
Inside Kubernetes Ingress
KubeCon + CloudNativeCon North America 2020

Hello and Welcome to “Inside Kubernetes Ingress”, a KubeCon and CloudNativeCon North America 2020 presentation

Dominik Tornow
Principal Engineer @ Cisco

dominik.tornow@gmail.com

I am Dominik Tornow, Principal Engineer at Cisco and I focus on systems modeling, specifically conceptual and formal modeling
to support the development and documentation of complex software systems.

This presentation focuses on the concepts behind Ingress for Kubernetes, it does not focus on its possible implementations or
on its possible features

Inside Kubernetes Services
KubeCon + CloudNativeCon North America 2019

https://youtu.be/Hk77mToouEI

Kubernetes Ingress is related to Kubernetes Services. To deep dive into Kubernetes Services visit Inside Kubernetes Services, A
KubeCon and Cloud Native Con North America 2019 presentation

Ingress for Kubernetes
Problem

What problem does Ingress for Kubernetes address

Ingress for Kubernetes enables …

External

Everything “outside” the cluster

Internal

Everything “inside” the cluster

Service Consumer

Service Provider

the external consumption of a set of Kubernetes HTTP Services hosted on one Cluster …

via one HTTP Endpoint

Ingress for Kubernetes
Solution

How does Ingress for Kubernetes address this problem

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

To enable the external consumption of a set of Kubernetes HTTP Services hosted on one Cluster via one HTTP Endpoint, Ingress
for Kubernetes addresses two different concerns, Network Ingress as well as Kubernetes Ingress

• Network Ingress addresses the question of how to admit traffic into the cluster

• Kubernetes Ingress addresses the question of how to route traffic within cluster

A Kubernetes cluster is typically defined as a set of Kubernetes nodes, a set of physical or virtual machines. However, this
presentation is not concerned with nodes, so we will reason about a cluster as the set of pods that ran, run, or will run on the
cluster’s nodes.

The first topic of this presentation will discuss Network Ingress, the admission of traffic. However, as Kubernetes does not
specify how to implement Network Ingress, leaving the implementation up to the operator of a Kubernetes cluster, we will
discuss only the what not the how.

The second topic of this presentation will discuss Kubernetes Ingress, the routing of traffic

Ingress for Kubernetes
Intuition

Before we develop a definition of Ingress for Kubernetes we will spend the next few minutes to develop a intuition of Ingress for
Kubernetes

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Intuition

In order to develop an intuition of Ingress for Kubernetes, we will develop an intuition of both Network Ingress and Kubernetes
Ingress

First up …

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Intuition

Network Ingress, the admission of traffic

Network Ingress

Let there be two communicating endpoints, a service consumer and a service provider.

External

Internal

Network Ingress

The service consumer is not hosted on the the Kubernetes cluster, it is external. The service provider is hosted on the
Kubernetes cluster, it is internal

External

Internal

Network Ingress

Network Ingress denotes the point or means of admission. Furthermore …

External

Internal

Network Ingress

Network Ingress implies directionality, crossing from external to internal.

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Intuition

Next up …

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Intuition

Kubernetes Ingress, the routing of traffic

Kubernetes Ingress

Previously, there were two communicating endpoints, a service consumer and a service provider. The service consumer has to
learn the address of the service provider …

Kubernetes Ingress

to actually consume the provided service.

However, a persistent trend complicates this picture. One Monolithic service provider …

Kubernetes Ingress

is broken up into many service providers, micro services. Now, the service consumer has to learn the address of each service
provider …

Kubernetes Ingress

to consume the services

Kubernetes Ingress

Kubernetes Ingress is a proxy, an API gateway, that exposes multiple service providers as a single endpoint therefore greatly
simplifying …

Kubernetes Ingress

consuming the services

Internal

External

Internal

External

Ingress for Kubernetes
Network Ingres & Kubernetes Ingress

Putting both together …

Internal

External

Internal

External

Kubernetes Ingress

Network Ingress

Network Ingress

Ingress for Kubernetes
Network Ingres & Kubernetes Ingress

Ingress for Kubernetes is the composition of Network Ingress and Kubernetes Ingress, where Network Ingress is the admission
of traffic into the Kubernetes Cluster and Kubernetes Ingress is the routing of traffic within the Kubernetes Cluster.

In effect, Kubernetes Ingress is an API Gateway

Ingress for Kubernetes
Definition

With an intuition of Ingress for Kubernetes, we will spend the rest of the presentation to develop a set of related definitions of
Ingress for Kubernetes

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Definition

In order to develop definitions for Ingress for Kubernetes, we will once again develop definitions for both Network Ingress and
Kubernetes Ingress

First up …

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Definition

Network Ingress, the admission of traffic

Endpoint
E1

Endpoint
E2

Network

In software engineering, a distributed system is an unbounded set of components, from heron out called Endpoints. Endpoints
communicate by exchanging messages via a network.

The behavior of a distributed system is attributed to

• the behavior of its Endpoints

• and the communication between them.

The complexity of a distributed system is attributed to

• the autonomy of its Endpoints

• and the intricacy of the communication between them.

Without loss of generality let’s focus this discussion on two Endpoints, E1 and E2

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

An Endpoint is connected to the network via a channel

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

Endpoint Address

E1 Address E1

E2 Address E2

The network maintains an association between Endpoints and Addresses

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

Address
E1

Address
E2

From heron out we will graphically represent this association as if the Address is a property of the Channel

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]Address
E1

Address
E2

We keep track of the sequence of send events and receive events in an Endpoint’s History

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

M

Address
E1

Address
E2

If an Endpoint wants to send a message it will place that message in its channel

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M

M

Address
E1

Address
E2

An Endpoint placing a message in its channel is represented by a Sent Event

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M

M

Address
E1

Address
E2

The network picks up the message from the sending Endpoint’s channel and determines the receiving Endpoint’s channel and
places the message in that channel

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M Recv●M

M

Address
E1

Address
E2

The Network placing a message in and endpoint’s channel is represented by a Recv Event

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M Recv●M

Address
E1

Address
E2

 Send●M ∈ History[E1] ∧ Recv●M ∈ History[E2] ⟹ target[Send●M] = address[E2]

In this network model, Send Events are tagged with a target address. the network places the message in the channel of the
endpoint who’s address matches the message’s target address

M

M

Endpoint
E1

Endpoint
E1

Endpoint
E2

Endpoint
E2

 Send●M ∈ History[E1] ∧ Recv●M ∈ History[E2] ⟹ target[Send●M] = address[E2]

This can also be represented graphically as a Time Space Diagram.

Each timeline represents an Endpoint’s history, empty circles represent Send Events, filled circles represent Recv Events.

M

M

Endpoint
E1

Endpoint
E1

Endpoint
E2

Endpoint
E2

Flow

 Send●M ∈ History[E1] ∧ Recv●M ∈ History[E2] ⟹ target[Send●M] = address[E2]

A pair or tuple of corresponding Send and Receive Events is called a Flow

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M Recv●M

Address
E1

Address
E2

So far, we have applied a Global Point Of View

In this model we are able to take the viewpoint of the all knowing observer, we can observe both the inbox and outbox of E1 and
E2 at the same time.

Conversely, E1 or E2 cannot

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M Recv●M

Address
E1

Address
E2

But from a local point of view, we simply cannot

E1 can only observe it’s own channel, and in our model its own address, it simply cannot reach beyond

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M Recv●M

Address
E1

Address
E2

The same is true for E2

E2 can only observe its own channel and its own address

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M Recv●M

Address
E1

Address
E2

So in order for E1 to send a message to E2, E1 first has to learn the address of E2

Endpoint
E1

Endpoint
E2

Network

Channel
E1

Channel
E2

History[E1] History[E2]

Send●M Recv●M

Address
E1

Address
E2

The same is true for E2

In order for E2 to send a message to E1, E2 first has to learn the address of E1, a process called Endpoint Discovery

Endpoint
E1

N
et

w
or

k

Endpoint
E3

Endpoint
E4

Endpoint
E2

Address
E1

Address
E2

Address
E3

Address
E4

Moving towards the Kubernetes Network Model, in Kubernetes …

Pod
P1

N
et

w
or

k

Pod
P3

Pod
P4

Pod
P2

Address
P1

Address
P2

Address
P3

Address
P4

Network addressable endpoints are Pods. The Kubernetes Network Model specifies, that any Pod can communicate with all
Pods without Network Address Translation

Endpoint
E1

N
et

w
or

k

Pod
P1

Pod
P2

Endpoint
E2

Address
E1

Address
E2

Address
P1

Address
P2

The Kubernetes Network Model does not specify weather external endpoints can or cannot communicate with Pods. As a
consequence, depending on your closer, Network Ingress may be trivial or complex to implement

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

External

Internal

As we discussed earlier, we separate the set of endpoints into external endpoints and internal endpoints who communicate
across that line of separation.

Click

Here, we consider Endpoints 1 through 4 as being external endpoints and 5 through 8 as being internal endpoints

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

Given the separation of endpoints into external and internal endpoints, we can classify the communication between endpoints
according to the membership of the source and target of the communication.

There are four possible combinations

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

In the first combination, source is a member of the set of external endpoints …

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

And target is a member of the set of external endpoints

M M

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

This particular type of flow …

M M

?

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

Does not have a name

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

In the second combination, source is a member of the set of external endpoints …

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

And target is a member of the set of internal endpoints

M M M M

?

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

This particular type of flow …

M M M M

?
North South

Ingress

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

Is called North South Traffic. In addition, given the directionality, this combination constitutes Network Ingress.

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

In the third combination, source is a member of the set of internal endpoints …

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

And target is a member of the set of external endpoints

M M M M

M M

?
North South

Ingress

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

This particular type of flow …

M M M M

M M

?
North South

Ingress

North South

Egress

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

Is again called North South Traffic. In addition, given the directionality, this combination constitutes Network Egress.

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

In the fourth and last combination, source is a member of the set of internal endpoints …

Endpoint
E1

Endpoint
E3

Endpoint
E7

N
et

w
or

k

Endpoint
E2

Endpoint
E8

Endpoint
E5

Endpoint
E6

Endpoint
E4

M

And target is a member of the set of internal endpoints

M M

M M M M

M M

?
North South

Ingress

North South

Egress

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

This particular type of flow …

M M

M M M M

M M

?
North South

Ingress

West East
North South

Egress

target ∈ External target ∈ Internal

so
ur

ce
 ∈

 E
xt

er
na

l
so

ur
ce

 ∈
 In

te
rn

al

Is called West East Traffic.

Network Ingress

{ f ∈ Flow| source[f] ∉ Cluster ∧ target[f] ∈ Cluster }

Definition

So in conclusion, Network Ingress can be defined as the set of all flows, that originate outside the cluster and terminate inside
the cluster

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Definition

Next up …

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Definition

Kubernetes Ingress, the routing of traffic

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

Kubernetes Ingress is composed of three building blocks, the Kubernetes Ingress Resource or Object, Kubernetes Ingress
Controller, and the Kubernetes Ingress Proxy

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

In my personal opinion, given that Kubernetes Ingress does not implement Network Ingress, the name Ingress is not ideal

Kubernetes
API Gateway

Kubernetes
API Gateway Object

Kubernetes
API Gateway Controller

Kubernetes
API Gateway Proxy

Personally, I would prefer the name Kubernetes API Gateway

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

But either way, let’s examine the 3 building blocks of Kubernetes Ingress one by one

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

Kubernetes Ingress is indeed exceptional. For core abstractions, Kubernetes provides the resource and the controller out of the
box. However, for Kubernetes Ingress, Kubernetes provides only the resource. The cluster operator must choose and instal the
ingress controller and ingress proxy of their choice.

So, First up

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

The Kubernetes Ingress Object

Ingress
Object

Kubernetes defines a Kubernetes Ingress Object. In effect, the Kubernetes Ingress Object defines a collection of HTTP request-
level routing rules that determine the target of that request.

Source IP Source Port Target IP Target Port

Method Path

Host Header

Body

TCP/IP TCP/IP

HTTP HTTP

Ingress matches an HTTP request’s …

Source IP Source Port Target IP Target Port

Method Path

Host Header

Body

TCP/IP TCP/IP

HTTP HTTP

… Path …

Source IP Source Port Target IP Target Port

Method Path

Host Header

Body

TCP/IP TCP/IP

HTTP HTTP

… and Host Header against its routing rules to determine the target Kubernetes Service to proxy the request to

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: foobar
spec:
 rules:
 - host: foo.org
 http:
 paths:
 - path: /a
 backend:
 service:
 name: foo-a
 port:
 number: 8080
 - path: /b
 backend:
 service:
 name: foo-b
 port:
 number: 8181
 - host: bar.org
 http:
 paths:
 - path: /a
 backend:
 service:
 name: bar-a
 port:
 number: 9090
 - path: /b
 backend:
 service:
 name: bar-b
 port:
 number: 9191

This example illustrates a Kubernetes Ingress Object. In effect, this Ingress Object defines a collection of 4 request-level routing
rules …

