetry.

• Inspired by Google’s Dapper and OpenZipkin

• Created at Uber in August 2015 (blog)

• Open sourced in April 2017

• Joined CNCF in Sep 2017 (as incubating)

• Graduated to top-level CNCF project

Oct 2019 (CNCF announcement)

Jaeger - /ˈyāɡər/, noun: hunter

46

https://eng.uber.com/distributed-tracing/
https://www.cncf.io/announcement/2019/10/31/cloud-native-computing-foundation-announces-jaeger-graduation/

Jaeger and your system

48

Service A Service B
Trace metadata in headers (in-band):

● Jaeger native format
● W3C Trace Context
● Zipkin B3 format

OpenTracing
instrumentation

Jaeger Tracer

OpenTelemetry
(or Zipkin)

instrumentation

Jaeger
BackendTrace data

(out-of-band)
Trace data
(out-of-band)

Architecture 2017: Push

49

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger-collector

Control flow poll
(sampling, etc.)

DBadaptive
sampling

jaeger-query

UI

Spark jobs

push

Architecture now: Push+Async+Streaming

50

Host or Container

Application

jaeger-client

jaeger-agent

Spans
(UDP)

Control
flow

jaeger
collector

Control flow poll
(sampling, etc.)

DB

adaptive
sampling

jaeger
query

UI

Flink
streaming

Kafka

push

jaeger
ingester

& indexerasync

Technology Stack

● Go backend
● Pluggable storage

○ Cassandra, Elasticsearch, badger, memory
● React/Javascript frontend
● OpenTracing Instrumentation libraries
● Integration with Kafka, Apache Flink

51Apache Cassandra® is a trademark of the Apache Software Foundation in the United States and/or other countries.

http://www.apache.org/

Jaeger
And Sampling

54

Sampling

Sampling is the selection of a subset
(a statistical sample) of individuals
from within a (statistical) population
to estimate characteristics of the
whole population.

55

traces

all possible
traces

reason about
application

performance

Why do we sample

56

1. Saving everything incurs large storage costs
○ 2 KB / span on 10k QPS server ⇒ 20 MB/s

○ x100 instances ⇒ 2 GB/s ≅ 170 PB/day (for one service!)

2. Performance overhead from instrumentation
○ 10k QPS server ⇒ 100μs / req budget

○ Trace instrumentation: 5μs ⇒ 5% overhead

3. Trace data is very repetitive

Goal: Consistent (all or nothing) Sampling

57

A

B

C D

E

A

C

E

?

?

Sampling techniques

58

● Head-based sampling

○ Most popular in the industry

● Tail-based sampling

○ Gaining popularity recently

Head-based (upfront) sampling

Sampling decision is made at the start of the trace and
propagated in the trace context.
● ✅ Minimal perf overhead when trace is not sampled
● ✅ Easy to implement, supported by Jaeger SDKs
● ❌ Can easily miss rare anomalies/outliers

○ Prob. of catching p99 latency with 1% sampling rate ⇒ 1/10,000

● ❌ Cannot “sample on errors”

59

Head-based sampling in Jaeger

60

● SDKs can be configured with different samplers

(always on / off, probabilistic, rate limiting, etc.)

○ ✅ Easy to implement

○ ❌ Spread-out configuration in the hands of developers

● SDKs default to “remote” sampler that allows

centralized configuration (polled from collectors)

Jaeger sampling configuration

61

 "service_strategies": [
 {
 "service": "foo",
 "type": "probabilistic",
 "param": 0.8,
 "operation_strategies": [
 {
 "operation": "bar",
 "type": "probabilistic",
 "param": 0.2
 }
]
 }
]

 "default_strategy": {
 "type": "probabilistic",
 "param": 0.5,
 "operation_strategies": [
 {
 "operation": "/health",
 "type": "probabilistic",
 "param": 0.0
 },
 {
 "operation": "/metrics",
 "type": "probabilistic",
 "param": 0.0
 }
]
 }

Applies to all
other services

Overrides for
specific endpoints

Custom strategy
per service

Overrides for
specific
endpoints

Tail-based (post-trace) sampling

62

Sampling decision is made at the end of the trace:

● ✅ Can be much more intelligent, based on observed latency,
errors, unusual call patterns & graph shapes, etc.

● ✅ Can catch anomalies
● ✅ Can perform aggregations before sampling
● ❌ Requires temporary storage of all traces
● ❌ Applications incur performance overhead even for traces that

may be later discarded

Tail-based sampling in Jaeger

63

● ✅ Supported in jaeger-opentelemetry-collector

● ✅ Configurable sampling rules: latency, certain tags

● ❌ Single-node mode only, multi-node sharded solution

will be available in the future

Jaeger
And OpenTelemetry

64

User application process

Jaeger with OpenTracing

Application
(automatically instrumented)ApplicationApplication

(manually instrumented) Automatic
instrumentation

Manually instrumented
frameworks

Instrumentation API

Tracing library implementation

Tracing backend - Visualization frontend - Data mining platform

Agent Collector

API

opentracing
contrib

User application process

Jaeger with OpenTelemetry

Application
(automatically instrumented)ApplicationApplication

(manually instrumented) Automatic
instrumentation

Manually instrumented
frameworks

Instrumentation API

Tracing library implementation

Tracing backend - Visualization frontend - Data mining platform

Agent Collector

API

SDK

Agent &
Collector

contrib

Jaeger components on OpenTelemetry

67

● OpenTelemetry Collector is written in Go

● We built Jaeger-specific versions

○ Have the same capabilities as upstream OTel

○ With Jaeger extensions, e.g. storage

● We’re converting Jaeger storage implementation to

OTel data model for better compatibility

Jaeger
And OpenTelemetry SDKs

68

Jaeger and OpenTelemetry SDKs

69

● OpenTelemetry SDK support

○ Jaeger gRPC exporter

○ Jaeger propagation

● OpenTracing SHIM

○ use OTel SKD with OpenTracing instrumentations

● Jaeger client libraries support W3C Trace Context

Jaeger
And Kubernetes

70

Deploying Jaeger on Kubernetes

71

● Helm charts

● Jaeger Operator

○ allInOne and production deployment

○ auto provisioning of Kafka (Strimzi)

● Plain Kubernetes manifest files

Getting in Touch

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Community Meetings
82

https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://medium.com/jaegertracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit

