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● Yuri Shkuro (https://github.com/yurishkuro)
○ Software engineer
○ Maintainer of Jaeger, OpenTracing, OpenTelemetry
○ Author of “Mastering Distributed Tracing” book

About
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https://github.com/yurishkuro
https://www.shkuro.com/books/2019-mastering-distributed-tracing/


● Observability and tracing
● Jaeger features
● Jaeger architecture
● Sampling
● Jaeger and OpenTelemetry
● Jaeger on Kubernetes

Agenda
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● Annanay Agarwal (https://github.com/annanay25)
○ Software developer at Grafana Labs
○ Contributor to Jaeger and OpenTelemetry projects

About
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https://github.com/annanay25


What is Tracing & Why?
Concepts and terminology
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   BILLIONS of times a day!



Metrics
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http_request_duration_sec{“app=ice-cream-shop”} 10s



Metrics - Cardinality
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http_request_duration_sec{“app=ice-cream-shop”

datacenter=”us-central”, env=”production”, 

service=”cart-manager”, path=”/api/order”, 

func_name=”my-func”} 6s



Logs - stack trace?
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Logs are a mess: concurrent requests, multiple hosts, impossible to correlate.



Monitoring tools must tell stories!

13

Do you like debugging 
without a stack trace?

We need to monitor 
distributed transactions
⇒ distributed tracing!



Context Propagation & Distributed Tracing
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Let’s look at some traces
http://bit.do/jaeger-hotrod
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http://bit.do/jaeger-hotrod


Service dependencies diagram
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Transitive Service Graphs



Transitive Service Graphs



Trace timeline



Trace timeline – Parent → Child → Grandchild



Trace timeline – Time + Mini-map



Trace timeline – A blocking operation



Trace timeline – Sequential operations



Trace timeline – Parents encompass descendents (generally)



Span details



Span details – Database query



Span details – Lock contention



Comparing trace structures – Unified diff



Comparing trace structures – Shared structure



Comparing trace structures – Absent in one or the traces



Comparing trace structures – More or less within a node



Comparing trace structures – Substantial divergence



Comparing span durations



Comparing span durations



Jaeger
Architecture
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Jaeger, a Distributed Tracing Platform
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trace 
collection 
backend

visualization 
frontend

data mining 
platform

client libraries 
(SDKs, tracers)



Instrumentation not included
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Jaeger project does not provide instrumentation!

Use OpenTracing or OpenTelemetry.



• Inspired by Google’s Dapper and OpenZipkin

• Created at Uber in August 2015 (blog)

• Open sourced in April 2017

• Joined CNCF in Sep 2017 (as incubating)

• Graduated to top-level CNCF project

Oct 2019 (CNCF announcement)

Jaeger - /ˈyāɡər/, noun: hunter

46

https://eng.uber.com/distributed-tracing/
https://www.cncf.io/announcement/2019/10/31/cloud-native-computing-foundation-announces-jaeger-graduation/


Jaeger and your system
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Service A Service B
Trace metadata in headers (in-band):

● Jaeger native format
● W3C Trace Context
● Zipkin B3 format

OpenTracing 
instrumentation

Jaeger Tracer

OpenTelemetry
(or Zipkin) 

instrumentation

Jaeger 
BackendTrace data

(out-of-band)
Trace data
(out-of-band)



Architecture 2017: Push
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Architecture now: Push+Async+Streaming
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Technology Stack

● Go backend
● Pluggable storage

○ Cassandra, Elasticsearch, badger, memory
● React/Javascript frontend
● OpenTracing Instrumentation libraries
● Integration with Kafka, Apache Flink

51Apache Cassandra® is a trademark of the Apache Software Foundation in the United States and/or other countries.

http://www.apache.org/


Jaeger
And Sampling
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Sampling

Sampling is the selection of a subset 
(a statistical sample) of individuals 
from within a (statistical) population 
to estimate characteristics of the 
whole population.
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traces

all possible 
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performance



Why do we sample
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1. Saving everything incurs large storage costs
○ 2 KB / span on 10k QPS server ⇒ 20 MB/s

○ x100 instances ⇒ 2 GB/s ≅ 170 PB/day (for one service!)

2. Performance overhead from instrumentation
○ 10k QPS server ⇒ 100μs / req budget

○ Trace instrumentation: 5μs ⇒ 5% overhead

3. Trace data is very repetitive



Goal: Consistent (all or nothing) Sampling
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Sampling techniques
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● Head-based sampling

○ Most popular in the industry

● Tail-based sampling

○ Gaining popularity recently



Head-based (upfront) sampling

Sampling decision is made at the start of the trace and 
propagated in the trace context.
● ✅ Minimal perf overhead when trace is not sampled
● ✅ Easy to implement, supported by Jaeger SDKs
● ❌ Can easily miss rare anomalies/outliers

○ Prob. of catching p99 latency with 1% sampling rate ⇒ 1/10,000

● ❌ Cannot “sample on errors”

59



Head-based sampling in Jaeger
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● SDKs can be configured with different samplers 

(always on / off, probabilistic, rate limiting, etc.)

○ ✅ Easy to implement

○ ❌ Spread-out configuration in the hands of developers

● SDKs default to “remote” sampler that allows 

centralized configuration (polled from collectors)



Jaeger sampling configuration
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  "service_strategies": [
    {
      "service": "foo",
      "type": "probabilistic",
      "param": 0.8,
      "operation_strategies": [
        {
          "operation": "bar",
          "type": "probabilistic",
          "param": 0.2
        }
      ]
    }
  ]

  "default_strategy": {
    "type": "probabilistic",
    "param": 0.5,
    "operation_strategies": [
      {
        "operation": "/health",
        "type": "probabilistic",
        "param": 0.0
      },
      {
        "operation": "/metrics",
        "type": "probabilistic",
        "param": 0.0
      }
    ]
  }

Applies to all 
other services

Overrides for 
specific endpoints

Custom strategy 
per service

Overrides for 
specific 
endpoints



Tail-based (post-trace) sampling
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Sampling decision is made at the end of the trace:

● ✅ Can be much more intelligent, based on observed latency, 
errors, unusual call patterns & graph shapes, etc.

● ✅ Can catch anomalies
● ✅ Can perform aggregations before sampling
● ❌ Requires temporary storage of all traces
● ❌ Applications incur performance overhead even for traces that 

may be later discarded



Tail-based sampling in Jaeger

63

● ✅ Supported in jaeger-opentelemetry-collector

● ✅ Configurable sampling rules: latency, certain tags

● ❌ Single-node mode only, multi-node sharded solution 

will be available in the future



Jaeger
And OpenTelemetry
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User application process

Jaeger with OpenTracing

Application
(automatically instrumented)ApplicationApplication

(manually instrumented) Automatic
instrumentation

Manually instrumented
frameworks

Instrumentation API

Tracing library implementation

Tracing backend - Visualization frontend - Data mining platform

Agent Collector

API

opentracing
contrib



User application process
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Jaeger components on OpenTelemetry
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● OpenTelemetry Collector is written in Go

● We built Jaeger-specific versions

○ Have the same capabilities as upstream OTel

○ With Jaeger extensions, e.g. storage

● We’re converting Jaeger storage implementation to 

OTel data model for better compatibility



Jaeger
And OpenTelemetry SDKs
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Jaeger and OpenTelemetry SDKs
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● OpenTelemetry SDK support

○ Jaeger gRPC exporter

○ Jaeger propagation

● OpenTracing SHIM 

○ use OTel SKD with OpenTracing instrumentations

● Jaeger client libraries support W3C Trace Context



Jaeger
And Kubernetes
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Deploying Jaeger on Kubernetes
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● Helm charts

● Jaeger Operator 

○ allInOne and production deployment

○ auto provisioning of Kafka (Strimzi)

● Plain Kubernetes manifest files



Getting in Touch

• GitHub: https://github.com/jaegertracing

• Chat: https://gitter.im/jaegertracing/

• Mailing List - jaeger-tracing@googlegroups.com

• Blog: https://medium.com/jaegertracing

• Twitter: https://twitter.com/JaegerTracing

• Bi-Weekly Community Meetings
82

https://github.com/jaegertracing
https://gitter.im/jaegertracing/Lobby
https://groups.google.com/forum/#!forum/jaeger-tracing
https://medium.com/jaegertracing
https://twitter.com/JaegerTracing
https://docs.google.com/document/d/1ZuBAwTJvQN7xkWVvEFXj5WU9_JmS5TPiNbxCJSvPqX0/edit