Rule Host Path Service

r1 foo.org /a foo-a:8080

r2 foo.org /b foo-b:8181

r3 bar.org /a bar-a:9090

r4 bar.org /b bar-b:9191

that are best represented as a decision table

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: foobar
spec:
 rules:
 - host: foo.org
 http:
 paths:
 - path: /a
 backend:
 service:
 name: foo-a
 port:
 number: 8080
 - path: /b
 backend:
 service:
 name: foo-b
 port:
 number: 8181
 - host: bar.org
 http:
 paths:
 - path: /a
 backend:
 service:
 name: bar-a
 port:
 number: 9090
 - path: /b
 backend:
 service:
 name: bar-b
 port:
 number: 9191

For example, the first rule matches an HTTP request with a host header of foo.org and a path of /a to proxy to a Pod that
matches a Service named foo-a on port 8080

Rule Host Path Service

r1 foo.org /a foo-a:8080

r2 foo.org /b foo-b:8181

r3 bar.org /a bar-a:9090

r4 bar.org /b bar-b:9191

Again, represented as a row in the decision table

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: foobar
spec:
 rules:
 - host: foo.org
 http:
 paths:
 - path: /a
 backend:
 service:
 name: foo-a
 port:
 number: 8080
 - path: /b
 backend:
 service:
 name: foo-b
 port:
 number: 8181
 - host: bar.org
 http:
 paths:
 - path: /a
 backend:
 service:
 name: bar-a
 port:
 number: 9090
 - path: /b
 backend:
 service:
 name: bar-b
 port:
 number: 9191

The third rule matches an HTTP request with a host header offer.org and a path of /a to proxy to a Pod that matches a Service
named bar-a on port 9090

Rule Host Path Service

r1 foo.org /a foo-a:8080

r2 foo.org /b foo-b:8181

r3 bar.org /a bar-a:9090

r4 bar.org /b bar-b:9191

And again, represented as a row in the decision table

Endpoint
En

Endpoint
En

Endpoint
Proxy

Endpoint
ProxyReq’

Req’

Flow f2

Req

Req

Flow f1

Pod
Pn

Pod
Pn

Represented as a Time Space Diagram. When the Kubernetes Ingress Proxy receives a request, it matches the request against
the decision table and forwards the request so that a pod that matches the target service receives the request.

Why do I say “forwards the request so that a pod that matches the target service receives the request” and not simply “forwards
the request to the target service”

Because there are implementations that implement their own pod discovery in accordance with Kubernetes services but do not
rely on the discovery implemented by Kubernetes and Kubernetes Services.

Recv●Req ∈ History[Proxy] ∧ Recv●Req’ ∈ History[Pn] ⟹ ∃ r ∈ Rules[Proxy] : Req matches condition[rule] /\ Pod matches
target-service[r]

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

Next up …

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

The Kubernetes Ingress Controller, the Control Plane component

Kubernetes
API Server

Core
Controller

Edge
Controller

Controlled
Component

Controlled
Component State

Control Plane Data Plane

Kubernetes centers around the notion of Kubernetes Controllers and Kubernetes Objects. Kubernetes Controllers continuously
read and write Kubernetes Objects.

Core Controllers interact exclusively to with the API server to read and write a set of Kubernetes Objects.

Edge Controller interact with the api server to read and write a set of Kubernetes Objects but additionally communicate with
other components

ReplicaSet
Controller

Kubelet
Container
Runtime

Container
Runtime State

Control Plane Data Plane

ReplicaSet
Object

Pod
Object

Let’s examine a few familiar examples.

The Kubernetes ReplicaSet Controller is a core controller, it interacts exclusively with the api server. The Replicaset controller
read ReplicaSet Objects and writes Pod Objects

The Kubelet is an edge controller, it interact with the api server and with the container runtime. The Kubelet reads Pod objects
and instructs the container runtime to execute containers accordingly

Endpoints
Controller

KubeProxy Netfilter
Netfilter

State

Control Plane Data Plane

Service
Object

Endpoints
Object

Similarly the Kubernetes Endpoints Controller is a core controller, it interacts exclusively with the api server. The Endpoints
controller reads Service Objects and Pod objects and writes Endpoints Objects

The KubeProxy is an edge controller, it interact with the api server and with the Linux Netfilter module. The KubeProxy reads
Endpoint objects and instructs the net filter module to create network address translation rules so that a message sent to a
service ip address will be forwarded to a pod ip address, with a pod being a member of the endpoints

IP Packet

Filter Rules

Ingress
Controller

Ingress
Proxy

Ingress
Proxy State

Control Plane Data Plane

Ingress
Object

Now onto the ingress controller: an ingress controller is an edge controller, it interacts with the api server and with an ingress
proxy. The ingress controller reads ingress objects and instructs the ingress proxy to create routing rules according to the
decision table specified in the ingress object

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

Lastly, Next up

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

The Kubernetes Ingress Proxy, the Data Plane component

Endpoint
E1

Endpoint
E3

Pod
P3

N
et

w
or

k

Endpoint
E2

Pod
P4

Pod
P1

Pod
P2

Endpoint
E4

As discussed earlier, network ingress may happen before or after kubernetes ingress, so there are two possibilities …

Endpoint
E1

Endpoint
E3

Pod
P3

N
et

w
or

k

Endpoint
E2

Pod
P4

Pod
P1

Pod
P2

Endpoint
E4

Kubernetes Ingress Proxy

The ingress proxy may be an external endpoint …

Endpoint
E1

Endpoint
E3

Pod
P3

N
et

w
or

k

Endpoint
E2

Pod
P4

Pod
P1

Pod
P2

Endpoint
E4

Kubernetes Ingress Proxy

Or the ingress proxy may be an internal endpoint, a pod …

Endpoint
E1

Endpoint
E3

Pod
P3

N
et

w
or

k

Endpoint
E2

Pod
P4

Pod
P1

Pod
P2

Endpoint
E4

Endpoint
E3

Kubernetes Ingress Proxy

Pod
P1

Kubernetes Ingress Proxy

But either way, the task of the ingress proxy is to accept the request, match the request against the decision table specified by
the ingress object and installed by the ingress controller and forward the request so that a pod that matches the target service
receives the request

Kubernetes Ingress
{ f1 × f2 ∈ Flow × Flow | target[f1] = Proxy ∧ target[f2] = Pod ∧ ∃ r ∈ Rules[Proxy]: Reqf1 ⊢ conditions[r] ∧ Pod ⊢ target[r] }

Definition

So in conclusion, Kubernetes Ingress can be defined as the set of all flow pairs, so that the first flow terminates at the proxy, the
second flow terminates at a pod and there exists a rule in the decision table, so that the request of the first flow matches the
conditions of the rule and the pod matches the target service of the rule

Ingress for Kubernetes
{ f1 × f2 ∈ Flow × Flow | source[f1] ∉ Cluster ∧ target[f2] ∈ Cluster ∧ target[f1] = Proxy ∧ target[f2] = Pod ∧ ∃ … }

Definition

And now, equipped with this knowledge, we can define Ingress for Kubernetes, simply by composing both formulas

Ingress for Kubernetes is the set of all flow pairs, so that the first flow origins outside the cluster and terminates at the proxy, the
second flow terminates inside the cluster at a pod and there exists a rule in the decision table, so that the request of the first flow
matches the conditions of the rule and the pod matches the target service of the rule

Conclusion

Let’s conclude

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Ingress for Kubernetes encompasses two aspects …

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

Network ingress, the admission of traffic into the cluster

Ingress

for Kubernetes

Network
Ingress

Kubernetes
Ingress

And Kubernetes ingress, the routing of traffic pithing the cluster

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

Kubernetes Ingress is composed of three building blocks, the Kubernetes Ingress Resource or Object, Kubernetes Ingress
Controller, and the Kubernetes Ingress Proxy

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

However, Kubernetes provides only the Ingress Object, Ingress Controller and Ingress Proxy are third party components

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

In effect, the Kubernetes Ingress Object defines a collection of HTTP request-level routing rules that determine the target of that
request.

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

The ingress controller reads ingress objects and instructs the ingress proxy to create routing rules according to the decision
table specified in the ingress object

Kubernetes
Ingress

Kubernetes
Ingress Object

Kubernetes
Ingress Controller

Kubernetes
Ingress Proxy

the ingress proxy accepts the request, match the request against the decision table specified by the ingress object and installed
by the ingress controller and forward the request so that a pod that matches the target service receives the request

Finally …

What is the difference between
Kubernetes Ingress and an API Gateway like the Ambassador API Gateway?

That, of course, is a trick question. In effect, the concept of Kubernetes ingress is the concept of an API Gateway, in effect, the
kubernetes ingress object is a standardized configuration for API Gateways. Popular API Gateways, like the Ambassador API
gateway can be installed to read the Ingress Object and act as the Ingress Controller and Ingress Proxy

Thank You

dominik.tornow@gmail.com

If you are watching this presentation during the conference, I will be happy to answer your questions online. If you are watching
this presentation after the conference, I will be happy to answer your questions via email.

But either way, Thank you for watching Inside Kubernetes Ingress.

